ACTINOID PNICTIDES—II

HEAT CAPACITIES OF UAs₂ AND USb₂ FROM 5 TO 750 K AND ANTIFERROMAGNETIC TRANSITIONS[†]

FREDRIK GRØNVOLD and MORAD RAMZY ZAKI‡ Chemical Institute, University of Oslo, Blindern, Oslo 3, Norway

and

EDGAR F. WESTRUM, JR., JAMES A. SOMMERS§ and DAVID B. DOWNIE^{II} Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, U.S.A.

(Received 16 June 1977; received for publication 5 September 1977)

Abstract—The heat capacities of uranium diarsenide (UAs₂) and uranium diantimonide (USb₂), with tetragonal structures of the anti-Cu₂Sb-type, have been measured by adiabatic-shield calorimetry from 5 to about 750 K. Lambda-type transitions with maxima at 272.2 and 202.5 K for UAs₂ and USb₂, respectively, are related to maxima in the magnetic susceptibilities at 277 and 203 K, occasioned by transitions from antiferro- to paramagnetism in the compounds. Values of the heat capacities (C_p) , entropies $\{S^o(T) - S^o(0)\}$, and Gibbs energy functions $\neg \{[G^o(T) - H^o(0)]/T\}$ at 298.15 K in cal K⁻¹ mole⁻¹ are 19.12, 29.41 and 15.05 for UAs₂ and USb₂ lead to the magnetic entropies $\Delta S(mag) = 0.99$ and 1.70 cal K⁻¹ mole⁻¹, respectively. The values for both are significantly lower than the spin-only magnetic entropy value R In 3 = 2.18 cal K⁻¹ mole⁻¹.

INTRODUCTION

Compounds of uranium with the Group V elements (the pnigogens) exhibit a variety of solid state phenomenaconsequences of the outer electron structure of uranium-which are interesting from both experimental and theoretical points of view. The compounds which are of interest currently are those of stoichiometries UX. U_3X_4 and UX_2 . For a given stoichiometry there is a striking similarity of properties despite the large variation in pnigogen size. The UX compounds possess the NaCl structure and those of the U₃X₄ stoichiometry have the Th_3P_4 structure [1]. In the dipnictide series, UN_2 is an exception and is stable only under high N₂ pressure and has the fluorite structure[2]. The remaining members UP2, UAs2, USb2 and UBi2 are isostructural with tetragonal Cu₂Sb[1-5]. The unit cell and magnetic structures are shown in Fig. 1. Magnetic susceptibility [1, 6-8] and neutron diffraction measurements [9-11] have been made on the dipnictides UP₂ through UBi₂. The dependence of inverse magnetic susceptibility on temperature indicates that the compounds all order antiferromagnetically and that Curie-Weiss behavior obtains above the ordering (Néel) temperature. The paramagnetic moment increases monotonically with increasing pnigogen size, but Néel temperatures do not. The magnetic coupling may either be anomalously weak in UP₂ or anomalously strong in UAs₂.

The antiferromagnetic structures of UP_2 , UAs_2 and USb_2 determined by neutron diffraction (in the ordered

Fig. 1. Unit cell for the uranium dipnictides and magnetic unit cell for UP₂, UAs₂ and USb₂[12].

state) consist of ferromagnetic sheets of uranium ions stacked perpendicularly to the *c*-axis and in the sequence +--+ as shown in Fig. 1. The magnetic unit cell is twice as large as the chemical one due to its doubled *c*-axis. UBi₂ contrasts in that the chemical and magnetic unit cells are identical and the ferromagnetic sheets have the order +-+-. The compounds display metallic conduction with $\rho(293 \text{ K}) = 1.83 \times 10^{-4}$ and $1.95 \times$ $10^{-4} \Omega$ cm for single crystal samples of UP₂ and UAs₂, respectively[12].

Enthalpy of formation (ΔH_3^c) measurements on lower arsenides and phosphides together with the observation that ΔH_3^c (298 K) seems to be a linear function of the pnigogen to uranium radius ratio give an estimate [13] of ΔH_3^c (298 K) for UP₂ and UAs₂ of -69 kcal mole⁻¹ and -60 kcal mole⁻¹ respectively. ΔH_3^c (298 K) for USb₂ has been found to be -(41.5 ± 2.6) kcal mole⁻¹. However, for UBi₂ Lebedev *et al.* [14] found $\Delta H_3^c = -24.7$ kcal mole⁻¹. Rice *et al.* [15] found -27.1 kcal mole⁻¹, and Mills [16] selected -26.0 kcal mole⁻¹.

Only the heat capacity of UP₂ (22.5-350 K) has been

[†]The work done at the University of Michigan was supported by the Chemical Thermodynamics Program of the Chemistry Division, National Science Foundation. The previous paper in this series is Ref. [31].

[‡]Present address: Nuclear Chemistry Department, Atomic Energy Establishment, Inshas, Egypt.

^{\$}Present address: Monsanto Polymers and Petrochemicals Co., 800 N. Lindberg Blvd., St. Louis, MO 63166, U.S.A.

¹Present address: Department of Metallurgy, University of Strathclyde, Glasgow G1 1XN, Scotland.

reported previously[17]. Here a prominent lambda anomaly at 203.2 K accords well with the transition to the antiferromagnetic state as observed in magnetic susceptibility measurements.

EXPERIMENTAL

Samples. The dipnictides were prepared in batches of about 25 g from high-purity uranium metal and pnigogens described earlier[1]. They were prepared from uranium-pnigogen mixture of molar ratio 1:2 in evacuated, sealed, silica tubes. The uranium used was in the form of turnings. The silica tubes containing uranium-antimony mixture were held at (520 ± 10)°C in a muffle furnace for 20 days, while those containing uranium-arsenic mixture were held at $(430 \pm 10)^{\circ}$ C for 10 days. After complete reaction between compact uranium and pnigogen, the temperature was elevated to $(750 \pm 10)^{\circ}$ C during a period of one week and kept at this temperature for another week. The tubes were then left to cool in air. The tubes containing the diantimonide batches and those containing the diarsenide batches were opened in a glove box filled with helium to avoid oxidation. The product contents were crushed under helium before being transferred to the calorimeter. The dipnictides were tempered at 550°C for one week in the calorimeter tubes before heat capacity measurement.

The samples thus prepared were handled in a glove box filled with pure, dry helium gas. X-Ray powder photographs of the samples were taken with $CuKa_1$ -radiation using Guinier-type focusing cameras of 8.0 cm diameter. Potassium chloride (AnalaR) was used as a calibration substance ($a_{20^{\circ}C} =$ 629.19 pm)[18]. The lattice constants are $a = (396.2 \pm 0.2)$, c = (813.4 \pm 0.4) pm for UAs₂ and $a = (428.3 \pm 0.2)$, $c = (875.8 \pm 0.4)$ pm for USb₂. They accord well with those reported earlier for UAs₂ by Iandelli[3] (a = 396.2, c = 813.2 pm) and Trzebiatowski *et al.*[6] (a = 396.2, c = 813.6 pm) and for USb₂ by Ferro[4] (a = 428.1, c = 875.8 pm).

Heat capacities 5-350 K, University of Michigan. The Mark II adiabatic cryostat described previously[19] and a vaned, goldplated, copper calorimeter (laboratory designation W-52) were employed for both compounds. The calorimeter has a capacity of 59 cm³ and a mass of about 33 g, and incorporates a gold gasket and screw seal. The heat capacity of the calorimeter and heaterthermometer assembly ranged from 23 to maximum of 35% of the total heat capacity observed for the UAs₂ sample and from 15-37% for the USb₂ sample; it was determined separately and small adjustments made for differences in the gold gaskets used. A capsule-type, strain-free, platinum-resistance thermometer (laboratory designation A-5) is contained within a re-entrant well of the calorimeter. The experimentally measured temperature increments are probably reliable to within 0.001 K after correction for quasi-adiabatic drift. The masses of the samples used were about 147 and 169 g for UAs, and USb, respectively. Helium conduction gas was added to the sample space after evacuation: the amounts employed were 75.3 torr at 299.3 K and 82.0 torr at 297 K, respectively.

Heat capacities 300-750 K, University of Oslo. The calorimetric apparatus and measuring technique have been described [20]. The calorimeter was intermittently heated, and surrounded by electrically heated and electronically controlled adiabatic shields. The substance was enclosed in an evacuated, sealed, silica tube of about 50 cm³ volume, tightly fitted into the

Fig. 2. Low-temperature heat capacity curves for UAs₂ and USb₂. ●, ▲ are data taken at Ann Arbor. Dashed lines represent the lattice contributions.

Fig. 3. Higher temperature heat capacity curves for UP₂[15], UAs₂ and USb₂. Dashed line represents the heat capacity of UP₂; \bullet , \blacktriangle are data taken at Ann Arbor; and \bigcirc , \triangle are data taken at Oslo.

silver calorimeter. A central well in the tube served for the heater and platinum resistance thermometer. The heat capacity of the empty calorimeter assembly represents about 75% of the total heat capacity for UAs₂ and USb₂, respectively. The masses of the USb₂ and UAs₂ samples were nearly the same as those for the low-temperature calorimeter.

Calibrations and adjustments. The platinum-resistance thermometer for the low-temperature calorimeter had been calibrated by the U.S. National Bureau of Standards, and that for the high-temperature calorimeter locally, at the ice, steam and zinc points. Temperatures were judged to correspond to IPTS-68 within 0.02 K from 4-300 K, and within 0.05 K above this temperature. Energy inputs were measured with reference to instruments calibrated by the U.S. National Bureau of Standards.

Small corrections were applied for temperature excursions of the shields from the calorimeter temperature and for "zero drift" of the calorimeter temperature. Further small corrections were applied for differences in the masses of the gold gaskets, helium gas, and Apiezon-T grease for the low-temperature calorimeter and for differences in mass of the quartz containers for the high-temperature calorimeter.

RESULTS

The heat capacity determinations expressed in terms of the calorie defined as 4.184 J, an ice point of 273.15 K, and the atomic weight of natural uranium as 238.029 are listed in Tables 1 and 2 and shown in Figs 2 and 3. The molar masses are taken as 387.872 g mole⁻¹ for UAs₂ and 481.429 g mole⁻¹ for USb₂. The heat capacity values are considered to have a probable error of about 5% at 5 K, 1% at 10 K; less than 0.1% from 25-350 K, and 0.5% at higher temperatures. These results have been adjusted for curvature. Values of ΔT used in the determinations can usually be deduced from the increments between adjacent mean temperatures.

Both substances show λ -type transitions in the heat capacity. Maxima are at 272.2 and 202.5 K for UAs₂ and USb₂. Heat capacities below 5 K were extrapolated with a term proportional to T^3 (Debye lattice contribution) and one proportional to T (conduction electronic contribution, γ). The respective parameters, the Debye θ and γ , were taken from C_p/T vs T^2 plots of heat capacity points below about 20 K. Values of γ were found to be 1.36×10^{-3} and 2.98×10^{-3} cal K⁻² mole⁻¹ for UAs₂ and USb₂. Enthalpy increments over both transition and non-transition regions (compare Table 3) were made to test the accuracy of the heat capacity determinations and integration and to provide high accuracy across transition regions.

The heat capacities at constant pressure (C_p) , and the derived thermodynamic functions S°, $[H^{\circ}(T) - H^{\circ}(0)]$ and $-[G^{\circ}(T) - H^{\circ}(0)]/T$ at selected temperatures presented in Table 4 were obtained from the experimental heat capacity points by least-squares. The curvefitting and integration processes and the joining of lowand high-temperature segments were performed by highspeed digital computers using established programs. The thermodynamic functions are considered to have a precision indicated by a probable error of less than 0.1% from 100-350 K and 0.3% at higher temperatures. An additional digit beyond those significant is given in Tables 4 and 5 for internal consistency and to permit interpolation and differentiation. Entropies and Gibbs energies have not been adjusted for nuclear spin or isotope mixing contributions and are thus practical values for use in chemical thermodynamic calculations.

DISCUSSION

Difficulties associated with determination of magnetic heat-capacity contributions are well known and are encountered with uranium compounds involving Group IV, V and VI elements [21, 22]. In the absence of heat capacity data for the isostructural diamagnetic compounds (i.e. the corresponding thorium compounds) such resolutions must be regarded as tentative and probably too low. It is interesting to note, however, that the heat capacity of USe₂[23] (with nearly the same molecular mass as UAs₂ although the crystal structures differ) agrees rather well with the heat capacity of the latter compound for some ranges both above and below the transition and with our lattice contribution described below.

The magnetic ordering contributions were determined by plotting effective θ_{Debye} 's as f(T) for the total heat capacities and interpolating over the gap caused by the enhanced heat capacity in the transition region. The θ values thus obtained over this interval were used to generate "lattice" heat capacities which were then integrated. The results are shown in Table 6, together with those for UP₂. Magnetic quantities for the latter compound are from the analysis of Stalinski *et al.* [17] obtained by subtraction of a lattice heat capacity approximated by a trial and error sum of Debye functions.

Relevant to the interpretation of the ΔS_{mag} is the amount of entropy to be expected—despite reservations about well defined oxidation states for conducting

FREDRIK GRØNVOLD et al.

Table 1. Heat capacity of UAs_2 . (cal = 4.184 J)

Ţ		<u>c</u> p	Ţ	_	<u>c</u> p	·	Ţ		<u>c</u>	2	•	T		<u>c</u> p	
ĸ	cal	к ⁻¹ то	le ⁻¹ K	с	al K ⁻¹	mole ⁻¹	ĸ	cal	к-1	mol	e ⁻¹	K	cal	к ⁻¹	mole ⁻¹
				Low-2	Tempera	ature Da	ata (An	n Arl	bor)						
S	eries	I	34	0.56	19	9.12	∆H _t	Det	'nD	1		24.2	8	1	. 442
			34	7.45	18	3.76						27.1	3	1	.919
211.1	1	19.17						Seri	es	VII		30.1	6	2	.478
222.9	1	19.78		Sei	cies IN	1						33.4	7	3	.128
234.4	2	20.38					·∆H	Det	'n E			37.0	1	3	.856
245.6	5	21.13	15	9.45	16	5.92	230.	76	:	20.19)	40.9	0	4	.665
256.5	5	22.10	16	8.64	17	.32	240.	66	:	20.80)	45.4	5	5	.613
266.3	8	23.60	17	7.64	17	.69	250.	33	:	21.52	2	50.0	8	6	. 554
275.7	0	20.94	18	6.48	18	.07						54.7	9	7.	.473
285.6	4	19.34	19	5.16	18	.44		Seri	es \	/111		60.3	7	8.	.495
295.8	6	19.19	20	1.18	18	.75						66.6	9	9.	. 548
306 0	9	19.17	Δ <u>Η</u>	+ Det	t'n B		ΔH	Det	'n.	F .		73.7	1	10	. 56
316 2	9	19.16	_									81.2	7	11	. 56
376 /	0	10 22		Ser	ies V			Seri	es 1	x		89.1	8	12	. 47
336.6	8	19.15										97.7	7	13	.23
343.7	6	19.28	9	5.16	13	3.03	5	. 22		0.0	06	106.	86	13	. 95
			10	5.44	13	.85	5	. 63		0.0	19				
s	eries	TT	11	5 13	12	55	6	. 23		0.0	31		Seri	es X	
-				4 85	15		6	.90		0.04	47				
178.9	4	17.75	13	4.67			7	.75		0.0	58	101	03	13	52
188 3	6	18 15	14	4.07	16	. 23	8	. 60		0.0	36	ΔH	Det'	n. G	
107.6	1	10.15	15	4.33	10	70	9	52		0 1	11	_ <u></u> ∧1i	Det '	п. U	
ע דא דא	± ot'n	10.55	15	+.00 5 07	10	17	10	53		0 14	44	°≞t	000		
∆ <u>∺</u> t D	et n.	А	10	5.07	17	.1/	11	64		0.1	59		Cari	00 VI	r
C			10	0.09 0.09	10	. 61	12	88		0.2	22		Seri	es A.	•
Se	ries.	ΓTΥ	10	+.90	10	.01	14	17		0.20	96	305	60	10	1 7
201 0	^	10 10		C	d		15	62		0.2	28	315	6 J	19.	17
304.0	2	19.10		ser	ies vi		17	26		0.5	20	325	51	10	12
310.94	4	19.09		_			10	19		0.5	20	325.)T (1	10	1.6
320.8.	3 ^	19.09	Δ <u>Η</u> 10:	Det	:'n. C		17.	52		1 0	.n	- 2/2	+⊥ 21	10	17
330.70	U	19.12	19		18	. 56	21			1.04	ŧŪ	242.	21 22	19.	. 17
·			·····							·		540.	23	19.	
<u>T</u>	Δ <u>T</u>	-	$\langle \underline{c}_{p} \rangle^{b}$		<u>(</u>	2 c	Ţ		<u>T</u>		<u><</u> 5	\geq		<u>c</u> p	
к	к	cal	K ⁻¹ mol	e ⁻¹	cal K	-1 mole	l K		к	cal	к ⁻¹	mole ⁻¹	cal	к-1	mole ⁻¹
										5.07	inc	WTTT			
256 0	e	3 7 E	ries VII	10		1 E	262.4	,			162	VIII OG OO			
200.9	0	3.75	22.	12 F 2	22.	15	202.44	+	0	.44		22.82		22.8	51 10
200.0	。 ,	3.70	22.	,, ,,	22.	10	207.00) ~	1	.91		23.78		23.1	'8
264.3	4	3.03	23.	11	23.	10	269.30) -	Ŧ	.50		24.32		24.2	\$2
267.0	8	1.86	23.	65	23.	65	270.32	2	0	. 55		24.90		24.8	32
268.9	2	1.84	24.	11	24.	18	270.86	2	0	. 55		25.14		25.1	.2
270.1	9	0.72	24.	83	24.	72	271.29) -	0	.33		25.43		25.4	+3
270.9	U	0.71	25.	10	25.	15	271.5		0	. 22		25,84		25.7	2
271.6	U	0.70	25.	80	25.	/6	271.76	-	0	. 22		25.84		25.9	11
272.3	0	0.71	25.	12	25.	12	271.96	5	0	.21		26.29		26.2	:5
273.0	6	0.81	20.	84	20.	89	272.16	5	0	. 21		26.53		26.6	3
273.8	7	0.82	20.	53	20.	35	272.37		0	. 22		24.70			. -
274.7	0.	0.83	20.	09	20.	08	272.59)	0	. 24		21.89		21.7	6
276.1	6	2.10	19.	81	19.	79	272.82	2	0	. 25		21,24		21.2	.5
281.8	3	9.28	19.	44	19.	34	273.06	5	0	.25		20.94		20.9	12

			Comu.)	•		
<u>с</u> ь р	<u>T</u>	<u>c</u> p	<u>T</u>	<u> </u>	Ţ	<u>c</u> p
cal K ⁻¹ mole ⁻¹	K ca	1 K ⁻¹ mole ⁻¹	K c	al K ⁻¹ mole ⁻¹	K ca	LK ⁻¹ mole ⁻¹
	Hi	gh-Temperature	e Data (Oslo)	· · · ·	
ies I	427.20	19.62	586.18	19.89	707.57	20.27
	442.81	19.65	602.21	20.02	724.25	20.32
19.04	458.48	19.70	618.27	20,00	739.62	20.36
19.12	474.22	19.72	634.40	20.10	753.66	20.46
19.16	490.03	19.71			767.76	20.45
19.24	505.92	19.75	Ser	ies II		
19.32	521.88	19.85				
19.34	537.92	19,85	661.10	20.13		
19.48	554.04	19.92	677.51	20.17		
19,53	570.20	19.88	692.50	20.14		
	<u>Cp</u> ^b cal K ⁻¹ mole ⁻¹ ies I 19.04 19.12 19.16 19.24 19.32 19.34 19.48 19.53	$\frac{\underline{C_p}}{cal \ K^{-1} \ mole^{-1}} \frac{\underline{T}}{K} \frac{1}{cal}$ H1 ies I 427.20 442.81 19.04 458.48 19.12 474.22 19.16 490.03 19.24 505.92 19.32 521.88 19.34 537.92 19.48 554.04 19.53 570.20	$\frac{\underline{C_p}}{cal \ K^{-1} \ mole^{-1}} \frac{\underline{T}}{K} \frac{\underline{C_p}}{cal \ K^{-1} \ mole^{-1}} \frac{\underline{L}}{K} \frac{\underline{C_p}}{cal \ K^{-1} \ mole^{-1}} \frac{\underline{L}}{K}$ High-Temperature ies I 427.20 19.62 442.81 19.65 19.04 458.48 19.70 19.12 474.22 19.72 19.16 490.03 19.71 19.24 505.92 19.75 19.32 521.88 19.85 19.34 537.92 19.85 19.48 554.04 19.92 19.53 570.20 19.88	$\frac{\underline{C_p}}{cal \ K^{-1} \ mole^{-1}} \frac{\underline{\Gamma}}{K} \frac{\underline{C_p}}{cal \ K^{-1} \ mole^{-1}} \frac{\underline{\Gamma}}{K} \frac{\underline{\Gamma}}{cal \ K^{-1} \ mole^{-1} \ K} \frac{\underline{\Gamma}}{cal \ K^{-1} \ K} \frac{\underline{\Gamma}}{cal \ K^{-1} \ mole^{-1} \ K} \frac{\underline{\Gamma}}{cal \ K^{-1} \ mole^{-1} \ K} \frac{\underline{\Gamma}}{cal \ K^{-1} \ mole^{-1} \ K} \frac{\underline{\Gamma}}{cal \ K^{-1} \ K} \frac{\underline{\Gamma}}{cal \ K^{-1} \ mole^{-1} $	$\frac{\underline{C_p}}{cal \ K^{-1} \ mole^{-1}} \frac{\underline{T}}{K} \frac{\underline{C_p}}{cal \ K^{-1} \ mole^{-1}}$ High-Temperature Data (Oslo) ies I 427.20 19.62 586.18 19.89 442.81 19.65 602.21 20.02 19.04 458.48 19.70 618.27 20.00 19.12 474.22 19.72 634.40 20.10 19.16 490.03 19.71 19.24 505.92 19.75 Series II 19.32 521.88 19.85 19.34 537.92 19.85 661.10 20.13 19.48 554.04 19.92 677.51 20.17 19.53 570.20 19.88 692.50 20.14	$\frac{\underline{C_p}}{cal \ K^{-1} \ mole^{-1}} \qquad \frac{\underline{T}}{K} \qquad \frac{\underline{C_p}}{cal \ K^{-1} \ mole^{-1}} \qquad \frac{\underline{C_p}}{K} \qquad \frac{\underline{T}}{cal \ K^{-1} \ mole^{-1}} \qquad \frac{\underline{C_p}}{K} \qquad \frac{\underline{C_p}}{cal \ K^{-1} \ K^{-1} \ mole^{-1}} \qquad \frac{\underline{C_p}}{K} \qquad \frac{\underline{C_p}}{cal \ K^{-1} \ mole^{-1}} \qquad \frac{\underline{C_p}}{K} \qquad \frac{\underline{C_p}}{cal \ K^{-1} \ mole^{-1}} \qquad \frac{\underline{C_p}}{K} \qquad \frac{\underline{C_p}}{cal \ K^{-1} \ mole^{-1}} \qquad \frac{\underline{C_p}}{C} \qquad \frac{\underline{C_p}}{K} \qquad \frac{\underline{C_p}}{cal \ K^{-1} \ \underline{C_p}} \qquad \frac{\underline{C_p}}{cal \ K^{-1} \ \underline{C_p}$

Table 1. (Contd.)

^a Subsequent determinations in this region did not confirm this value.

^b The symbol $\langle \underline{c}_{\underline{p}} \rangle$ represents mean values of the heat capacity as calculated directly from finite $\Delta H/\Delta T$'s without curvature correction.

^c The symbol \underline{C}_p in columns adjacent to $\langle \underline{C}_p \rangle$ represents the value of the heat capacity read from the smoothed curve at temperature T. Elsewhere in the table it represents \underline{C}_p analytically corrected for curvature.

<u></u> т		с	T	С_	т	C_	т	C_
<u> </u>		<u></u>		<u>–p</u>		<u>p</u>		<u>–p</u>
К	cal	K ⁻¹ mole ⁻¹	K cal	K ⁻¹ mole ⁻¹	ĸ	cal K ⁻¹ mole ⁻¹	Кса	1 K ⁻¹ mole
<u></u>			Low-Temp	erature Dat	a (Ann	Arbor)		
S	eries	I	113.29	16.35	5.60	0.042	52.39	9.247
			124.88	17.16	-5.92	0.052	56.75	10.09
168.8	80	20.32	135.99	17.87	6.31	0.055		
180.8	35	21.41	146.67	18.62	6.70	0.068	Seri	es IX
192.3	3	22.97	∆H _t Det'n.	A	7.28	0.096		
203.6	51	22.25	261.85	18.92	7.93	0.106	45.83	7.804
215.5	8	19.13			8.63	0.135	52,50	9.259
226.6	. 8	18.92	Series	IV	9.43	0.179	55.65	9.886
					10.64	0,253	59.78	10.66
S	Series	II	131.51	17.56	11.94	0.329	64.78	11.51
			138.16	18.03	13.42	0.463	70.88	12.37
237.0)4	18.91	148.61	18.76	15.01	0.651	78.03	13.28
248.3	0	18.89	158.71	19.50	16.49	0.836	86.21	14.21
259.5	2	18.95	168.48	20.27	18.40	1.150	95.41	15.02
270.6	9	18.99	177.94	21.12	20.99	1,630	104.58	15.72
281.8	2	19.06			24.33	2.355	113.82	16.36
292.8	8	19.13	Series	VI	27.17	3.032	124.90	17,16
303.8	57	19.24			29.70	3.673	∆H, Det'r	n. C
314.8	2	19.28	125,34	17.18	32.26	4.349	249.15	18.92
325.7	'5	19.33	∆H ₊ Det'n.	B	35.30	5.154	285.73	19.07
			242.41	18.91	38.96	6.104	298.97	19.13
Se	ries	III			43.27	7.174	318.49	19.23
			Series	VIII	47.91	8,296	342.42	19.35
100.0)5	15.38						

Table 2. Heat capacity of USb₂, (cal = 4.184 J)

Table 2. (Contd.)

Ţ	Δ <u>Τ</u>	<u>ک کو</u>	a	<u>c</u> p	I	Δ <u>T</u>	<u> < د</u> و	≻⁵	<u>c</u> p
ĸ	ĸ	cal K ⁻¹	mole ⁻¹	cal K ⁻¹ mole ⁻¹	ĸ	ĸ	cal K ⁻¹	mole ⁻¹	cal K ⁻¹ mole
		Seri	es IV		2	07.61	1.84	19.57	19.58
					2	09.44	1.82	19.42	19.42
185	.12	5.08	21.92	21.91	2	11.27	1.83	19.30	19.30
190	.14	4.96	22.59	22.60	2	13.10	1.84	19.21	19.21
195	. 03	4.82	23.51	23.50	2	14.94	1.84	19.14	19.14
199	.72	4.58	25.20	25,03	2	L6.77	1.84	19.07	19.10
204	.60	5.18	21.03		2:	L8.61	1.84	19.10	19.05
209	.92	5,48	19.28	19.38					
215	.40	5,50	19.10	19.14		Series VII			
220	.90	5.51	19.03	19.00					
226	.42	5,52	18.90	18.93	2(0.63	0.15	25.42	25.54
231	. 93	5.51	18.91	18.91	2(0.78	0.15	26.00	25.70
237	.44	5,51	18.89	18.89	2(0.93	0.15	25.53	25.83
					20	01.09	0.18	26.36	26.07
		Serie	es V		20)1.27	0.18	26.65	26.40
					20)1.45	0.18	26.54	26.65
190	. 98	1.62	22.78	22.73	20)1.63	0.18	26.67	26.98
192.	92	1.651	23.05	23.07	20	1.81	0.18	26.76	27.45
194.	56	1.62	23.31	23.40	20	1.98	0.18	27.59	27.91
196.	16	1.60	23.77	23.77	20	2.16	0.17	28.50	28.54
197.	75	1.58	24.17	24.22	20	2.33	0.17	28.82	29.16
199.	31	1.55	24.76	24,81	20	2.50	0,18	25.65	25.65
200.	84	1.51	25.76	25.76	20	2.70	0.21	22.03	22.16
202.	36	1.52	25.31		20	2.90	0.21	21.09	21.55
204.	00	1.77	20.38	20.33	20	3.11	0.21	20.88	21.12
205.	79	1.80	19.84	19.83	20	3.32	0.21	20.92	20.76
Ţ		<u>c</u> p	Ţ	<u>c</u> p	Ţ		<u>c</u> p	<u><u>T</u></u>	<u>C</u> p
ĸ	cal	K ⁻¹ mole ⁻¹	ĸ	cal K ⁻¹ mole ⁻¹	ĸ	cal	K ⁻¹ mole ⁻¹	ĸ	cal K ⁻¹ mole ⁻¹

Series I		400.43	19.86	518.76	20.33	640.11	20.66
		413.40	19.90	532.00	20.44	653.78	20.73
310.83	19.30	426.40	19.95	545.22	20.53	667.48	20.76
322.75	19.42	439.64	20.00	558.48	20.51	681.24	20.78
335.72	19.51	452.83	20.06	571.80	20.55	695.07	20.84
348.66	19.59	466.33	20.19	585.18	20.59	708.94	20,80
361.59	19.68	47 9 .37	20.21	598.62	20.61	722.88	20,84
374.54	19.72	492.44	20.24	612.15	20.64	736.90	20.89
387.48	19.75	505.57	20.27	625.99	20.69		

^a The symbol $\langle \underline{Cp} \rangle$ represents mean values of the heat capacity as calculated directly from finite $\Delta H/\Delta T$'s without curvature correction. ^b The symbol C in columns address to $\langle L \rangle$

^b The symbol \underline{C}_p in columns adjacent to $\langle \underline{C}_p \rangle$ represents the value of the heat capacity read from the smoothed curve at temperature T. Elsewhere in the table it represents \underline{C}_p analytically corrected for curvature.

Table 3. Enthalpy determinations for UAs₂ and USb₂

Designation	\underline{T}_1	<u>T</u> 2	$\underline{\mathtt{H}}(\underline{\mathtt{T}}_2) - \underline{\mathtt{H}}(\underline{\mathtt{T}}_1)$	<u>н</u> (303 к)- <u>н</u> (202 к)
	ĸ	K	cal mole ⁻¹	cal mole ⁻¹
U	As ₂ , Mark	II Cryos	tat, Transition	Region
Detn. A (Ser. II)	202.19	302.05	2047.3	2069.1
Detn. B (Ser. IV)	202.88	300.65	2005.9	2067.1
Detn. D (Ser. VI)	201.66	301.18	2039.8	2068.3
Detn. H (Ser. X)	201.02	300.74	2043.7	2068.0
Series I	205.14	300.96	1970.4	2068.4
			Mea	an: (2068.2 <u>+</u> 0.7)

UAs2, Mark II Cryostat, Non-Transition Region

				$\underline{\mathbf{T}}_{1}$	<u>T</u> 2	<u>н(т</u>	$-\underline{H}(\underline{T}_1')$
				ĸ	ĸ	cal mole ⁻¹	
				 _	. <u>.</u> .	Expt'1	Integral of curve
Detn. C	164.94	193.51	507.93	165	194	515. 9 0	515.55
Detn. E	183.70	225.76	795.38	184	226	794. 7 8	794.73
Detn. F	149.52	258.24	2066.28	150	258	2053.0	2052.8
Detn. G	105.91	201.02	1575.10	106	201	1573.5	1571.2

 USb_2 , Mark II Cryostat, Transition Region

				<u>H</u> (24	40 К)- <u>Н</u> (130 К)
					cal mole ⁻¹
Detn. A	151.89	255.73	2103.2		2204.4
Detn. B	131.02	237.51	2140.7		2205.6
Detn. C	130.47	243.68	2269.1		2207.8
Series IV	130.19	240.19	2204.1		2203.8
				Mean:	(2205.4 <u>+</u> 1.8)

Table 4. Thermodynamic functions of uranium diarsenide (cal = 4.184 J , molar mass/g = 387.8	(72)
--	------

			_						
Ţ	<u>C</u> p		$\{\underline{S}^{\circ}(\underline{T})-\underline{S}^{\circ}(0)\}\$		{ <u>H</u> °(<u>T</u>)- <u>H</u> °(0)}		$-\{\underline{G}^{\circ}(\underline{T})-\underline{H}^{\circ}(0)\}/\underline{T}$		-
к	cal	K ⁻¹ mole ⁻¹	cal	K ⁻¹ mole ⁻¹	cal	mole ⁻¹	cal	K ⁻¹ mole ⁻¹	
	5	0.024		(0.012)		(0.037)		(0.005)	-
	10	0.110		0.049		0.327		0.016	
	15	0.353		0.132		1.398		0.039	
	20	0.837		0.294		4.268		0.081	
	25	1.559		0.555		10.172		0.148	

Table 4	(Contd.)

Ţ	<u>C</u> p	$\{\underline{s}^{\circ}(\underline{T}) - \underline{s}^{\circ}(0)\}$	{ <u>H</u> °(<u>T</u>)- <u>H</u> °(0)}	-{ <u>G</u> °(<u>T</u>)- <u>H</u> °(0)}/ <u>T</u>
ĸ	cal K ⁻¹ mole ⁻¹	cal K ⁻¹ mole ⁻¹	cal mole ⁻¹	cal K ⁻¹ mole ⁻¹
30	2,446	0.915	20.129	0.244
35	3.439	1.366	34.810	0.371
40	4.478	1.893	54.59	0.528
45	5.522	2,481	79.60	0.712
50	6.541	3.115	109.77	0.920
60	8.426	4.478	184.80	1.398
70	10.051	5.903	277.42	1.940
80	11.404	7.336	384,91	2.525
90	12,516	8.746	504.7	3.138
100	13.433	10.113	634.6	3.767
110	- 14.204	11.431	772.9	4.405
120	14.869	12.696	918.3	5.043
130	15.46	13,910	1070.0	5.679
140	16.00	15.08	1227.3	6.309
150	16 49	16.20	1389.8	6.931
160	16.95	17.28	1557.1	7.544
170	17.38	18.32	1728.8	8.147
180	17 80	19.32	1904.7	8.740
190	18 21	20.29	2084.7	9.323
200	18.68	21.24	2269.1	9.895
210	19.15	22.17	2458.2	10.464
220	19.64	23.07	2652.2	11.015
230	20.15	23.95	2851.1	11.554
240	20.74	24.83	3056.8	12.093
250	21.49	25.69	3267.7	12.619
260	22.49	26.55	3487.3	13.137
270	24.63	27.43	3720.5	13.650
272.3	21 ^a 26.72			
200	10 /2	28 20	3933.1	14,153
280	19.42	28.88	4125 8	14 653
290	19.10	20.00	4317.2	15 14
300 310	19.11	30.15	4508.2	15.61
220	19 10	30.76	4699.2	16.07
220	19.13	31.35	4890.3	16.53
220	19.15-	31.92	5082	16,97
340	10 22	32.47	5274	17.41
350	19.24	35.06	6241	19.45
400	19.4/	55.00		
450	19.67	37.36	7220	21.32
500	19.79	39.44	8206	23.03
550	19.87	41.33	9198	24.61
600	19.97	43.06	10194	26.08
650	20.09	44.67	11195	27.44

Table 4. (Contd.)

T	<u>c</u> p		$\{\underline{S}^{\circ}(\underline{T}) - \underline{S}^{\circ}(0)\}\$		{ <u>H</u> °(<u>T</u>)- <u>H</u> °(0)}		-{ <u>G</u> °(<u>T</u>)- <u>H</u> °(0)}/ <u>T</u>	
ĸ	cal	K ⁻¹ mole ⁻¹	cal	K ⁻¹ mole ⁻¹	cal	mole ⁻¹	cal	K ⁻¹ mole ⁻¹
700		20.24		46.16	123	203		28.73
750		20.40		47.56	13219			29.94
273.1	15	(20.76)		(27.71) ^b	(3797.3) ^b		(13.808) ^b	
298.1	.5	19.12		29.41	4281.8			15.05

^a Peak of transition

^b The 273.15 K value is within ordering high-temperature "tail" of the transition range, but the heat capacity has nearly decreased to the normal value for Phase I.

Ţ	<u>C</u> p	$\{\underline{S}^{\circ}(\underline{T})-\underline{S}^{\circ}(0)\}$	{ <u>H</u> °(<u>T</u>)- <u>H</u> °(0)}	$-\{\underline{G}^{\circ}(\underline{T})-\underline{H}^{\circ}(0)\}/\underline{T}$	
ĸ	cal K ⁻¹ mole ⁻¹	cal K ⁻¹ mole ⁻¹	cal mole ⁻¹	cal K ⁻¹ mole ⁻¹	
5	0.031	(0.025)	(0.035)	(0.018)	
10	0.207	0.088	0.540	0.034	
15	0.651	0.246	2.554	0.075	
20	1.427	0.531	7.609	0.151	
25	2.504	0.961	17.332	0.267	
30	3.761	1.527	32.951	0.428	
35	5.069	2.204	55.02	0,632	
40	6.372	2,967	83.64	0.876	
45	7.607	3,789	118.62	1.153	
50	8.741	4.650	159.54	1.460	
60	10.090	6.423	257.04	2.139	
70	12.260	8.193	372.07	2.878	
80	13.529	9.916	501.2	3.650	
90	14.553	11.571	641.8	4.439	
100	15.38	13.148	791.6	5.232	
110	16.10	14.649	949.1	6.020	
120	16.81	16.08	1113.7	6.799	
130	17.48	17.45	1285.3	7.566	
140	18.15	18.77	1463.4	8.317	
150	18.86	20.05	1648.4	9.061	
160	19.60	21.29	1840.6	9.786	
170	20.44	22.50	2040.5	10.497	
180	21.34	23.69	2249.0	11.196	
190	22.58	24.87	2468.2	11.879	
200	25.16	26.08	2704.2	12.559	
202.52 ^a	29.80				
210	19.38	27.14	2921.4	13.229	
220	19.02	28.03	3113.0	13.880	
230	18.91	28.88	3302.5	14.521	
240	18.90	29.68	3491.5	15.13	

Table 5. Thermodynamic functions of uranium diantimonide (cal ≈ 4.184 J, molar mass/g = 481.429)

	Table 5. (Contd.)						
Ţ	<u>c</u> p	$\{\underline{S}^{\circ}(\underline{T})-\underline{S}^{\circ}(0)\}$	{ <u>H</u> °(<u>T</u>)- <u>H</u> °(0)}	$-\{\underline{G}^{\circ}(\underline{T})-\underline{H}^{\circ}(0)\}/\underline{T}$			
ĸ	cal K ⁻¹ mole ⁻¹	cal K ⁻¹ mole ⁻¹	cal mole ⁻¹	cal K ⁻¹ mole ⁻¹			
250	18.91	30.46	3680.5	15.74			
260	18.93	31.20	3869.7	16.32			
270	18.98	31.92	4059.3	16.88			
280	19.04	32.61	4249.4	17.43			
290	19.10	33.28	4440.1	17.97			
300	19.17	33.93	4631.5	18,49			
310	19.25	34.55	4823.5	19,00			
320	19.34	35.17	5017	19.49			
330	19.40	35.76	5210	19.98			
340	19.47	36.34	5405	20.45			
350	19.53	36.91	5600	20.91			
400	19.84	39.54	6584	23.08			
450	20.08	41.89	7582	25.04			
500	20.29	44.02	8592	26.83			
550	20,47	45.96	9611	28.48			
600	20.63	47.75	10638	30.02			
650	20.73	49.40	11673	31.44			
700	20.80	50.94	12711	32.78			
273.15	i 19.00	32.14	4119.1	17.06			
298.15	19.16	33.81	4596.0	18.39			

^a Peak of transition

,

Table 6. Some thermodynamic quantities for the uranium pnictides

•	-		•	
Quantity	UP2	UAs2 a	USb ₂ a	UBi ₂
· · · · · · · · · · · · · · · · · · ·	At 298	.15 К		
$\underline{C}_{p}/cal K^{-1} mole^{-1}$	19.12 ^b	19.11	19.16	(19.2)
$\underline{S}^{\circ}/\text{cal } K^{-1} \text{ mole}^{-1}$	24.34 ^b	29.41	33.81	(29.1)
H°-H°/cal mole ⁻¹	3679 ^b	4282	4596	(40.2) 8
∆ <u>C°</u> rf/cal K ⁻¹ mole ⁻¹	1.12	0.73	0.60	(0.2)
∆ <u>H</u> °/kcal mole ⁻¹	(-69) ^{c,d}	(-60) ^{c,d}	-41.5 <u>+</u> 2.6 ^{c,d}	-26. ₁ ^g
$\Delta \underline{S}_{f}^{\circ}/cal K^{-1} mole^{-1}$	-7.33	0.58	0.02	1 ^g
∆ <u>G</u> °/kcal mole ⁻¹	(-66.8) ^c	(-60.2) ^c	-41.5 <u>+</u> 3	-26. ₄ g
∆V_f'/cm ³ mole ⁻¹	-1.61 ^f	-0.13	-0.82	-1.78
	At other t	emperatures		
T _{Néel} /K	203.2 ^b	272.2	202.5	
ΔH _{mag} /cal mole ⁻¹	204,5	234.4	258.5	
$\Delta S_{mag}/cal K^{-1} mole^{-1}$	1.31 ^b	0.99	1.70	
$\gamma \times 10^3$ /cal K ⁻² mole ⁻¹	5 ^b	1.36	2.98	

^a This research.

^b From Stalinski <u>et al</u>. [17]

^C Parentheses indicate quanti-ties in which estimates are involved.

^d Rand and Kubaschewski [24], based on Cosgarea <u>et al</u>. [25] and others.

^e Estimated from USb2 and magnetic contribution.

^f From black phosphorus. ^g Mills [16].

compounds involving the pnigogens. Naively, one may at least initially adopt a model with a specified oxidation state for uranium (U^{+4}) and proceed from the free-ion. ground term $({}^{3}H_{4})$ under the assumption of Russell-Saunders coupling to the expected magnetic entropy of $R \ln (2J + 1) = 4.37 \operatorname{cal} \mathrm{K}^{-1} \operatorname{mole}^{-1}$. Failure of the experimental results to account for this amount of entropy is usually attributed to crystal field quenching of the orbital moment. Occasionally in such systems the paramagnetic moment and the excess entropy can be identified more closely with spin-only values, which in the present case would be $R \ln (2S+1) = R \ln 3 = 2.18 \text{ cal } \text{K}^{-1} \text{ mole}^{-1}$. The paramagnetic moments are all less than the free-ion values $(3.58 \,\mu_B)$ and vary from below the spin-only value $(2.83 \mu_B)$ for UP₂ to near the free-ion value for UBi₂. However, it is shown in Table 6 that the ΔS_{mag} values are well below even the spin-only values

The UP₂ heat capacity (compare Fig. 3) already near 350 K is well above the Dulong and Petit limit and the trend of these data contrasts markedly with that for UAs₂ and USb₂. Magnetic susceptibility[26], electrical conductivity[27], and more recently X-ray crystallographic [28, 29] studies have shown the presence of a phase transition in UP₂ near 356 K where the tetragonal super-structure disappears on heating.

Lack of monotonic progression of Néel temperatures with anionic size through the pnigogens may be due to the relatively small U to X radius ratio in UP₂. Thermodynamics of the formation processes for these compounds from the elements is also indicated in Table 6. The S° values for the elements were taken from the report of the CODATA Task Group on Key Values[30].

Acknowledgements—The authors appreciate the continuing support of the National Science Foundation for this work at the University of Michigan. We recognize with gratitude the assistance of Bjorn Lyng Nielsen in the experimental determination of the higher-temperature heat capacities and of Tore Olsen in the preparation and characterization of the samples.

REFERENCES

- 1. M. R. Zaki and F. Grønvold, Personal communication (May 1976).
- A. J. Freeman and T. B. Darby, Jr., *The Actinides*, Vols. I and II. Academic Press, New York (1974).
- 3. A. Iandelli, Atti Acad. Naz. Lincei Rend. Classe Sci., Mat. e Nat. 13, 144 (1952).

- 4. R. Ferro, Atti Acad. Naz. Lincei, Rend. Classe Sci., Mat. e Nat. 14, 89 (1953).
- 5. R. Ferro, Atti Acad. Naz. Lincei, Rend. Classe Sci., Mat. e Nat. 13, 53 (1952).
- 6. W. Trzebiatowski, A. Sepichowska and A. Zygmunt, Bull. Acad. Polon. Sci., Ser. Sci. Chim. 12, 687 (1964).
- 7. W. Trzebiatowski and R. Troc, Bull. Acad. Polon. Sci., Ser. Sci. Chim. 11, 661 (1963).
- W. Trzebiatowski and A. Zygmunt, Bull. Acad. Polon. Sci., Ser. Sci. Chim. 14, 495 (1966).
- 9. J. Leciejewicz, R. Troc, A. Murasik and A. Zygmunt, Phys. Status Solidi 22, 517 (1967).
- R. Troc, J. Leciejewicz and R. Ciszewski, Phys. Status Solidi 15, 515 (1966).
- 11. A. Olés, J. Phys. (Paris), 26, 561 (1965).
- 12. W. Trzebiatowski and Z. Henkie, Personal communication cited by Leciejewicz et al. in Ref. [9].
- 13. Y. Baskin and D. S. Smith, J. Nucl. Mater. 37, 209 (1972).
- K. A. Lebedev, I. F. Nichkov, S. P. Raspopin and V. I. Kapitanov, Russ. J. Phys. Chem. 42, 365 (1968).
- P. A. Rice, R. E. Balzhiser and D. V. Ragone, Proc. Conf. Vienna. IAEA, Vienna (1962).
- 16. K. C. Mills, Personal communication (March 1976).
- B. Staliński, Z. Biegański and R. Troc, Bull. Acad. Polon. Sci., Ser. Sci. Chim. 15, 238 (1967).
- 18. P. G. Hambling, Acta Cryst. 6, 98 (1953).
- E. F. Westrum, Jr., G. T. Furukawa and J. P. McCullough, In Experimental Thermodynamics, (Edited by J. P. McCullough and D. W. Scott), Vol. I. Butterworths, London (1968).
- 20. F. Grønvold, Acta Chem. Scand. 21, 1695 (1967).
- J. F. Counsell, R. M. Dell and J. F. Martin, *Trans. Faraday Soc.* 62, 1736 (1966).
- 22. E. F. Westrum, Jr. and W. G. Lyon, Proc. Conf. Vienna. IAEA, Vienna (1968).
- E. F. Westrum, Jr. and F. Grønvold, J. Inorg. Nucl. Chem. 32, 2169 (1970).
- M. H. Rand and O. Kubaschewski, The Thermochemical Properties of Uranium compounds. Oliver and Boyd, London (1963).
- A. Cosgarea, E. E. Hucke and D. V. Ragone, Acta Metall. 9, 225 (1961).
- 26. A. Zygmunt, Personal communication cited in Ref. [24].
- 27. Z. Heinke and W. Trzebiatowski, Phys. Status Solidi 35, 827 (1967).
- D. Pietraszko and K. Lukazewicz, Roczn. Chem. Ann. Soc. Chim. Polon. 45, 1105 (1971).
- D. Pietraszko and K. Lukazewicz, Bull. Acad. Polon. Sci. Ser. Sci. Chem. 19, 237 (1971).
- CODATA Recommended Key Values for Thermodynamics 1975. CODATA Bulletin No. 17, CODATA, Paris, France, (January 1976).
- A. Alles, B. G. Falk, E. F. Westrum, Jr., F. Grønvold and M. R. Zaki, J. Inorg. Nucl. Chem. 39, 1993 (1977).