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Ahstreet-The penny-shaped crack at the interface between two bonded dissimilar media is reconsidered on 
the basis of recent developments on the elimination of oscillatory singularities. This is accomplished by 
assuming an annular frictionless contact zone at the crack circumference and reducing the problem to a 
Fredholm integral equation. Expressions for the strain energy, crack opening force and bond stresses are 
obtained and numerical results given for specific material combinations. 

INTRODUCTION 

CONSIDERABLE attention has been recently directed to cracks between bonded dissimilar materi- 
als. The plane elasticity solution for a crack in the interface bond between dissimilar materials 
was given independently by England[l] and Erdogan[Z]. The solution, which was obtained by 
using standard complex analysis, displayed two undesirable features that are, apparently, 
inherent to the problem. 

(a) The stress distribution at the crack tip, in addition to the square root singularity, has an 
oscillatory multiplying factor of the kind sin(log r) or cos(log r). 

(b) The crack faces overlap very close to the crack tip. 
In a recent investigation by Comninou [3], which also provides an extensive literature survey 

on the in-plane problem, the oscillatory nature of the ‘singularities was removed by postulating a 
small region of frictionless contact near the crack tip. As a consequence of this postulate the 
singularities at the crack tip become of the square-root tyde, namely, a compressive singularity 
in the contact region and a shear singularity in the bond. 

The present investigation formulates and solves the analogous problem for a penny-shaped 
crack at the interface between bonded dissimilar half spaces. The conventional problem for a 
penny-shaped crack in an interface has been solved by Lowengrub and Sneddon[4], by using 
Hankel transform techniques to reduce the problem to a singular integral equation. Their 
conclusions are essentially the same as those of England and Erdogan for the plane elasticity 
problem. In the present paper techniques similar to Lowengrub and Sneddon are used to reduce 
the.Comninou-type contact-zone problem to a singular integral equation to determine the size 
of the contact zone. It should be noted that the nature of the solution given by Lowengrub and 
Sneddon does not allow for an easy determination of the field quantities such as bond stress 
and crack opening displacement, but they can obtain the strain energy release rate rather easily. 

FORMULATION OF PROBLEM 

We consider two homogeneous, isotropic, elastic half spaces, the upper half space having 
elastic constants fill uI and the lower half space having elastic constants p2, u2, where CL, v 
denote, respectively,‘the shear modulus and Poisson’s ratio. The two half spaces are joined 
together by a perfect bond everywhere, except in a region of radius L (see Fig. I) where the 
crack surfaces are perfectly smooth. The surface of this penny-shaped crack is subjected to a 
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Fii. 1. Ge~~ and cowdinate system for interfacial crack. 

constant internal pressure, PO, and it is assumed that there will be a small annular region, 

a s I s L, in which the faces of the crack make frictionless contact. Under these assumptions 
the boundary conditions can be written as follows 

I- 2 
u,,-u,=--p 
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l- 2 
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where superscripts 1 and 2 refer to the upper and lower half space, respectively. Equations (5) 
and (6) reveal the assumption made concerning the annular region of contact, Q < I s L.. 

We introduce displacement potentials for the upper and lower half spaces in the following 
manner 

&iui = - a$‘/dz + (3 - 4Vi)Q' - ZaQ'/aZ (9) 

2&u( = - altar - ~aQi~ar (10) 

t& = - a2#/a~2 + 2( 1 - Vj)aQ’/aZ - ,?a2Qi/& (11, 

g’rr- ’ - - a2~‘~araz + (1 - 2&)aQ’/ar - z~‘Qi~~ra~ (12) 

where pi, #, i = 1,2, must be harmonic for the equilibrium equations of elastostatics to be 
satisfied. The potentials are written in terms of Hankel transforms, A{(+$), B,(e)* as follows 



If eqns (9)-(16), evaluated on z = 0, are substituted into boundary conditions (l)-(8), the latter 
may be written as (i = 12). 

i 
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and Au = P’ - u2. Note that a,@ have the relationshid, a = $/3 where fi is Dundurs constant[5], 
i.e. 

jj = C(Z(h - 1) - fii(K2- 1) 

I’&KI + 1) + #k2+ 1) 
63 

Where Ki = 3 - 4l’(, i = 1.2. 

To solve the coupled set of integral eqns (17)-(22), it is convenient to introduce the 
following finite Fourier sine and cosine transforms as follows 

G(f) = [ d0 siti dr, H(S) = IL e(t) co@) dt (2%(29) 

where the choice of G(I) will automatically satisfy eqns (20) and (21), and where to avoid a 
jump in the radial displacement in L < r c q and to satisfy eqn (22), it is required that 

I 

L 
$(t) dt = 0. 

0 
m 

From the definition of the transforms, eqns (28) and (29), and the symmetry of the problem, 
(nr) must be an even function and, therefore 

I = #(t(l) dt = 0. 
-L 

(31) 
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Let us now integrate eqns (18) and (19) to obtain 

where C is a constant of integration. Upon multiplying eqn (32) by the operator J$ r(x’ - r’)-“’ 
dr and reversing the order of integration. we obtain 

~fferentiating (33) leads to the folIowing singular integral equation 

a 

2 
c Oc:XSL. 

In a similar manner eqn (17) can be reduced to 

(33) 

(34) 

(35) 

The singular integral eqns (34) and (35) can be put into a single integral equation by using a 
method similar to that of Comninou[3]. Express J, in (34) in terms of rp and then substitute into 
(35), which leads to 

where the last term arises from the application of the Poincare-Bertrand formula. Since 

1 1 

( 
L+- 1 =- 

(t-r)(t’-t) t’--r I-r t’-t ) 

eqn (36) can be further simplified to 

The constant C in eqn (37) can be obtained by integrating (34) and using eqn (31), and it is 
given as 

c zz I- -& do 1% L+t L-tdr. 

Equation (37) can be put into nondimensionaliz~ form by the substitutions 

r = a& t = uw, y = all,rp(tl = y#(w, 

giving the Fredholm integral equation 

(38) 

(39) 

(40) 
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where 

(41) 

(42) 

It can be shown that k(w,g) has the following property 

We note that in the present form the size of the contact region, L - a, is not yet determined. 
Its size may be found from the condition that the crack must close smoothly at r = a, or 
equivalently, that the normal stress, a,,, does not exhibit a singularity at r = a. The normal and 
shear stresses on z = 0 may be calculated from 

where G(t) and H(f) are given by (28) and (29). After performing the necessary manipulations, 
the stresses are obtained as 

(47) 

(49) 

The condition that the crack must close smoothly at r = II is given by o(a) = 0 (or @(I) = 0) 
and can be satisfied by requiring that 

I 
I 

F+ #(w)I(w,I)dw+2?r=O. 
-I (50) 

Thus, eqns (40) and (SO) can be used to solve for Ct, and y. Let $(t) = p. a*/@ and with the aid 
of (34) it is determined from 

*(g)=-l&i~’ !wG 
n -I 6-f 

where 

(51) 

(52) 

Physical quantities. Once eqns (40) and (50) have been solved, the important physical 
quantities may be determined. Of interest is the bond stress distribution for r> L, which may 
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be found in a form suitable for numerical calculation from eqns (47) and (49) as 

o**(r) = PO I ’ @‘(O dt 1 
0 (r* - t*P 

r>- 
Y 

(53) 

r>--. : (54) 

The strain energy is given by 

E = up, (55) 

where 

u,‘(r,O) - u,‘( r,O) = 
I 

m G(t) J&r) d5. (56) 
0 

After suitable manipulations, the strain energy is found in a relatively simple form for 
calculations as 

E = Po2.RY3L3 I ’ B 0 
S’(1) dS. 

The stress intensity factor for Mode II is given as 

K2 = ;trn+ [2(r - L)l”* a,, 

(57) 

(58i 

or 

K2 = poL”*yQ( l/y). (59) 

We note that since the dominant singularity in the normal stress has been removed at r = a, 
there will be no stress intensity factor in Mode I, as found by Comninou. However, as can be 
seen by eqn (46), there is a contact stress singularity at r = L that depends upon the value of 
*(l/r). This singularity is given as 

K1 = )l~_ [2(L - r)]“* r~,, (W 

or 

K, = ~oL"~y/hU/r). (61) 

Hence, 

KIIKz = b (62) 

Note that if normal tractions are negative, K, c 0, then fi > 0, K2 must be negative. This sign 
differs from that of Comninou due to the choice of coordinate system in the present case. 

NUMERICALSOLUTIONSANDRESULTS 
It should be noted that, in contrast to the analogous 2-dimensional problem solved by 

Comninou, the present analysis only requires the solution of a Fredholm integral equation 
rather than a singular integral equation. The numerical solution is, therefore, somewhat simplified 
since the collocation points and integration points can be taken as being the same. 
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The method used is the following. We wish to solve eqn (40), subject to the relation given by 
eqn (50). Let Q(f) = f(f) (1 - [2)-‘n and use the Gaussian quadrature formula for Chebyshev 
polynomials of the first kind with roots and weights given by & = cos [(2i- l)rr/2n] and 
wi = m/n, respectively, where n is the number of points. Values of y are prescribed to 
determine a([), which is then put into eqn (50). When the functional relationship of F vs y is 
found, the correct value of y that satisfies (50) can be easily determined. The function chosen 
for the numerical evaluation of a([) provided good accuracy for the yumerical calculation. 

The value of y = a/L was found to vary from y > 1 - lo-’ for @ < 0.4 (y = 0.9999932 for 
fi = 0.4239) to y = 0.9998 for 6 = 0.5. Thus, for all possible values of 6 the values for y are very 
close to unity although they seem slightly smaller than those found in [3]. 

To obtain the physical quantities it is necessary to develop a representation for the value of 
(o(l), O-Z I< 1. This can be easily done by representation of f(g) by Chebyshev polynomials 
(see e.g. Krenk[6]) as 

n-l 

f(x) = Fo’ ciw 
n 

cj 2 2 [ 
2i- 1 n #=I cos 2njq ftxi) 1 

Xi=COSylT* 

We note that (Erdogan, Gupta, Cook [7]) 

1 _; ~“(~)(l-~ydL I [( s2- l)‘n- s]’ - 
1 - s (- l)“+‘(S2- l)m 

and thus 

(63) 

64 

(65) 

(W 

(67) 

H?ving calculated @, 0, it is possible to compute the bond stresses from eqns (53) and (54). 
For /I = 0.4854 these distributions are tabulated in Table 1. An attempt was made to compare 
the result with the one of Lowengrub and Sneddon[Bl, but as they point out the integrals in their 
eqn (5.6) are extremely difficult to evaluate numerically. Unlike the 2dimensional problem& 21, 
where the bond stresses have a closed-form representation, the 3dimensional problem involves 
the integration of highly oscillatory integrals. For the value of s^ = 0.4854, the shear stress intensity 
factor KJP~L’~ = - 0.6772. 

The crack extension force, G, can be calculated in a manner similar to that of [3]. Let the change 
in the total free energy SE, when a advances to a + &I and L extends to L + 6L, be given by 

6E=-a I 
L+aL 

m,(cO)Au,(r,O) dr+ m,(r,O) Au, (L + SL,O) dr 
I 

. NW 
L 

The first integral will give no contribution, and the second integral can be evaluated by noting 
that 

urz - (2(r $I’“’ Au,(L+6L,O+2(r- L+~sL)]‘~. 

Thus 

fjE,~~&=~ 
G=-6L 2/3 (70) 
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is the crack opening force. We note that G can be found from the strain energy calculation. 
eqn (57), as 

G = _ c = 3L2Y3P02T ’ 
SL I B 0 

S’(5) d5. r71i 

The difference between these two calculations is about 0.6%. If this value is compared with 
that computed by Ref. [21, the difference is about 3%, where in the latter reference their eqn 
(5.5) should read 

For fi = 0.4854, EG 0.1114 p2L3, using eqn (57). 

Table I. Shear and Normal s!resses on the plane 
of the penny-shaped crack (@ = 0.4854). a/L = 

0.9998% 

1.0000 0.6772 20.42 
1.0001 0.6686 17.00 
10002 0.6500 15.05 
1.0005 0.6098 11.97 
1.0010 0.5677 9.603 
J.0020 0.5169 7.423 
1.0050 0.4395 5.010 
1.0100 0.3753 3.568 
I .0500 0.2212 1.358 
1.1ooo 0.1597 0.8029 
1.2000 0.1066 0.4312 
1.5000 0.0550 0.1581 
2.Oooa 0.0309 0.0654 
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