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The Schrodinger equation with exponential nonlinearity is solved in the time-independent case. The solutions are
compared with those obtained from the case with cubic nonlinearity.

Consider a large amplitude electromagnetic wave of
frequency wy incident on the critical surface (where
Wy = Wy, the electron plasma frequency) of a dense
plasma. The ponderomotive force generated (in this re-
gion) acts to expel matter from the region of high
field intensity forming a density depression. The de-
pression serves to trap the field, enhancing the pondero-
motive force which in turn deepens the cavity. The
ponderomotive force and consequent density cavity al-
low the field to penetrate the critical surface where
wo < wp, and the dielectric permittivity

e=1—(w3/wp), (1)

is negative.

The field in the density cavity is described by the
Maxwell’s equations coupled with the equations of
continuity and motion for the particles. A straightfor-
ward calculation leads to a wave equation with a dens-
ity dependent term [1]. In one dimension this may be
written as
2E L, E_
vy ¢ oz — wy (n/ng) E, )
where E is the transverse electric field and ng is the
ambient plasma density.

The density dependent coefficient is, in turn, de-
pendent on the field. The time-averaged force acting
on an electron in a rapidly oscillating electromagnetic
field is
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F=— V(2/dnmw})IEN = e, (3)
where ¢ is the ponderomotive potential. Assuming
thermal equilibrium, the electron and ion densities are

ne=ngexple(@toy/T.], ni=ngexp [—edy/T], (4)

where ¢, is the electromagnetic potential due to

charge separation. If the scale length L =[VIn(|E|?)]~!
> Ap, the electron Debye length, we may set n, =#;,
and obtain

ne=n;=ng exp[~e2|El2/4nmw8 (T, + T, (5)

which is exponentially dependent on the square of the
amplitude of the field.

In many treatments of the problem the exponential
term is usually expanded and higher order terms in the
series expansion are then neglected. The consequences
of such a truncation are, in part: the density

njng = 1 [ EPjanmey (T, + T, ©

becomes unphysical as | E'| grows, in contrast to expres-
sion (5) which decreases exponentially as the field in-
creases; and the dielectric permittivity in the expand-
ed version increases without bounds with increasing
amplitude of the electric field. On the other hand the
inclusion of the exponential forces it to saturate at
large values in agreement with observed phenomena in
experiments in nonlinear optics. Hence we are moti-
vated to retain the full exponential nonlinearity when
considering fields of significant amplitude.

We separate the field into a slowly-varying enve-
lope modulated by a high frequency oscillation
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E(x, 1) = Eq(x, 1) exp (—iwy?). (7

Substituting this into eq. (2) and neglecting the higher
order time derivative we obtain the nonlinear
Schrédinger equation for the envelope

OBy %K, 0 5
217 +c 5;5—_(1)+0)E0_ ()
where

0= (Wi —wdfw?,  v=(n-ny)ng, ©)

and F indicates the amplitude of the slowly varying
envelope. We can interpret ¢ as a nonlinear frequency
shift.

We now introduce the dimensionless variables:

7= 1/2(w}2)/w0)t, X = (wp/c)x,

|E\? = |Egl?/4nny (T, + T,). (10)
In these dimensionless variables eq. (8) becomes
Y O ~
l—a;-"’gz— (V+0)E—O. (11)

We now let § =X — M T, where M is the Mach number
with the ion-acoustic speed as reference and separate
the envelope into a modulus and phase, both depen-
dent on the moving coordinate £, i.e.

E =u(g)explio(®)]. (12)

Substituting this into eq. (11) and integrating once,
we obtain an equation for the modulus u (£) which is
analogous to an “energy” equation in classical mecha-
nics (1) + Ku +exp(—u2) = A, where K = (w%/wg)
+1/4 M2, and prime means differentiation with re-
spect to the argument. We note that V(u) = Ku? +
exp(—u?2) is the “potential energy”” well. The energy
level in the well is determined by the constant of in-
tegration 4. For (i) A > 1, the envelope oscillates
about zero, (ii) 4 <1, the envelope oscillates about
some value other than zero, and (iii) 4 =1, the en-
velope is a solitary pulse or “soliton”. The frequency
shift o is plotted as a function of the normaiized in-
tensity x = u2 in fig. 1.

In the regime of current experimental conditions
all three types of solutions may be observed. At large
intensities (x > 1) anticipated in laser fusion devices
the oscillatory envelope of alternating phase would be
expected to dominate.

In fig. 2 we show a comparison of the solutions ob-
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Fig. 2. Comparison of the forms of solutions for the cubic
(——-) and exponential ( } nonlinearities with K = 0.6.

tained in the expanded, weakly nonlinear case (cubic
nonlinearity) and the case with the exponential non-
linearity. The form of the solution in each case is
preserved although the exponential solution is larger
in both amplitude and width. The value of K = 0.6 is
used in obtaining the figures.
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