INTERACTION OF PNEUMOCOCCAL S-14 POLYSACCHARIDE WITH LECTINS FROM *Ricinus communis, Triticum vulgaris*, AND

Bandeiraea simplicifolia

SHIGEYUKI EBISU, JORGEN LONNGREN*, AND IRWIN J. GOLDSTEIN

Department of Biological Chemistry, The University of Michigan, Ann Arbor,

Michigan 48109 (U. S. A.)

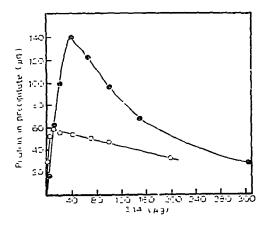
(Received December 2nd, 1976; accepted for publication. December 14th, 1976)

ABSTRACT

Two purified lectins, namely, wheat-germ agglutinin (from Triticum vulgaris) and the hemagglutinin from Ricinus communis seeds, readily form a precipitate with pneumococcal S-14 polysaccharide, whereas the Bandeiraea simplicifolia lectin (BS I) does not. Exhaustive periodate oxidation and borohydride reduction of S-14 modifies terminal β -D-galactopyranosyl residues, as well as chain D-glucopyranosyl residues, and abolishes reactivity with both the R. communis lectin and wheat-germ agglutinin. Controlled periodate oxidation followed by Smith degradation cleaves only terminal β -D-galactopyranosyl residues, giving a linear polymer, the structure of which was determined by methylation analysis. This derived polymer, containing $(1 \rightarrow 6)$ -linked 2-acetamido-2-deoxy- β -D-glucosyl residues, readily precipitated wheat-germ agglutinin, but not the R. communis lectin.

INTRODUCTION

Carbohydrate-binding proteins (lectins) are proving to be useful reagents for probing structural features of polysaccharides (including *Pneumococcus* S-12 capsular polysaccharide)¹⁻³ and glycoproteins⁴⁻⁶. These plant and animal agglutinins, especially in their immobilized form, are also finding application in the isolation of carbohydrate-containing macromolecules, including cell-surface glycoproteins⁷⁻¹².


We now report on the use of several plant lectins for investigating *Pneumococcus* type-14 capsular polysaccharide, (S 14), the structure of which is reported in the preceding communication 13 . The interaction of S 14 with crude extracts of R, communication 13 .

RESULTS AND DISCUSSION

S 14, obtained from the same source as reported in the previous paper 13, gave precipitin-like curves with both wheat-germ agglutinin and the lectin from R.

^{*}On leave from Department of Organic Chemistry, Arrhenius Laboratory, University of Stockholm, S-104 05 Stockholm, Sweden.

communis (RCA₁) (Fig. 1), but not with the α -D-galactopyranosyl-binding lectin from B. simplicifolia seeds. The R. communis lectin cannot distinguish α - and β -D-galactopyranosyl residues ¹⁸⁻²⁰, whereas the B. simplicifolia lectin (BS I) interacts only with α -D-galactopyranosyl end-units (and to a lesser extent with 2-acetamido-2-deoxy- α -D-galactopyranosyl residues, which are not present in S 14). These results confirm the presence of β -D-galactopyranosyl end-groups in S 14 (cf. Ref. 22).

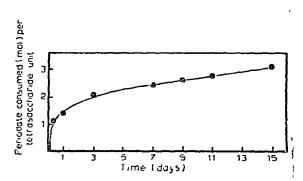


Fig. 1. Precipitation of S 14 by wheat-germ agglutinin and R communis lectin: (8 9), wheat-germ agglutinin (150 μ g of protein per tube); (0 0), R, communis lectin (65 μ g of protein per tube); in a total volume of 250 μ l.

Fig. 2. Periodate consumption of S 14 in 0.02m sodium metaperiodate at 41 in the dark.

Formation of a specific precipitate between S 14 and wheat-germ agglutinin is noteworthy, because this is the first time that a 2-acetamido-2-deoxy- β -D-gluco-pyranosyl residue substituted at both the O-4 and O-6 positions has been shown to interact with the purified lectin. Wheat-germ agglutinin has a combining site complementary to a tri-N-acetylchitotriosyl unit²³⁻²⁵. The lectin also reacts with terminal, non-reducing 2-acetamido-2-deoxy- β -D-glucopyranosyl groups and with non-contiguous, internal, $(1\rightarrow 4)$ -linked 2-acetamido-2-deoxy- β -D-glucopyranosyl residues, as they occur, for example, in keratan²⁶.

S 14 reduced three molar equivalents of periodate per tetrasaccharide unit (Fig 2) over a period of 15 days; this is consistent with the oxidation of the terminal, as well as the $(1\rightarrow4)$ -linked, β -D-glucopyranosyl units. Not surprisingly, the derived S-14 polyalcohol, obtained by reduction of the polyaldehyde with sodium borohydride, no longer reacted with the *R. communis* lectin.

On the other hand, the lack of reactivity of S-14 polyalcohol with wheat-germ agglutinin was somewhat surprising; perhaps the lectin is sterically hindered by the hydroxyl groups of the oxidized-reduced residue attached to O-4 of $(1\rightarrow6)$ -linked 2-acetamido-2-deoxy- β -D-glucosyl residues.

In another experiment, the periodate oxidation of S 14 was terminated after

I day, at which time ~1.4 molar equivalents of periodate per tetrasaccharide unit had been consumed. The product was reduced with sodium borohydride and subjected to a Smith degradation. The resulting polymer, isolated by dialysis followed by freezedrying, was methylated by the Hakomori technique²⁷. G.l.c.-m.s.^{28,29} analysis of the resulting *O*-methyl sugars, as their alditol acetates, gave 2.4,6-tri-*O*-methyl-D-galactose and 2,3,6-tri-*O*-methyl-D-glucose in the ratio of 1:0.91. A peak corresponding to 2-acetamido-2-deoxy-3 4-di-*O*-methyl-D-glucose was also obtained, but no 2,3,4.6-tetra-*O*-methyl-D-galactose was found The results clearly indicate that preferential oxidation and cleavage of the single-unit, β -D-galactopyranosyl stubs in S 14 had occurred, and indicate that the repeating unit of the Smith-degraded S 14 has structure 1.

The observation that this polymer (1) forms a precipitate with wheat-germ agglutinin (Fig. 3) marks the first time that $(1 \rightarrow 6)$ -linked 2-acetamido-2-deoxy-deoxy-deoxy-deoxy-deoxy-fresidues have been shown to interact with wheat-germ agglutinin. It has been noted previously that methyl 2-acetamido-2-deoxy-6-O-methyl-x-deoxy-agglutination of rabbit erythrocytes by wheat-germ agglutinin²³. In accordance with the result of the methylation analysis, 1 did not form a precipitate with R, communicylectin (Fig. 3).

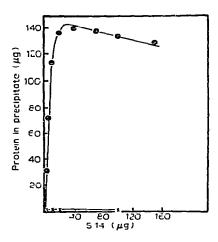


Fig. 3. Precipitation of Smith-degraded S 14 by wheat-germ agglutinin and R. communis lectin - + , wheat-germ agglutinin (150 μ g of protein per tube); \times + \times . R. communis lectin (65 μ g of protein per tube); in a total volume of 250 μ l.

This study represents a further example of how pure lectins of known specificity may be used as structural probes and as tools for assessing the results of chemical modification and degradation studies.

EXPERIMENT AL

Materials. — Wheat-germ agglutinin was obtained from Calbiochem, San Diego, Cal., U.S.A. Ricinus communis lectin RCA_I was a gift from Dr. M. E. Etzler of the University of California, Davis, Cal.; Bandeiraea simplicifolia lectin (BS I) was prepared by the procedure of Hayes and Goldstein²¹.

The capsular polysaccharide of *Pneumococcus* type 14 (lot 116R) was obtained from E. R. Squibb & Sons, New Brunswick, N.J., U.S.A.

Precipitin reaction. — Quantitative precipitin reactions were performed by a microprecipitin technique 30 . Increasing amounts of S 14 or modified S 14 dissolved in PBS-Ca [phosphate-buffered saline (0.01M phosphate, pH 7.0: 0.15M NaCl) with 0.1mm CaCl₂ (for R. communis lectin and B. simplicifolia lectin)] or PBS [phosphate-buffered saline (0.01M phosphate, pH 7.0; 0.15M NaCl) (for wheat-germ agglutinin)] were added to duplicate tubes containing lectin and PBS-Ca or PBS in a final volume of 250 μ l. After incubation at room temperature for 48 h, the precipitates were collected by centrifugation and washed with PBS-Ca or PBS as described. Protein in the precipitates was determined with the Folin-Ciocalteau phenol reagent by the method of Lowry et al. 31 ; crystalline, bovine serum albumin was used as standard.

Periodate oxidation. — Periodate consumption was determined by the method of Fleury and Lange³². S 14 (10 mg) was dissolved in 0.024 sodium metaperiodate (20 ml). The solution and a control lacking S 14 were incubated in the dark at 4. After complete oxidation (15 days; periodate consumption 3.1 mola/tetrasaccharide unit), excess of periodate was precipitated with barium carbonate. The polyaldehyde was reduced with sodium borohydride (30 mg) for 20 ½ at room temperature. Acidification (acetic acid) to pH 6.3 destroyed residual borohydride. The reaction mixture containing the S-14 polyalcohol was dialyzed against water and lyophilized (yield, 7.6 mg).

Preparation of Smith-degraded S 14. — S 14 (4 mg) was treated with 0.02M sodium metaperiodate (8 ml) in the dark at 4° for 24 h. After neutralization (BaCO₃), the oxidized S 14 was reduced with sodium borohydride (15 mg) in the usual way. The solution was acidified to pH 1.0 with 0.5M sulfuric acid and kept at 25° for 24 h³³. The solution containing Smith-degraded S 14 was neutralized (BaCO₃), dialyzed against water, and lyophilized (yield, 2.0 mg).

Methylation analysis of Smith-degraded S 14. — The polysaccharide (~ 1 mg) was methylated according to Hakomori²⁷, and the product dialysed free of reagents. The recovered material was hydrolysed with 90% aqueous formic acid followed by 0.13M aqueous sulfuric acid. After neutralization (BaCO₃), the sugars were transformed into additol acetates by reduction with sodium borohydride followed by acetylation with acetic anhydride-pyridine²⁸. G.l.c -m.s. analysis was performed on columns of 3% of OV-225 at 170° (for neutral sugar derivatives) and 3% of OV-17 at 190° (for acetamido sugar derivatives). The compounds were identified from their T values²⁸ and mass spectra 13.28,29.

ACKNOWLEDGMENTS

This work was supported in part by U.S. Public Health Service (Grant AM 10171). A travel grant to one of us (J.L.) from the Sweden-American Foundation is gratefully acknowledged.

REFERENCES

- 1 1. J. GOLDSTEIN, Methods Carbohydr. Chem 6 (1972) 106-119.
- 2 J. J. GOLDSTEIN, J. A. CIFONELLI, AND J. DUNE, Biochemistry, 13 (1974) 867-870.
- 3 K. ANELSSON, H. BIORNDAL, S. SVENSSON, AND S. HAMMARSTROM. Acia Chem. Scand., 25 (1971) 3645-3650.
- 4 K. O. LLOYD, E. A. KABAT, AND S. BEYCHON, J. Immunol, 102 (1969) 1354-1362.
- 5 I. J. GOLDSTEIN, L. L. SO, Y. YANG, AND Q. C. CALLIES, J. Immunol , 103 (1969) 695-698
- 6 S. K. PODDER, A. SUROLIA, AND B. K. BACHHAWAT, Eur. J. Biochem., 44 (1974) 151-160
- 7 E. H. DONNELLY AND I. J. GOLDSTEIN, Biochem. J., 118 (1970) 679-680.
- 8 K. O. LLOYD, Arch. Biochem. Biophys., 137 (1970) 460-468.
- 9 S. AVRAMEAS AND B. GUILBERT, Biochimie, 53 (1971) 603-614.
- 10 T. Ross, C. E. Hayes, and I. J. Goldstein, Carbohydr. Res., 47 (1976) 91-97.
- 11 I. KAHANE, H. FURTHMANR, AND V. T. MARCHESI, Biochim Biophys Acia, 426 (1976) 464-476.
- 12 M. S. NACHBAR, J. D. OPPENHEIM, AND F. AULL Biochum Biophys. Acta. 419 (1976) 512-529
- 13 B. LINDBERG, J. LONYGREN, AND D. A. POWELL, Carbolister, Res., 58 (1977) 177-180.
- 14 G. W. G. BIRD. Nature (London) 187 (1960) 415-416.
- 15 G. UHLENBRUCK, G. I. PARDOE, AND G. W. G. BIRD, Natura issenschaften, 55 (1968) 347
- 16 G. I. PARDOE, G. UHLENBRUCK, D. J. ANSTEE, AND U. REIFENBERG. Z. Immunitatisforsch., 139 (1969) 469-485.
- 17 G. 1 PARDOE, G. W. G. BIRD, AND G. UHLENBRUCK. Z. Immunitatsforsch., 137 (1969) 442-457.
- 18 G. L. NICOLSON, J. BLAUSTEIN, AND M. E. ETZLER, Biochemistry, 13 (1974) 196-204.
- 19 J. P. VAN WAUWE, F. G. LOONTIENS, AND C. K. DEBRUYNE, Biochim. Biochim. 4cta, 313 (1973) 99-105
- 20 S OLSNES, E. SALTVEDT, AND A. PIHL, J. Biol Chem., 249 (1974) 803-510
- 21 C. E. HAYES AND I. J. GOLDSTEIN, J. Biol Chem. 249 (1974) 1904-1914
- 22 G. SCHIFFMAN, C. HOWE, AND E. A. KABAT. J. Am. Chem. Soc. 80 (1958) 6602-6670.
- 23 A. K. Allen, A. Neuberger, and N. Sharon, Bochem. J. 131 (1973) 155-162
- 24 J.-P. PRIVAT, F. DELMOTTE, G. MIALONIER, P. BOUCHARD, AND M. MONNIGNY, Eur. J. Biochem. 47 (1974) 5-14.
- 25 I. J. GOLDSTEIN, S. HAMMARSTROM, AND G. SUNDBLAD, Biochim. Biophys. Acta. 405 (1974) 53-61.
- 26 H. E. CARLSSON, J. LONNGREN, I. J. GOLDSTEIN, J. E. CHRISTNER, AND G. W. JOURDIAN. FEBS. Lett., 62 (1976) 38-40.
- 27 S. HAKOMORI, J. Biochem. (Tokyo), 55 (1964) 205-208.
- 28 H. BJORNDAL, C. G. HELLERQVIST, B. LINDBERG, AND S. SVENSSON, Angew. Chem. Int. Ed. Engl., 9 (1970) 610-619.
- 29 G. O. H. SCHWARZMANN AND R. W. JEANLOZ, Carbohydr. Res., 34 (1974) 161-168.
- 30 L. L. SO AND I. J. GOLDSTEIN, J. Biol. Chem., 242 (1967) 1617-1622.
- 31 O. H. LOWRY, N. J. ROSEBROUGH, A. L. FARR, AND R. J. RANDALL, J. Biol. Chem., 193 (1951) 265-275.
- 32 P. FLEURY AND J. LANGE, J. Pharm. Chim., 17 (1933) 196-208
- 33 I. J. GOLDSTEIN, G. W. HAY, B. A. LEWIS, AND F. SMITH, Methods Carbohydr Chem., 5 (1965) 361-370.