The Zariski-Lipman Conjecture in the Graded Case

Melvin Hochster*

Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48104 Communicated by D. Buchsbaum

Received July 23, 1976

INTRODUCTION

Let K be a field of characteristic 0, let R be a finitely generated reduced K-algebra, and let P be a prime ideal of R. The Zariski-Lipman conjecture asserts that if $\operatorname{Der}_K(R_P, R_P)$ (which may be identified with $(\operatorname{Der}_K(R, R))_P$) is R_P -free, then R_P is regular. It is known that if $\operatorname{Der}_K(R_P, R_P)$ is R_P -free, then R_P is a normal domain [5], and in the case where either R is a hypersurface [7, 8] or else R is a homogeneous complete intersection and P is the irrelevant ideal [6] (also, [4]) the conjecture has been verified. Our main objective here is to prove the conjecture in the case $R = \bigoplus_{i=0}^{\infty} R_i$ is graded by the nonnegative integers N, $R_0 = K$, and P = m, where $m = \bigoplus_{i=1}^{\infty} R_i$ is the irrelevant maximal ideal. (We do not require that R be generated by its one-forms.)

The paper concludes with a section containing several remarks about the inhomogeneous case, including a criterion for the freeness of the module of derivations of a two-dimensional local complete intersection which we feel may lead to a counterexample.

1. THE GRADED CASE

In this section R denotes a finitely generated reduced K-algebra graded by N, where K is a field of characteristic 0, such that $R_0 = K$, and m denotes the maximal ideal $\bigoplus_{i=1}^{\infty} R_i$.

Let $\mathscr{D} = \text{Der}_{K}(R, R)$. We assume, for the rest of this section, that \mathscr{D}_{m} is free. We represent R as S/I, where $S = K[X_{1}, ..., X_{n}]$ is a polynomial ring in which the X_{i} have positive integral degrees d_{i} , where $d_{1} \leq d_{2} \leq \cdots \leq d_{n}$, and $I \subset (X_{1}, ..., X_{n})^{2}S$ is homogeneous. Our main result is then:

THEOREM. Under the hypotheses above, I = (0). In other words R = S is a polynomial ring.

This theorem establishes the Zariski-Lipman conjecture in the graded case.

* The author was supported, in part, by a grant from the National Science Foundation.

MELVIN HOCHSTER

Proof. We denote by $x_1, ..., x_n$ the images of $X_1, ..., X_n$, respectively, in R. Thus, $R = K[x_1, ..., x_n]$. We let $F_1, ..., F_m \in S$ be a minimal system of homogeneous generators for I. We may inject $\phi \colon \mathscr{D} \to R^n$ by $\phi(D) = (D(x_1), ..., D(x_n))$. Let \neg denote reduction modulo I (i.e., $X_i^{\neg} = x_i$). Then ϕ maps \mathscr{D} isomorphically onto the R-relations on the columns of the matrix $J = ((\partial F_i/\partial X_j)^{\neg})$. If we grade R^n by assigning degree $-d_j$ to the *j*th free generator (i.e., $R^n = R(d_1) \oplus \cdots \oplus R(d_n)$, where, if E is graded, E(t) denotes the graded module such that $E(t)_i = E_{t+i})$, then $\mathscr{D} \cong \phi(\mathscr{D}) \subset R^n$ may be regarded as a homogeneous subgmodule of $\bigoplus_i R(d_i)$ and thus has an inherited grading. Since \mathscr{D} is graded and \mathscr{D}_m is R-free, \mathscr{D} itself is R-free.

Our hypothesis and desired conclusion are unaffected by tensoring, over K, with an algebraic closure of K. Thus, we may assume that K is algebraically closed.

Now, it is easy to check that if $F \in S$ is a form, $\sum_{j=1}^{n} (\partial F/\partial X_j)(d_j X_j) = (\deg F)F_{\mathbf{x}}$ and it follows that there is a unique derivation $D_0 \in \mathcal{D}$ such that $D_0(u) = (\deg u)$ (u) for each form $u \in R$. Thus, $D_0 = \phi^{-1}(d_1x_1, ..., d_nx_n)$.

We next reduce, by induction on n (or on Krull dim R), to the case where the degree 0 form D_0 of \mathcal{D} is part of a minimal homogeneous basis for \mathcal{D} . For assume that D_0 is not part of such a basis. Then it can be written $\sum_{i=1}^{r} u_i b_i$, where $u_1, ..., u_t$ are nonzero forms of positive degree and $b_1, ..., b_t$ is part of a minimal homogeneous basis for \mathcal{D} . Then $d_n x_n = D_0(x_n) = \sum_{t=1}^{t} u_t b_t(x_n)$ and since each $u_t \in m$ and $x_n \notin m^2$ (or else $X_n \in (X_1, ..., X_n)^2 + I = (X_1, ..., X_n)^2$), some $b_t(x_n) \notin m$. i.e., there is a homogeneous derivation $D \in \mathscr{D}$ such that $D(x_n) \in K - \{0\}$ (i.e., $D = b_t$); it follows that deg $D = -d_n$. Suppose that deg $x_m = \cdots = \deg x_n = d_n$ while deg $x_j < d_n$ if j < m (possibly, m = n). If j < m we must have deg $D(x_j) = d_j - d_n < 0$ or $D(x_j) = 0$, and the former is impossible. Thus $D(x_j) = 0$ for j < m while for $m \leq j \leq n$, $D(x_j) \in K$. After a linear change of variables involving only $x_m, ..., x_n$ (the variables of biggest possible degree d_n , we can arrange that $D(x_j) = 0$ for j < n while $D(x_n) = 1$. It follows that I is closed under the action of $\partial/\partial X_n$. Let $I_0 =$ $I \cap K[X_1, ..., X_{n-1}]$. We claim that $I = I_0 S$. For if F were a form in $I - I_0 S$ of lowest possible degree c in X_n , then $\partial F/\partial X_n$ is of lower degree in X_n and in I, and hence in I_0S , while $F - c^{-1}X_n(\partial F/\partial X_n)$ is also of lower degree in X_n and in I, and hence in I_0S . Thus, $F = c^{-1}X_n(\partial F/\partial X_n) + (F - c^{-1}X_n(\partial F/\partial X_n)) \in I_0S$.

But then $R = (K[X_1, ..., X_{n-1}]/I_0) [X_n]$, where X_n is an indeterminate over $R_0 = K[X_1, ..., X_{n-1}]/I_0$, and it easily follows that $\text{Der}_K(R_0, R_0)$ is R_0 -free: hence, by the induction hypothesis, $I_0 = (0)$, and then I = (0).

Henceforth we assume that D_0 is part of a minimal homogeneous basis for \mathscr{D} , and since \mathscr{D} is *R*-free, this basis is free, so that the exact sequence of graded *R*-modules and degree 0 maps given by

$$0 \longrightarrow R \xrightarrow{D_0} \mathscr{D} \longrightarrow T \longrightarrow 0, \qquad (*)$$

where $T = \mathscr{D}/RD_0$, is split.

It is convenient to assume from now on that the subsemigroup $\{i \in N: R_i \neq 0\}$ contains all sufficiently large positive integers: this is true after passing to a constant multiple of the original grading.

Let $X = \operatorname{Proj}(R)$. We know from the results of [5] that R is a normal domain, and so X is a normal variety. We regard X as the patching together of open affine subvarieties $X_u = \operatorname{Spec}([R_u]_0)$, where $u \neq 0$ is any form and $R_u = R[1/u]$. Then the $\{X_i\} = \{X_{x_i}\}$ are a cover. As usual, each graded module E of finite type over R gives rise to a coherent sheaf E^{\sim} on X such that $\Gamma(X_u, E^{\sim}) = [E_u]_0$. A degree 0 map of graded modules induces a morphism of sheaves functorially, and so the exact sequence (*) gives rise to a *split* exact sequence of sheaves:

$$0 \to \mathcal{O}_{\chi} \to \mathcal{D}^{\sim} \to T^{\sim} \to 0. \tag{(**)}$$

 \mathscr{O}_X is the structure sheaf on X. Let $R^{(t)}$ denote the graded K-algebra whose *i*th graded piece is R_{ti} , i.e., $R^{(t)} = \bigoplus_{i=0}^{\infty} R_{ii}$. Then we may choose q, a positive integer, such that $R^{(q)}$ is generated by $R_1^{(q)}$, and we may also regard X as $\operatorname{Proj}(R^{(q)})$. This gives an (arithmetically normal) projective embedding of X. The sheaf $L = R^{(q)}(1)^{\sim}$ is a very ample invertible sheaf on X.

The rest of the argument is devoted to establishing the following facts: T^{\sim} is the tangent sheaf θ_X (the sheaf of germs of K-derivations) on X and is locally free. Let Ω_X be the cotangent sheaf on X (germs of Kähler differentials) and let $^{\sim} = \operatorname{Hom}_{\mathcal{O}_X}(, \mathcal{O}_X)$. Then we may identify

$$\operatorname{Ext}^{1}_{\mathscr{O}_{X}}(T^{\sim}, \mathscr{O}_{X}) \cong \operatorname{Ext}^{1}_{\mathscr{O}_{X}}(\theta_{X}, \mathscr{O}_{X}) \cong H^{1}(X, \theta_{X}^{\wedge}) \cong H^{1}(X, \Omega_{X}^{\wedge}).$$

Let \mathcal{O}_X^* be the sheaf of germs of units of \mathcal{O}_X . There is a map of sheaves $\mathcal{O}_X^* \to \Omega_X$ given locally by logarithmic differentiation $(\alpha \mapsto \alpha^{-1} d\alpha)$, where α is a local section of \mathcal{O}_X^* , and this map induces a composite map

$$f: \operatorname{Pic}(X) = H^{1}(X, \mathscr{O}_{X}^{*}) \to H^{1}(X, \Omega_{X}) \to H^{1}(X, \Omega_{X}^{*}).$$

Now L corresponds to an element of $\operatorname{Pic}(X)$ and we show that the element of $\operatorname{Ext}_{\mathcal{O}_X}^1(T^{\sim}, \mathcal{O}_X) \cong H^1(X, \Omega_X^{\sim})$ represented by (**) is $q^{-1}f(L)$. Since (**) is split, it follows that f(L) = 0. But it is quite easy to show that when X is normal $f: \operatorname{Pic}(X) \to H^1(X, \Omega_X^{\sim})$ cannot kill an ample sheaf. We give a short proof of this fact below by reducing to the well-known classical case where X is a nonsingular projective curve.

It remains to verify these assertions. We first note that there is a natural map $\rho: \mathscr{D}^{\sim} \to \theta_X$, induced by restriction. On the open affine X_u corresponding to a form u, $\Gamma(X_u, \mathscr{D}^{\sim}) = [\operatorname{Der}_K(R, R))_u]_0 \simeq [\operatorname{Der}_K(R_u, R_u)]_0$, and the grading is such that derivations of degree δ shift degrees by δ . If $\Delta \in [\operatorname{Der}_K(R_u, R_u)]_0$, then since Δ shifts degrees by $0, \Delta \mid [R_u]_0 \in \operatorname{Der}_K([R_u]_0, [R_u]_0) = \Gamma(X_u, \theta_X)$. These maps patch to give the map $\rho: \mathscr{D}^{\sim} \to \theta_X$. We compute Ker ρ . From the definition of ρ , on X_u we have $\Gamma(X_u, Ker \rho) =$

MELVIN HOCHSTER

 $[\operatorname{Der}_{[R_u]_0}(R_u, R_u)]_0$. Now, an element of the module of derivations $\operatorname{Der}_{[R_u]_0}(R_u, R_u)$ is completely determined by how it maps $[R_u]_q = \Gamma(X_u, L)$, and if it has degree 0 it restricts to an $[R_u]_0$ -linear map of $[R_u]_q$ to itself, i.e., to an element of $\operatorname{Hom}_{\Gamma(X_u, C_u)}(\Gamma(X_u, L), \Gamma(X_u, L))$. Thus, patching, we have an injection

Ker
$$\rho \hookrightarrow \operatorname{Hom}(L, L) \cong \mathcal{O}_X$$
,

where the last isomorphism identifies the global section 1 of \mathcal{O}_X with the identitymap id_L on L (we get this isomorphism because L is invertible). Moreover, $q^{-1}D_0$ is a global section of Ker ρ and, in fact, for each u its restriction to X_u induces the identity map on L. Thus, the element of $\operatorname{Hom}(\mathcal{O}_X, \operatorname{Ker} \rho) \cong$ $\Gamma(X, \operatorname{Ker} \rho)$ represented by $q^{-1}D_0$ is an inverse for $\operatorname{Ker} \rho \to \mathcal{O}_X$, and we have the following commutative diagram of maps of sheaves with exact rows:

It follows that there is an induced injection $\zeta: T^{\sim} \to \theta_X$. Since T is R-free, T^{\sim} is a locally free sheaf on X. T^{\sim} and θ_X are, moreover, both torsion-free of torsion-free rank equal to dim $X = \dim R - 1$. It now follows that ζ is an isomorphism. To see this, we note that Coker ζ , if nonzero, is supported at a height one prime P of $\Gamma(X_u, \emptyset_X) = [R_u]_0$ for some open affine X_u , since T^{\sim} is locally free, θ_X/T^{\sim} is torsion, and X is normal. But if V is the stalk of \emptyset_X at P, V is a discrete valuation ring, and $(R_u)_P = V[t, t^{-1}]$, where t is any element of $[R_u]_1 - \{0\}$. But then, passing to stalks at P, we can see easily that ρ_P is surjective, which implies at once that ζ_P is an isomorphism.

Thus, the diagram above yields an isomorphism ζ of T with θ_X , and so we have that θ_X is locally free and that the sequence

$$0 \longrightarrow \mathcal{O}_{X} \xrightarrow{D_{0}} \mathscr{D}^{\sim} \xrightarrow{\rho} \theta_{X} \longrightarrow 0 \tag{\#}$$

is a split exact sequence of locally free sheaves. This sequence represents an element of $\operatorname{Ext}^{1}_{\mathscr{O}_{X}}(\theta_{X}, \mathscr{O}_{X})$, and since θ_{X} is locally free

$$\operatorname{Ext}^{1}_{\mathscr{O}_{\mathbf{X}}}(\theta_{\mathbf{X}}, \mathscr{O}_{\mathbf{X}}) \cong H^{1}(X, \operatorname{Hom}_{\mathscr{O}_{\mathbf{X}}}(\theta_{\mathbf{X}}, \mathscr{O}_{\mathbf{X}})).$$

By tracing back definitions we next make an explicit computation of Cech 1-cocycle in $H^1(X, \theta_X^{\uparrow})$ which represents the extension (#): this computation is made from our knowledge of ρ . (Then we use the "fact" that the extension is trivial.)

First, choose forms u_0 ,..., $u_s \in R_q - \{0\}$ such that $X = \bigcup_i X_{u_i}$. Let $X_i = X_{u_i}$

Recalling the definition of L, we have that u_i spans $\Gamma(X_i, L) \cong R_i$, and we can choose unique elements $\alpha_{ij} \in [R_{u_i u_j}]_0^*$ (D* denotes the invertible elements of D) such that

$$oldsymbol{u}_j = lpha_{ij}oldsymbol{u}_i \qquad ext{on} \quad X_i \cap X_j ext{, } 0 \leqslant i \leqslant s, \ 0 \leqslant j \leqslant s,$$

i.e., $c_L = ((i, j) \mapsto \alpha_{ij})$ is a Cech 1-cocycle which represents L. Consider the map $f: \operatorname{Pic}(X) \to H^1(X, \Omega_X^{\circ})$ $(= H^1(X, \operatorname{Hom}_{\mathscr{O}_X}(\theta_X, \mathscr{O}_X))$ described earlier, induced by logarithmic differentiation. We establish that the Cech 1-cocycle $q^{-1}f(c)$ represents the element of $H^1(X, \operatorname{Hom}_{\mathscr{O}_X}(\theta_X, \mathscr{O}_X)) \cong \operatorname{Ext}^1_{\mathscr{O}_X}(\theta_X, \mathscr{O}_X)$ which corresponds to the exact sequence

$$0 \longrightarrow \mathcal{O}_X \xrightarrow{D_0} \mathscr{D}^{\sim} \longrightarrow \theta_X \longrightarrow 0. \tag{#}$$

First note that $q^{-1}f(c)$, by definition, is given by

$$(i, j) \mapsto q^{-1}(D \mapsto D(\alpha_{ij})/\alpha_{ij}),$$

where D represents an element of

$$\Gamma(X_i \cap X_j, \theta_X) = \operatorname{Der}_{K}([R_{u_i u_j}]_0, [R_{u_i u_j}]_0).$$

On the other hand, we can obtain a Cech 1-cocycle which represents (#) by first applying $\operatorname{Hom}_{\mathscr{O}_X}(\theta_X, \cdot)$ to (#), second, on each X_i choosing a lifting of the identity map in $\operatorname{Hom}_{\Gamma(X_i)}(\theta_{X_i}, \theta_{X_i})$ to $\operatorname{Hom}_{\Gamma(X_i)}(\theta_X, \mathscr{D}^{\sim}|_{X_i})$, and then considering the Cech 1-cocycle

$$(i,j) \mapsto \Delta_{ij} = (\text{the lifting on } X_i) |_{X_i \cap X_i} - (\text{the lifting on } X_j) |_{X_i \cap X_j};$$

this is just a matter of tracing definitions and identifications.

We pick an element h_i of

$$\operatorname{Hom}_{\Gamma(X_{i})}(\theta_{X_{i}}, \mathscr{D}^{\sim}|_{X_{i}}) = \operatorname{Hom}_{[R_{u_{i}}]_{0}}(\operatorname{Der}([R_{u_{i}}]_{0}, [(R_{u_{i}})]_{0}), [\operatorname{Der}(R_{u_{i}}, R_{u_{i}})]_{0})$$

which lifts the identity as follows: For convenience, let $u = u_i$. Given $D \in \text{Der}([R_u]_0, [R_u]_0)$, there is a unique element $h_i(D) \in [\text{Der}(R_u, R_u)]_0$ which extends D and vanishes on $u = u_i$. [To see that a derivation exists, first pick $D_1 \in [\text{Der}(R_u, R_u)]_0$ such that D_1 extends D. This is possible, since the map of sheaves $\mathscr{D}^{\sim} \to \theta$ is already known to be surjective and X_i is affine. Then $D_1(u) \in R_u$ has degree q, and we can write $D_1(u) = r_0 u$ where $r_0 \in [R_u]_0$. Then $D_1 - (1/q) r_0 D_0$ extends D and kills u. If D_1 , D_2 are two derivations which extend D and kill u, then $D_3 = D_1 - D_2$ kills $[R_u]_0 [u, 1/u]$, and each form of R_u has its qth power in this ring. Since R_u is a domain and q is invertible, D_3 kills R_u .] Clearly, the map h_i taking D to $h_i(D)$ lifts the identity.

Thus, the cocycle

$$(i,j) \mapsto \Delta_{ij} = h_i |_{X_i \cap X_j} - h_j |_{X_i \cap X_j}$$

corresponds to the exact sequence (#).

We compute Δ_{ij} on $D \in \text{Der}([R_{u_i u_j}]_0, [R_{u_i u_j}]_0)$: we know that $\Delta_{ij}(D)$ has the form $\lambda_D(D_0 \mid_{X_i \cap X_j})$, where $\lambda_D \in \Gamma(X_i \cap X_j, \mathcal{O}_X)$, and then the required cocycle has the form

$$(i, j) \mapsto (D \mapsto \lambda_D)$$

(where $D \mapsto \lambda_D \in \operatorname{Hom}_{\mathscr{O}_X}(\theta_X, \mathscr{O}_X)$). The derivation $\Delta_{ij}(D)$ is completely determined by its value on $u_i |_{X_i \cap X_j}$. Now, with everything restricted to $X_i \cap X_j$, as necessary, we have, on $X_i \cap X_j$,

$$\begin{aligned} \mathcal{\Delta}_{ij}(D)(u_i) &= h_i(D)(u_i) - h_j(D)(u_i) \\ &= 0 - h_j(D)(\alpha_{ij}^{-1}u_j) \quad \text{(by definition of } h_i) \\ &= -h_j(D)(\alpha_{ij}^{-1})u_j \\ &= -D(\alpha_{ij}^{-1})u_j \quad \text{(by definition of } h_j) \\ &= -(-\alpha_{ij}^{-2}) D(\alpha_{ij})u_j = \alpha_{ij}^{-1}D(\alpha_{ij})(\alpha_{ij}^{-1}u_j) \\ &= (D(\alpha_{ij})/\alpha_{ij})u_i , \end{aligned}$$

while on $X_i \cap X_j$, $D_0(u_i) = q u_i$.

It follows that $\lambda_D = q^{-1} D(\alpha_{ij}) / \alpha_{ij}$ and the cocycle is

$$(i, j) \mapsto (D \mapsto q^{-1}D(\alpha_{ij})/\alpha_{ij})$$

which is $q^{-1}c_L$, precisely as claimed.

Now, on the one hand, we have already shown, using the hypothesis of the Zariski-Lipman conjecture, that $q^{-1}c_L$ represents 0 in $H^1(X, \Omega_X^{\uparrow})$, and hence so does c_L .

But, on the other hand, the following lemma asserts that this is not the case, and completes the proof of the Zariski-Lipman conjecture in the graded case.

LEMMA. Let X be a normal reduced and irreducible projective variety over an algebraically closed field K of characteristic 0, and let L be an ample sheaf on X. Then the image of L under the map

$$\operatorname{Pic}(X) \to H^1(X, \mathcal{Q}^{\uparrow}_{\mathbf{x}})$$

induced by logarithmic differentiation is not 0.

Proof. If X is a nonsingular curve, i.e., a Riemann surface, this is truly a classical fact: in fact,

$$H^{1}(X, \Omega_{\mathbf{x}}) \cong H^{1}(X, \Omega_{\mathbf{x}}) \cong H^{0}(X, \mathcal{O}_{\mathbf{x}}) \cong K,$$

416

and the map described under a suitable identification of $H^1(X, \Omega_X^{\uparrow})$ with $K \supset Z$, maps each line bundle to its Chern class or degree. In this case, L is ample if and only if it has positive degree, and the result is clear. [See the Remark following this proof.]

But the general case can be reduced easily to the case of a nonsingular curve. Let S be the singular locus of X and let U = X - S. We can choose a closed reduced and irreducible curve $Z \subset X$ such that $Z \cap S = \emptyset$, i.e., $Z \subset U$. (X is normal and so if $X = \operatorname{Proj}(R)$, S is defined by a homogeneous ideal I of R height 2 or more. Hence, there exists a proper ideal J generated by (dim R - 2) or fewer forms such that I + J is primary to the irrelevant ideal, and we may take Z to be the curve defined by any homogeneous prime of coheight 2 which contains J.) Let Y be the normalization of Z. Thus, Y is a nonsingular curve and we have a finite morphism $Y \to X$ (the composite $Y \to Z \to X$), where $\operatorname{Im}(Y) = Z \subset U$; i.e., we have

$$Y \to U \to X,$$

where the second map is an open immersion. Since Y, U are nonsingular, we have canonical isomorphisms $\Omega_Y \cong \Omega_Y^{\uparrow}$ and $\Omega_U \cong \Omega_U^{\uparrow}$. We thus obtain a commutative diagram:

$$\begin{split} \operatorname{Pic}(Y) &= H^{1}(Y, \mathcal{O}_{Y}^{*}) \longrightarrow H^{1}(Y, \mathcal{Q}_{Y}) \xrightarrow{\cong} H^{1}(Y, \mathcal{Q}_{Y}^{*}) \\ \uparrow & \uparrow & \uparrow & \uparrow \\ \operatorname{Pic}(U) &= H^{1}(U, \mathcal{O}_{U}^{*}) \longrightarrow H^{1}(U, \mathcal{Q}_{U}) \xrightarrow{\cong} H^{1}(U, \mathcal{Q}_{U}^{*}) \\ \uparrow & \uparrow & \uparrow & \uparrow \\ \operatorname{Pic}(X) &= H^{1}(X, \mathcal{O}_{X}^{*}) \longrightarrow H^{1}(X, \mathcal{Q}_{X}) \longrightarrow H^{1}(X, \mathcal{Q}_{X}^{*}). \end{split}$$

The arrow β is induced from α by the isomorphism, while γ is induced by the open immersion $U \to X$. (Note that if we have a morphism $Y \to X$, we do not get an induced map $H^1(X, \Omega_X^{\uparrow}) \to H^1(Y, \Omega_Y^{\uparrow})$ in general, although we do if Y, X are nonsingular or if the map is an open immersion. This is why we must be careful in choosing $Y \to X$ so that (Im $Y) \subset U$.) Thus, we get a commutative diagram:

$$\begin{array}{c} \operatorname{Pic}(Y) \xrightarrow{f_{Y}} H^{1}(Y, \mathcal{Q}_{Y}^{\wedge}) \\ \uparrow & \uparrow \\ \operatorname{Pic}(X) \xrightarrow{f_{X}} H^{1}(X, \mathcal{Q}_{X}^{\wedge}) \end{array}$$

where f_Y , f_X are induced by logarithmic differentiation and the left vertical arrow by pullback. If L is ample on X, its pullback to Y will be ample $(Y \rightarrow X$ is finite, and Y is a smooth curve), and hence the pullback of L maps to a nonzero

element of $H^1(Y, \Omega_F^{\wedge})$. It follows that $f_X(L) \neq 0$. Q.E.D. for both the Lemma and the graded case of the Zariski-Lipman conjecture.

Remark. The following proof of the Lemma in the classical case was supplied by Lipman, who remarks that the steps are justified in [9, Chap. 2]:

A divisor on a curve C over K is given by a family of "local equations" (i.e. a "repartition") $(f_P)_{P\in C}$, where $f_P \neq 0$ is in the function field K(C), and $f_P \in \mathcal{O}_{C,P}$ for almost all P. Similarly, an element of $H^1(C, \Omega_C^1)$ can be specified by a family of differentials $(\omega_P)_{P\in C}$ with $\omega_P \in \Omega^1_{K(C)}$ and $\omega_P \in \Omega^1_{\mathcal{O}_{C,P}}$ for almost all P. Now the d.log map takes a divisor [given by] $(f_P)_{P\in C}$ to the element of $H^1(C, \Omega_C^1)$ given by $(df_P|f_P)_{P\in C}$. Moreover, the standard identification $H^1(X, \Omega_X^1) \to K$ is given by "sum of residues". But $\operatorname{res}_P(df_P|f_P)$ is just the order of the zero of f_P at P (<0 if f_P has a pole). Hence $\sum_P \operatorname{res}_P(df_P|f_P)$ is nothing but the degree of the divisor (f_P) . Q.E.D.

(Thus in char. p, the d.log image of an ample divisor is zero if p divides the degree.)

2. REMARKS ON THE NONGRADED CASE

Remark 1. The graded case of the conjecture is not as special as it seems, since it has the following:

COROLLARY. Let (R, m) be a complete reduced local ring with residue class field $K \subset R$, and suppose char K = 0. Then R is regular if and only if:

(1) $\operatorname{Der}_{K}(R, R)$ is free and

(2) there exists a derivation $D: R \to R$ such that $D(m) \subset m$ and the induced map $m/m^2 \to m/m^2$ is the identity.

Proof. The key point is that (2) is equivalent to assuming that R is the completion of a finitely generated graded K-algebra R' generated by its one-forms. But then, since $\text{Der}_{K}(R, R)$ is the completion of $\text{Der}_{K}(R', R')$, $\text{Der}_{K}(R', R')$ is free, and R' is a polynomial ring.

To see that (2) is equivalent to assuming that R is the completion of a graded ring generated by its one-forms, first suppose R = R', where $R' = \bigoplus_i R_i'$. Define D by $D'(\sum_i f_i) = \sum_i if_i$ (where $f_i \in R_i'$).

Now suppose D is as described in (2). Let $R' = gr_m R = \bigoplus_{i=0}^{\infty} m^i/m^{i+1}$. It is easy to see that D induces a map $R_i' \to R_i'$ for all i and that this map is multiplication by i. We show that for every i and $u \in R_i'$ there is a *unique* element $h_i(u) \in m^i$ such that $h_i(u) \equiv u$ modulo m^{i+1} and $D(h_i(u)) = ih_i(u)$. We first define $T_i: m^i \to m^i$ as follows:

Given $v_1 \in m^i$, let v_t be defined recursively by

$$v_{t+1} = v_t - (1/t) (Dv_t - iv_t), \quad t \ge 1.$$
 (*)

Then the v_t satisfy

$$v_{t+1} \equiv v_t \bmod m^{i+t}, \tag{1}_t$$

$$v_t \equiv v_1 \bmod m^{i+1}, \qquad (2_t)$$

$$D(v_t) \equiv iv_t \bmod m^{i+t}, \tag{3}_t$$

for all t, as is readily established by induction. The hardest part is to deduce (3_{t+1}) from (1_t) , (3_t) , and (*). Let $w = Dv_t - iv_t$. By (3_t) , $w \in m^{i+t} \Rightarrow Dw - (i+t) w \in m^{i+t+1}$. But $v_{t+1} = v_t - (1/t)w$ so that

$$\begin{array}{l} D(v_{t+1}) - iv_{t+1} = D(v_t - (1/t)w) - i(v_t - (1/t)w) \\ = Dv_t - (1/t) \ Dw - iv_t + (i/t)w \\ = (Dv_t - iv_t) - (1/t) \ Dw + (i/t)w \\ = w - (1/t) \ Dw + (i/t)w = -(1/t) \ (Dw - (i+t)w) \in m^{i+t+1}, \end{array}$$

as required.

Thus, $\{v_t\}$ is a Cauchy sequence (by 1_t)) and we may let

$$T_i(v_1) = \lim_t v_t \in m^i.$$

It is easy to check that

- (a) T_i is K-linear,
- (b) $T_i(v_1) \equiv v_1 \mod m^{i+1}$ (by 2_i)), and
- (c) $D(T_i(v_1)) = iT_i(v_1) \text{ (from } 3_t)$).

Moreover, one can easily check that if $v_1 \in m^{i+1}$, then $v_t \in m^{i+t}$ for all t, whence $T_i(v_1) = 0$, so that T_i kills m^{i+1} and so induces a K-linear map

$$h_i: R_i' = m^i/m^{i+1} \rightarrow m^i$$

such that

$$(m^i \rightarrow m^i/m^{i+1}) \circ h_i = \mathrm{id}_{R_i}$$
. (#)

To establish our earlier claim, we must show that if $v \in m^i$, $v \equiv u$ modulo m^{i+1} and D(v) = iv, then $v = h_i(u)$, i.e., $v = T_i(v)$. But it is immediate from (*) by induction on t that $v_t = v$ for all t in this case.

Now, if $u \in R_i'$, $u' \in R_j'$, then $y = h_i(u) h_j(u')$ has the properties

$$y \equiv uu' \text{ modulo } m^{i+j}$$
 and $D(y) = (i+j) y_{i+j}$

Thus, $h_{i+i}(uu') = h_i(u) h_i(u')$. It follows that the h_i together yield a K-homo-morphism h of rings

$$R' \xrightarrow{h} R.$$

It is easy to check that h induces an isomorphism $\hat{R}' \cong R$. Q.E.D.

Remark 2. We simply want to make explicit the observation that if there is a Cohen-Macaulay counterexample to the Zariski-Lipman conjecture, there is also a Gorenstein counterexample. In fact, when R is Cohen-Macaulay normal of finite type over K (say char K = 0), and dim R = d, then $(\Omega^d_{R/K})^{**}$ (where * is Hom_R(, R)) is a canonical module, and this is canonically isomorphic with $(\wedge^d(\Omega^1_{R/K}))^{**} \cong (\wedge^d((\Omega^1_{R/K})^*))^* \cong (\wedge^d \text{Der}_K(R, R))^*$. For all P such that $(\text{Der}_K(R, R))_P$ is free, we have that

$$((\Omega^d_{R/K})^{**})_P \simeq R_P$$
,

so that R_p is Gorenstein.

Remark 3. We record the following observation (see [1]) of Becker and Rego. If R is, say, an analytic local ring, and $\text{Der}_{\mathbb{C}}(R, R)$ is free, then the ring of higher order derivations is free as an R-module and generated by the 1-derivations $\text{Der}_{\mathbb{C}}(R, R)$. Hence, Nakai's conjecture (generation of the ring of higher derivations by the 1-derivations \Rightarrow regular) implies the Zariski-Lipman conjecture. (The Becker-Rego result is proved thus: let $D_1, ..., D_d$ be a free basis for $\text{Der}_{\mathbb{C}}(R, R)$. Let \mathscr{D}_n be the set of higher derivations of order $\leq n$. Let F be the free module on the basis of all d-tuples $(i_1, ..., i_d)$ of nonnegative integers with $\sum_r i_r \leq n$, and map $F \rightarrow \mathscr{D}_n$ by $(i_1, ..., i_d) \mapsto D_1^{i_1} \cdots D_d^{i_d}$. One checks easily that this map is an isomorphism off the singular locus. Since R is normal, the singular locus has codimension 2, and F, \mathscr{D}_n are reflexive, it follows that $F \rightarrow \mathscr{D}_n$ is an isomorphism for all n.

Remark 4. Probably, the next case of the conjecture one should attack is that of a two-dimensional complete intersection. For simplicity, let us assume that R is a reduced complete intersection which is a complete local ring of dimension 2 and embedding dimension n. We may assume $n \ge 4$, since the result is known for hypersurfaces. Moreover, we later assume that R is normal (has an isolated singularity). We also assume, for simplicity, that the residue class field is $\mathbb{C} \subset R$.

We want to give criteria for $\text{Der}_{\mathbb{C}}(R, R)$ to be free. We have in mind the possibility of giving a counterexample to the Zariski-Lipman conjecture (and, hence, also, to the Nakai conjecture).

We fix some notation.

Let $S = \mathbb{C}[[x_1, ..., x_n]]$, let $m = (x_1, ..., x_n)S$, let $f_1, ..., f_{n-2}$ be an S-regular sequence in m^2 , let $I = (f_1, ..., f_{n-2})S$, let - denote reduction modulo I, and let $R = \overline{S} = S/I$. If R is to yield a counterexample to the Zariski-Lipman conjecture, it must be a normal domain. Hence, assume also that I is prime and that R is normal. Since R is a complete intersection and, so, Cohen-Macaulay, this is equivalent to assuming that R has an isolated singularity at m, i.e., that the (n-2)-size minors of

$$J = ((\partial f_i / \partial x_j)^{-})$$

generate an ideal Q in R primary to \overline{m} . Thus, we know depth_Q $R = depth_m R = 2$.

We have an exact sequence:

$$0 \longrightarrow \operatorname{Der}_{\mathbb{C}}(R, R) \longrightarrow R \xrightarrow{J} R^{n-2}$$

where, as indicated, the map $\mathbb{R}^n \to \mathbb{R}^{n-2}$ has matrix J. We have a map

$$J^t:(R^{n-2})^* o (R^n)^*,$$

and hence

This determines an element of $\wedge^2(\mathbb{R}^n)$, unique up to multiplication by units of \mathbb{R} . (The isomorphisms $\mathbb{R} \cong \wedge^{n-2}(\mathbb{R}^{n-2})^*$ and $\wedge^{n-2}(\mathbb{R}^n)^* \cong \wedge^2(\mathbb{R}^n)$ are not canonical: "the second is determined by a choice of generator for $\wedge^n(\mathbb{R}^n) \cong \mathbb{R}$.)

CRITERION. Dcr_C(R, R) is free if and only if the element of $\wedge^2(\mathbb{R}^n)$ determined in this way is decomposable, i.e., has the form $\lambda \wedge \mu$, where $\lambda, \mu \in \wedge^1(\mathbb{R}^n)$.

Proof. Der_C(R, R) has rank 2. Hence, it is free if and only if there is a $2 \times n$ matrix M over R such that

 $0 \longrightarrow R^2 \xrightarrow{M} R^n \xrightarrow{J} R^{n-2}$

is exact. The results of [2] assert that this sequence is exact if and only if MJ = 0and depth $I_2(M) \ge 2$. The conditions on λ , μ imply that we may take $M = \begin{bmatrix} \lambda \\ \mu \end{bmatrix}$. The coordinates of $\lambda \land \mu$ in the usual basis for $\wedge^2 R^n$ are the 2 \times 2 minors of M(up to sign), and hence these are the same (up to sign) as the $(n-2) \times (n-2)$ minors of J, i.e., $I_2(M) = Q$ has depth 2.

On the other hand, given the existence of $M = \begin{bmatrix} \lambda \\ \mu \end{bmatrix}$, the results of [3] yield at once the indicated element of $\wedge^2(\mathbb{R}^n)$ (constructed in (#)) is a multiple of $\lambda \wedge \mu$; since depth Q = 2, the multiplier must be a unit, which can be absorbed into μ . Q.E.D.

Remark 5. We retain all the notation and hypotheses of the fourth paragraph of Remark 4, but we now want to specialize the preceding remark to the case n = 4. Let

$$N=(\partial f_i/\partial x_j),$$

so that $\overline{N} = J$, and let Δ_{pq} be the determinant of the 2 by 2 submatrix of N formed from the *p*th and *q*th rows if p < q ($\Delta_{pq} = -\Delta_{pq}$). Using the bases already chosen to make identifications, we see that Im $\wedge^2(J^t)$ is generated by

 $\alpha = \sum_{i < j} \overline{A}_{ij} e_i^* \wedge e_j^*$. Of course, α is a priori decomposable in $\wedge^2(R^4)^*$. But the corresponding element β in $\wedge^2 R^4$ under the identification induced by $\wedge^2 R^4 \otimes \wedge^2 R^4 \to \wedge^4 R^4 \cong R$ (where $e_1 \wedge e_2 \wedge e_3 \wedge e_4 \mapsto 1$) is $\sum_{i < j} (-1)^{i+j+1}$ $\overline{A}_{p,q} e_i \wedge e_j$ where for each i < j, p, q are chosen so that p < q and $\{i, j, p, q\} =$ $\{1, 2, 3, 4\}$. Change bases: let $f_1 = e_2, f_2 = -e_1, f_3 = -e_4, f_4 = e_3$. Then

$$eta = \sum\limits_{i < j} ar{\mathcal{J}}_{p,q} f_i \wedge f_j$$
 ,

where

$$p, q = 3, 4 \quad \text{if} \quad i, j = 1, 2, \\ p, q = 1, 2 \quad \text{if} \quad i, j = 3, 4, \\ p, q = i, j \quad \text{in all other cases}$$

The decomposability of this element β obtained by switching 2 "complementary" Plücker coordinates in the decomposable α is not easy to decide, with one notable exception: if $\overline{\mathcal{J}}_{12} = \overline{\mathcal{J}}_{34}$, then, evidently, the decomposability of α implies the decomposability of β . Hence:

COROLLARY. With the notation and hypotheses of Remark 4, fourth paragraph, with n = 4, if $\overline{A}_{12} = \overline{A}_{34}$, then $\text{Der}_{\mathbb{C}}(R, R)$ is free; i.e., if

$$\partial(f_1, f_2)/(\partial(x_1, x_2)) \equiv \partial(f_1, f_2)/(\partial(x_3, x_4)) modulo (f_1, f_2),$$

then $\operatorname{Der}_{\mathbb{C}}(R, R)$ is free.

Thus, if f_1 , f_2 are an S-sequence in m^2 , the Zariski-Lipman conjecture implies that if $S/(f_1, f_2)$ has an isolated singularity at the origin then

$$\partial(f_1, f_2)/(\partial(x_1, x_2)) \neq \partial(f_1, f_2)/(\partial(x_3, x_4)).$$

I do not know whether even this is true.

Finally, we give one criterion for the freeness of $\text{Der}_{\mathbb{C}}(R, R)$ intermediate between the corollary above and the decomposability of β .

PROPOSITION. With the notation and hypotheses of Remark 4, fourth paragraph, with n = 4, if $r_{ij} \in R$, $1 \le i < j \le 4$, give a relation $\sum_{ij} r_{ij} \overline{\Delta}_{ij} = 0$ which is "nondegenerate" in the sense that $r = r_{12}r_{34} - r_{13}r_{24} + r_{14}r_{23} \neq 0$ modulo \overline{m} , then $\operatorname{Der}_{\mathbb{C}}(R, R)$ is R-free.

Proof. Let C_i be the column

$$\boxed{ \frac{\partial f_1 / \partial x_i}{\partial f_2 / \partial x_i} }$$

Let E_{ij} , i < j, be the 2 \times 4 matrix whose *i*th column is C_j , whose *j*th column is $-C_i$, and whose other columns are 0. Let $E = \sum_{ij} r_{ij} E_{ij}$. We show that the sequence

$$0 \longrightarrow R^2 \xrightarrow{E} R^4 \xrightarrow{J} R^2$$

is exact. By [2], it suffices to show that EJ = 0 and that $I_2(E)$ (the ideal generated by the 2×2 minors of E) is equal to $I_2(J) = Q$.

Let $U = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$. Then $E_{ij}J = \overline{\Delta}_{ij}U$, whence

$$EJ = \sum \mathbf{r}_{ij} E_{ij} J = \left(\sum \mathbf{r}_{ij} \overline{\Delta}_{ij} \right) U = 0U = 0.$$

It remains to show that $I_2(E) = I_2(J)$. Let D_{ij} be the 2×2 minor of E formed from the *ith* and *j*th columns, i < j.

Define $r_{ii} = 0$ and $r_{ji} = -r_{ij}$, so that $A = (r_{ij})$ is skew-symmetric. Then the *i*th column E_i of E is

$$\sum_{s} r_{is} C_{s}$$
 ,

whence

$$D_{ij} = \sum_{s,t} r_{is} r_{jt} \overline{A}_{st}$$
$$D_{ij} = \sum_{s < t} (r_{is} r_{jt} - r_{it} r_{js}) \overline{A}_{st}.$$

We can view this as a system of six linear equations in six unknowns. The matrix is $\wedge^2 A$, whence the determinant is $\det(\wedge^2 A) = (\det A)^r$ and $\det A = (r_{12}r_{34} - r_{13}r_{24} + r_{14}r_{23})^2$, i.e., $\det(\wedge^2 A) = r^6$. Since $r \notin \overline{m}$, we can solve for the \overline{A}_{st} in terms of the D_{ij} , and, of course, conversely. Q.E.D.

The earlier corollary is the special case $r_{12} = -r_{34} = 1$, $r_{ij} = 0$ otherwise.

ACKNOWLEDGMENTS

The author is indebted to Joseph Lipman for many stimulating conversations and helpful comments, which led to a much more rapid and polished dénouement than would otherwise have been possible.

References

- 1. J. BECKER, Higher derivations and the Zariski-Lipman conjecture, in "Proceedings of Symposia in Pure Mathomatics," Vol. XXX, Amer. Math. Soc., Providence, R. I., 1976.
- 2. D. BUCHSBAUM AND D. EISENBUD, What makes a complex exact?, J. Algebra 25 (1973), 259-268.
- 3. D. BUCHSBAUM AND D. EISENBUD, Some structure theorems for finite free resolutions, Advances in Math. 12 (1974), 84-139.

or

- 4. M. HOCHSTER, The Zariski-Lipman conjecture for homogeneous complete intersections, Proc. Amer. Math. Soc. 49 (1975), 261-262.
- 5. J. LIPMAN, Free derivation modules on algebraic varieties, Amer. J. Math. 87 (1965), 874-898.
- 6. S. MOEN, Free derivation modules and a criterion for regularity (Thesis, University of Minnesota, 1971), Proc. Amer. Math. Soc. 39 (1973), 221-227.
- 7. G. SCHEJA AND U. STORCH, Über differentielle Abhängigkeit bei idealen analytischer algebren, Math. Z. 114 (1970), 101-112.
- 8. G. SCHEJA AND U. STORCH, Differentielle Eigenschaften des Lokaliserungen analytischer Algebren, Math. Ann. 197 (1972), 137-170.
- 9. J.-P. SERRE, "Groupes algébriques et corps de classes," Hermann, Paris, 1959.