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Quantum field theory is used to derive transition probabilities pertinent to natural and magnetically induced polarized 
emission. First order terms in magnetic field strength are considered, while second order terms are neglected. It is shown 
that the existing absorption theory may be used for the emission case provided that (a) a frequency dependent factor is 
used, (b) level population terms are handled in the proper manner, and (c) superposition of the contributions from the 
various emitting levels is performed in such a way as to take account of the radiationless transition probabilities. Special 
emphasis is given to the parameterization of the magnetically induced circular polarization of emission. 

I. Introduction 

There is a growing interest in the phenomena of polarized luminescence. In the last few years there have ap- 
peared a number of experimental studies of the natural [e.g. l] and magnetically induced [e.g. 2] circular polari- 
zation of emission. Snir and Schellman [3] and Steinberg and Ehrenberg [4] have presented theoretical studies 
of the role of brownianmotion and photoselection in certain cases of natural circular polarization of emission 
(CPE). More recently, Riehl and Richardson [S] have presented the first general theory of CPE and its magnet- 
ically induced analog (MICE) based on the formalism of Powers and Thirunamachandran [6] which employs 
quantum electrodynamics. Their paper includes discussion of both photoselection and rotatory brownian motion 
-and the results are presented in a format similar to that of Eyring and Caldwell [7] for the absorption case. 

This work represents an independent development [2a] of the theory of polarized emission. The present for- 
malism being closely related to that of Stephens [8,9] but employing quantum electrodynamics for the calcula- 
tion of transition probabilities. In addition to the formalistic differences between this work and that of Riehl and 
Richardson, there are several substantive differences. This work emphasises the role of the molecular Hamiltonian 
in determining the form of the interaction Hamiltonian. Several interaction terms appear in this paper which are 
absent in theirs. A discussion of their magnitude and when they may be neglected is presented. Further, the pres- 
ent paper treats the effects on the observed spectrum when several electronic states contribute to the observed 
emission. As a consequence, special attention is given to the role of radiationless decay processes. The EZiehl and 
Richardson paper, on the other hand, presents detailed calculations of the effects of photoselection and rotatory 
brownian motion on the observed CPE and MICE spectra; the present work restricts its attention to emission ob- 
served from a sampIe of fiied, but arbitrary, orientational distribution_ Both the present paper and that of RiehI 
and Richardson assume unpolarized radiation as the excitation source. 

., 

The end result of section 3 is the calculation of the probability of emission of a photon of arbitrary polariza- 
tion from a molecule having a Hamiltonian of rather general form. This transition probability equation is written 
in terms of moleculT fured coordinates, and as such, represents the starting point for all calculations involving 
orientation and distribution averaging. The later sections confine themselves to particularizing this general result 
to the parameterlzation and identification of terms in the formalism of Stephens [8,9] _ The CPE and MICE pa- 
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rameterization is carried out only for the 180’ “head on” experimental geometry. Riehl and Richardson present 
results for the 90” geometry as well in their formulation. MICE calculations are presented to first order in applied 
magnetic field strength. 

Our general theoretical approach in the first sections of this paper will now be outlined_ The molecular Hamil- 
tonian, in the presence of the radiation field, will be constructed from the field free Hamiltonian. This Hamihon- 
ian will then be separated into three terms; the field free molecular Hamiltonian, the Zeeman interaction Harnil- 
tonian, and the radiation interaction Hamiltonian. Finally, we will append to this the Harnihonian for the radia- 
tion field-in charge free space. The eigenstates of the field free molecular and charge free radiation Hamiltonians 
will be used as a basis set for the system states. The system states will be constructed via first order perturbation 
theory. The quantization of the radiation field is the province of quantum electrodynamics_ At its present state 
of development, it is textbook material [IO-121 and the reader is assumed to have some familiarity with the ba- 
sic formalism. A much more detailed account of the quantization problem as it relates to the present work is avail- 
able in ref. [2a] - 

2. Hamiltonians 

We first consider the problem of the molecular Harniltor~an in the presence of both a static magnetic field and 
the radiation field,@lF. This will be decomposed into terms involving the field free molecular Hamiltonian, @, 
the first order static magnetic field term, Hz, and the radiation interaction term, @. 

In order that our formalism be apprz:able to inorganic complexes incorporating metals of the transition and 
rare earth series, @ is chosen to inclucrc electronic spin-orbit coupling and electronic spin-spin coupling. Fur- 
ther, we do not limit the electronic coupling to a given center but allow for the full molecular contribution_ With- 
out Further discus_sion, we adopt the Hamiltonian used by Stephens in his treatment of MCD [9] . 

(2) 

The molecular potential, V, is taken to be the Coulomb interaction between all nuclei and electrons. The spin de- 
pendent terms are to be summed over electronic coordinates only. It is important to notice that the eigenfunc- 
tions of @ are dependent on both nuclear and electronic coordinates. 

As is shown in many textbooks [12,13], in the presence of an external field the canonical momentum is no 
longer the quantum analog of mi. Instead, the momentum conjugate to ‘): is given by 

pi = mv + e&c. (3) 
In order that eq. (2) be correct in the presence of an external field, we must replace pi by pi - e&c, where4 is 
the total vector potential due to all external fields. Further, the inclusion of spin in (2) requires that the spin-field 
interaction term, (e/me) Z;iSi. V X A_i, also be included. These modifications convert @ into @F*. 

#F = c @i- ciAilc)2 
- 

i 2mi 

(4) 

in order to perform the decomposition suggested in eq. (I), we must fust identify the radiation and static field 
contributions to the total vector potentialA-. This decomposition is given by 

* e is taken as positive. 
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Ai =Ai +-sx$ 

where the vector potential due to the static external magnetic field, H, is 

&t=$tiX 5. 

(5) 

(6) 

Substitution of (5) and (6) into eq. (4) yields, after much tedious algebra, the desired decomposition. The results 
are 

where 

‘-$ = c g-& (f_ + 2si) + c--& [ViVTi)Si - (si*‘i)vivl I 

and 

H’ = - c Aiwi f CA V X Ai-sj , 

(8) 

(9) 

where 

~i=-~~(p,+~sixviv+eAi/e). (10) 

Because the electronic/nuclear mass ratio is small, terms in nuclear coordinates in eqs. (8) and (10) have been ne- 
glected. @ and @ are now purely electronic operators. Further, we have made the approximation that terms in 
Ai.A,- and~i .Ai are negligible. As long as we ignore zero and two photon process, we are forced into neglecting 
the term in&-AC It is also import&t to note that within the approximation that Ai.+j andori.~i are zero, 
di*Ai will alsb be zero. 

Obviously, we cannot provide the exact eigenfunctions of fl; we can represent them formally as in eq. (11). 
The eigenfunctions of @ may also be formally represented as in eq. (12). 

&K, = I$+), @lk> = Wklk), (lI,12) 

To complete our system Hamiltonian, we express the charge free radiation field Hamiltonian in terms of crea- 
tion and annihilation operators for each mode, k, and polarization, X. The dagger indicates the creation operator. 

(13) 

Its eigenstates are given by (14) with energies demonstrated by (15). 

Any operators or properties of the radiation field are now to be expressed in terms of these creation and annihila- 
tion operators. Specifically, the vector potential of the radiation field is given by 

(16) 

where the II’s are the normalized polarization vectors and the star denotes the complex conjugate. We now use 
eq. (16) to expand @ in terms of field and molecular operators. Since our interest is the emission case, we retain 
only those terms containing creation operators for the radiation field 



(17) 

3. Integrated transition probability 

From the previous sections we have available a Hamiltonian, B, that represents the energy of the moleculq plus 
radiation and static field 

H=# +g +H* _- - -- (18) 

Aho at our disposal are the eigenstates of BF and @; these are factors of the direct product space that is a com- 
plete space for representation of &. We define this space by 

II Cn,,)) = IDI Err& (1% 

where rrkx is the cohection of quantum numbers, n, for all modes and polarizations. 11) is an eigenstate of p. In 
general, 

With the tacit assumption that the system is prepared in the state II{O)> before emission, direct application of first 
order perturbation theory allows us to calculate 

IC, +kkj(‘)12 = t<8a3/~2)l(F~n,,~iH’~I~O~~12~(A~). (22) 

Rather than becoming involved in the complicated, and generally unsolved, problem of line shapes for mole- 
cules, it is customary to consider the integrated transition probability per unit time interval. We defme it by 

Therefore, using eq. (22) 

p[I{O} + F{‘rk& = (8n3/h2)1~{nkX}IHIII{o})12. 

With the aid of eqs. (23) and (17) we have 

(23) 

P[I{O} +F{...l, *... ]] = (8n3c/Mv) (FI 7 exp (-ik.5) [r+ - i(e/mc)k X si] ID.lTk, 
I I 

2, (24) 

where 

k = w& (25) 

Because there is a continuum of possible k, we are experimentally limited to measuring the number of photons 
emitted into the solid angle dS2k. Further, ee (25) must be interpreted as holding the length of k within a vari- 
ance dk = dwic about w = wfF. The measurable quantity is then the integrated probability of photon emission 
into the solid angle da. This is given by eq. (26) where g(oE) is the density of photon states in k in the volume 
subtended by d& such that all those states on the interval [w,, wm + do] are counted. The probability of 
eITIiSSiOn in the solid angle da;l, per unit time per unit frequency is therefore 

Pk”[I + F] = (wIF/k)@‘~2~A~I{O} *F{+...)]g(wE) (26) 

where 



K. W. Hipps/lTzeory of polarized emission 

g(w) = vk2[8n3c, ‘wIF = (El - E#i 

and 

A& = (FI x exp (-i&$)12$ -i(e/mc)k X sj] ID 
i 

or 

455 

(27) 

4. Dipole and quadrupole radiation 

It is customary to simplify the calculation ofME &A by expanding the exponential in a Taylor series as 

exp (-ik*rJ = 1 - Sri- (k*Q)2/2 + . . . . 

Because k*ri - 3 X 10e3 for visible wavelengths, we may very accurately neglect alI but the fust two terms. With 
this approximation 

i$$ = (I?\ c uijl) - i(Fj c [(k.rj)ui + (e/mc)k,X s$ ID. (28) 
i i 

We will now transform eq. (28) to the usual dipole and quadrupole terms. With the use of the.commutator 

(2ni/hc)[@,rn] =u and m = xeri 
i 

we can convert the fust term of eq. (28) to the’electric dipole term as 

(29) 

The term in k-r is expanded as 

The first term is usually called the quadrupole term and gives 

Mik = -i(c;,/c)cFlmlD - (wE/2c)WF14_lD - 5 i (~1 c [(kvpj-(k-uj)q+ Z(elmc)k X sjl ID, (30) j 

where 

(31) 

We will call ft the quadrupole tensor. 
me last term in eq. (30) is called the magnetic dipole term. In order to demonstrate that it is requires more 

manipulation to give: 

- $(k*r)u - (ku)r +2(e/mc)k X slD = +ik X @I$ +glD, 

where 

g= -(e2/4m%) C [+iY - (yB)fj] . 
i 
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Collecting our results, we have 

J@ = ~i(w&)(FlmlI) + ik X Q?]p’+#> .L (wE/2c)k-tFI~II~. (32) 

lbe second term in eq. (32) merits some discussion. I will call it the generalized magnetic dipole term because it 
becomes the usual term, p, when the external field and the spin-orbit coupling vanish. We can estimate the size 
if the 5 term with respect to the p term by taking I(FlrlDl G= 2 atomic units @au) and I(FlplDJ * eh/(2mc). 

J(FJQII>~/J(F/~JIDI q [Ze/(&)]o$= 10wqH, whereHis in gauss. If (FItiD does not vanish, even for a lo5 gauss 
field, (F]&ID is still quite negligible. The spin-orbit term may be similarly evaluated 

rcFlil’-prDl/l~lillI~I = Iwvvvl/(%?&. 

Using a central field approximation, FVV * 2m2c2t(r), where f(r) is the radial spin-orbit operator, 

~~FIV’J-rJDl/(2mc2) * ~(F~~IDlmo~. 

Using icFI~II)IK2 - IUIcIDIi;2 2 lo3 cm-l (the spin-orbit coupling constant), we have 

KFlri - pII)I/IwplI)I 2 10-2. (33) 

Though eq. (33) gives a small value when (FipID is the non-zero, it is large enough to be significant when @/pjD 
vanishes in molecules with large atomic number elements. 

We will neglect 5 but retain p‘ in’our general treatment. With these considerations we may give a final form to 
the integrated transition probability per second for the emission of a photon into d!& with polarization X. We 
have 

P&tt$,$~~) = (o&/hc3)l [(FlmlU - kl X O?ip’lI> - i(c@2c)kl *WglDl mIIkk12, (34) 

where k = w&c, kl = k/k, and Phas been modified to make its dependence on Bk and &, the angular coordinates 
of k, explicit. For future reference, we also define the total emission probability at ok, #k for the I to F transition 
as 

and the total emission probability for the I + F transition as 

(35) 

(36) 

Eqs. (34). (35) and (36) are correct for a-molecule of fixed orientation and are most easily applied when the mo- 
lecular and laboratory coordinates are equivalent; this is the case for cubic symmetry molecules. Often, however, 
an oriented or high symmetry sample is not available and the emission results from a distribution of orientations 
withrespect to our external coordinate system. We give a formal solution of this problem and refer the reader to 
others 13-51 for specific examples. 

We define the laboratory coordinates by the orthonormal vectors k, - 
ordinates are designated by primes. We have, therefore, r” = 

=3, ttl 2 1, and n2 9 2. The molecular co- 
Xiaii j, where the aij are functions of the Eulerian 

angles 0, +, $J, as defined by Goldstein [14]. The aV are given by ref. [14] if the 1~‘s represent linear polarization 
vectors but not otherwise. The distribution of orientation before emission is given by G(B, #, $), where 

With these defhtions, the probability of emission per second of a photon with polarization h and direction kl 
due to the I, F transition from those molecules in the sample with orientation 8,tj, t,b with respect to the laborato- 
ry frame is 
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(37) 

The average probability of emission from the entire sample in the direction kl with polarization X per unit time is 
2n 2n A 

p&k = IF 5ss ~~(f3,~,$)sinf?dBd~d$. 
0 

As discussed by previous authors [3--51, eq. (38) may differ markedly from (34) when the direction of the ab- 
sorbing transition is at 90” to the emitting transition, even for unpolarized incident light. For example, taking the 
above case with the absorbing transition along z’, G(~,JJ, $) = (3/16n2) sin2B. For 180” excitation of an x-r tran- 
sition; G = (3132~2) (1 + cos26). 

In the absence of an external.magnetic field, the transition energy and state functions are independent of ori- 
entation and eq. (37) is considerably simplified. Eq. (38) is completely applicable for any problem in which there 
is a time independent distribution of excited geometries; photoselection and stressed f& spectra being two exam- 
ples. The present theory does not incorporate the possibility of slow reorientation during emission [4,S]. For 
fast reorientation, as in solution, G(B,& $) = 1/(&r2). 

4. SpeciaI considerations in emission 

Before proceeding to a detailed discussion of the origin of linear and circularIy polarized radiation, it is neces- 
sary to consider the emission process d a little more detail. There are two important aspects of emission that are 
foreign to the absorption process and there is a third consideration that is uttusuai. 

1) Under constant incident energy and fre$enci excitation, the total number of excited molecules may 
change as a function of’temperature. Further, of those molecuIes excited, the partitioning of energy among ex- 
cited states may aiso be temperature dependent. 

2) There are other processes besides emission of a photon (a phonon for example) that can lead to deactivation 
of the excited state(s). 

3) These are usually several levels (possibly degenerate) from which emission takes place. 
The problem is to design the polarized emission experiment in such a way as to avoid these difficulties. Given 

a few simple assumptions we can do so fairly well. With the additional assumption of Boltzmann equilibrium 
among the levels, we can do very well. 

Assumption 1. Each level involved in emission is depopulated by a group of mechanisms that lead to a fust or- 
der decay rate with decay constantR& for that state (I). 

Assumption 2. At a f%ed temperature, T, while the molecule is subjected to constant excitation, the integrated 
photon intensity of radiation emitted in direction k, with polarization h due to the transition I + F is given by 

(39) 

Given these two assumptions we now may simplify interpretation of experimental results. If the total integrated 
photon intensity due to the transition I + F measured in direction k, is [&&)]o, then by eq. (39) 

In eq. (40) we have removed the temperature dependence of everything but the N1_ 
Assumption 3. The levels I are in Boltzmann equilibrium. 
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:. :. 
‘: &@I =dI exp(-WIf~Tf/f;dI’expi--WIi~~. 

With the aid of assumption 3 we may write eq. (40) as 

@A{kl)]o =z P& exp (-W&cIiJdI~~F .Pf& exp(--W&T)d,- 
I I , 

Experimentdy, fff(o) is the photon intensity per unit frequency interval, we are interested ifi 

(441) 

iAZJ; =j@(\(w) - iA’( ([o -a] ni3tw3) dw. (42) 

These moments are genera& us’eful and allow us to extract useful information from the emission that may be dif- 
ficult or impossible to extract otherwise_ For a general discussion of the method of moments as applied-to MCD 
[9,15], should be consulted. Also appendix VI of ref. [16] is of interest. The important point for now is that it 
is the ratio cf two intensities, or two moments, that is simply related to our calculated transition probabilities. 

5, Relation to CD, MCD and LPE 

In the previous sections a formula for the probability of emission as a function’of polarization and direction 
of observation for a transition between two states I and F of the molecule was derived. The notation of ref. [9] 
has purposely been used whenever possible so that we might compare our results in the emission case with those 
of Stephens in the absorption case. This will insure a unified terminology for both processes and as we shall show, 
our results for a particular geometry are simply related to his. We now proceed to give specific relations for the 
natural circularly polarized emission (CPE), the linearly polarized emission (LPE) and the MCE for the 180° ex- 
perimental geometry. 

The experimental geometry is chosen such that k is co-linear withl-f Further, we suppose that we have an 
oriented system* so that the molecule fuced coordinates are identical with the laboratory futed dries, We choose 
the .Z axis to be directed from the sample, parallel with the external field H, and toward the detector. Under these 
conditions 

kl =Y. 

and we have 

P&(0,0) = (~~~~c~)i~lm*lD +i(F]Et:ID F (u,/2c)G%@~2. (43) 

If the transition is reasonably dipole allowed, the terms quadratic in $ and % may be safely neglected. With’the 
assumption that we are dealing with a transition that is primarily electric dipole in nature, we have 

P&(0,0)=(w$/&c3) #Flm,lD12 7: 2 ~[~lm,fD(Qi~~~~F~-ii(w~~2c)(Ilq~lF~)]). (44) 

Comparison of the quantity 

& = P&(0, O)Nr 

with eq. (30) of ref. [9] gives 

& = k&F --f 01 i~&Fi4c~c)3(Np - NI)3, (45) 

4 For systems of sufficient symmetrv,SO_or ‘Id, for example, the relation &the space f&ad to molecule fixed system is arbitrary. 
Our equations here apply to solutions of molecules of this type. 

4 
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where NI and NF are the numbers of systems in the initial and fmal states, respectively. Since the CD and MCD 
equations derived in ref. [9] and elsewhere invariably assume NI (NJ of ref. [9]) is zero, we may adopt all the CD~ 
and MCD equations with the substitution of A$ for NF followed by the multiplication of the result by w&/4sr3c3. 
This procedure is perfectly accurate for the properties of a single pair of levels. When more than one level (which 
may be degenerate) is considered, the procedure of the previous section must be used. 

In the absence of a field, the states 11) and IF) go into lid, If@ where a! and I3 are enumeration indices for the 
possible degenerate levels ]ia3, lfp>_ The differential photon emission probability between states i and f for IZQ~WQZ 

CirCUlm’y polarized lighf is given by 

With the assumption that we are dealing with a racemic mixture or a molecular system that is not optically ac- 
tive, eq. (44) becomes 

ZIIF = b~~/hc~)N~(Flm,lDl~ (47) 

Ol- 

A& = N&k 

(NE - NI)47r3c3 
[Ak(F + I)]. (48) 

These are the appropriate equations for MCE. Note that the states IF) and lU are now field dependent; Ak(F + I) 
is as defined in ref. 191. 

In the case of linear polarization, one only needs to replace the circular basis vectors ni with the linear ones, 
tl and x2. In fact, since XT = TQ , the treatment is a little less complicated. From eq. (34) for example, for a mo- 
lecular system oriented such that radiation is observed whose propagation vector is colinear with the molecular z 
axis, the probability of n1 polarization becomes 

P$O,O) = (w@c3)l [WmlD - 7 X (FldD - i(w#c)y X tFl~lD1 vt,12. (4% 

The analysis of MLD (sometimes called the Voigt effect) is slightly more complicated than that of MCD be- 
cause it is a second order effect. That is, the signal, Al= & - $,, in the presence of a field depends on H2 rather 
than iY. MLD [17,18] contains potentially different information than MCD, but it has not experienced anything 
like the growth rate of MCD, perhaps because there are no commercial MLD machines available. Since our inter- 
est here is with zero and first order field polarization, we will not develop the parameters for magnetically induced 
linear polarization of emission. It should be noted, however, that any attempt to do so should take second order 
contributions to the energy due to the magnetic field into account. 

6. MCE parameters 

In the standard development of MCD, it is customary to express the first order magnetic field dependence of 
the analog of eq. (47) in terms of three parameters. These parameters are arrived at by considering the field de- 
pendence of the populationsNI and the state functions IF> and 11). Roughly speaking, the first order dependence 
onH of Nr leads to a parameter, C, which is proportional to (KT)-1 if degeneracies, in the absence of fl, are pres- 
ent in the initial state(s). First order shifts in energy when either initial or final states are degenerate, are contain- 
ed in the parameter, A. Because the character of the initial and final states will always depend on H via “second 
order interactions”, there is finally the parameter B. The C and B terms generally have the same frequency depen- 
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Fig. 1. Schematic diagram of a few molecular states in the 
context of the Born-Oppenheimer approximation. Magnetic 
deld off and on. 

dence as the absorption (except for a signed constant) while the A terms are somewhat like the differential of the 
absorption distribution. 

In this section, within the Rigid Shift Approximation (vide infra), we will present the equivalent parameteriza- 
tion for the MCE case. We begin by expanding the notation of eqs. (11) and (12). Fig. 1 is an exaggerated concep- 
tual view, in the context of the Born-Oppenheimer approximation, of the eigenstateaof go and @. With this 
picture in mind we have 

@Ire, r) = W&e~r>’ @lie, r) = Wi,iie, r>, (5% 51) 

where 

lie, r) = lim /Ifs, 1). 
H-4 

We should also note that there will generally be more level sets than {/ie,r>) and {If@, r)); these other levels are 
.omitted from the diagram for the sake of clarity. Because the energy shift produced by the field is seldom more 
than a few wavenumbers, perturbation theory is usually sufficient for determining the DE, r> from the (IjS, d}, 
where IjS, r> is a generic zero field eigenstate. In fact the first order theory is generally sufficient, in which case 

(52) 

In general, the shape of the zero field emission is not that predicted by the quantum theory for a single transi- 
tion. Some reasons for this in condensed media are: 

1) There is a continuum of phonon states to which the transition may occur. 
2) Inhomogeneities in the matrix cause the local environment, and therefore @, to be a function of position 

in the matrix. 
3) The transition from vibronic state lie, ~1 to If+, s> may be nearly degenerate with the one from ii’e’, r’) to 

If J, s?. 
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These effects, taken together, can lead to emission bands which are lo3 cm-’ wide. Clearly, the detailed cal- 
culation of location and intensity of every transition invoI.ved is impractical and, for now, impossibIe. One meth- 
od for circumventing these difficulties is to assume a shape function, w3f(w) such that 

s f(o)do= 1. 

This approach is quite reasonable for line spectra where the width is due strictIy to the phonon continuum and to 
small inhomogeneities in the matrix (< 150 cm-r wide in the visible). In this case we may accurately write # 

(53) 

When bands (> 200 cm-r wide) are considered, this .is a dangerous procedure. Buried beneath a band may be 
several principal transitions followed by long progressions in one, or more, vibrational mode. In the case where 
ali the progressions are due to a totally symmetric vibration, the transition probability for each component of the 
progression is related to the transition probability of the progression origin [2a,I9] . In this case, a modified form 
of eq. (53) may be used 

provided that (a) the Born-Oppenheimer’approximation is valid, (b) the progression involves a totally symmetric 
mode, and.(c) the shape of each vibrational component is the same. 

With these restrictions in mind we may give the form of r for several progression origins as 

(54) 

where Tir is evaluated for electronic states i and f only. We will adopt eq. (54) for the rest of this subsection since 
it is equally valid for line spectra. 

When a field is applied, the shape function is affected. In the so-called rigid shift approximation [8,9,15], the 
potential surfaces (Fl and F2 for example) in fig. 1 move rigidly away from each other, and if no new transitions 
are induced, the shape of the new IE + F$ transition is just that for i -+ f shifted iu energy. 

fIf,F@(“) =fitI” - Cw&zJ+ - wifIl * 
When the Zeeman splitting is much smalier than the line width we have 

I;e,Eo =&- 27ifi;(B$a - I$ - WE@ + Wr)Ifi- (55) 

At this point we have considered all the necessary components for the parameterization of first order MCE. We 
will restate the assumptions and then, utilizing direct substitutions, write down the results. 

1) Eq. (52) is valid. 
2) Eq. (54) is valid. 
3) Eq. (55) is valid. 
4) The molecular system shows no natural optical activity or is composed of a racemic mixture. 
5) The transition is allowed by an electric dipole mechanism. 
6) The geometry of the experiment is “head-on”. 
7) The unpolarized spectrum in zero field is identical to the unpolarized spectrum with the field on (to first 

order in H). 

* Omitting the I, s indices for the’sake of notational simplicity, Ts is measured in some direction kl , if kt = 7. &(O, 0) = &= 
(Ml rn*liq/hC3) N = @$I, 0)/w’. 
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8) Assumptions 1,2 and 3 (only for levkls, degenerate in zero fieldj of section 3 obtain with t/rgiverI by the 
first arder perturbation theory. .- _. -. : 

9) The system is composed of molecules of cubic symmetj. Alternately, they~may.be of any~s~et~$pro- 
vided that they are oriented with respect to the laboratory frame or are experiencing fast rotational relaxation_ In‘ 
the last case, the form of the parameters given by Stephens for solutions is appropriate. For C3 symmetry, &so- 
tution parameters may be used for rigid randbmly oriented samples with = 40% etior. : 

where 

A’(f + i).B!(f + i), and D’(f + i) are exactly those parameters given in refs. [89] , except that di replaces df; note 
aho that the transition operators are unnormalized. C’(f + i) is modified as in eq. (59) because of the population 
contriiution. 

We have successfully parameterized the MCE equations, for the case where assignment of a shape function is 
appropriate, in a form similar to that used for MCD. The conditions under which they are applicable have been 
stated. The relative sizes of the A’, B’ and C’ have been discussed elsewhere [8,9] and we note here that if only 
the excited state is degenerate thenl’ = C’ (as opposed to the case in MCD where if only the ground state is de- 
generate then A = -CT). 

I’wish to thank professor G.A. Crosby for his support and encouragement. Financial support was provided by 
AFOSR(NC)-OAR USAF grant AFOSR-76-2932 and by the National Science Foundation in the form of a post- 
doctoral fellowship. 
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