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Abstract—1In this study computer simulation is used to compare selected pattern recognition functions.
The Highleyman deck of 50 hand written characters provides one comparative data base. A second
data base is derived from multispectral infrared sensor data taken over California’s Imperial Valley.
Emphasis is placed on comparing the classical minimum distance recognition functions with two new
recognition functions introduced in a recent predecessor article.
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INTRODUCTION

Suppose that X denotes a universe of patterns and
that I', < X, i=1,... mis a disjoint cover of X, that
islinT=¢,i#jand X = O, Y = {y.. 3.
is a distinct (signature) set then a function F: X — Y
is said to recognize the patterns {I;} if

Fxy=y allxel; i=1,....n

In most applications such an idealized definition
of a pattern recognition function is unworkable. A
sensible modification which often results is that by
an averaging, or expectation of clustering process a
typifying set of points x;eI'; i = 1,...,m, is chosen.
The function F is asked to satisfy F(x;) =y
i=1,...,m. Moreover, it is hoped that, in some
metric, for x e I';, F(x) is closer to y; than to y; j # i.
This latter description is compatible with statistical
as well as geometric interpretations and can be
viewed as a function sensitivity problem.

The recognition functions considered in this study
include the well known minimum distance function
and its related maximum probability function for
Gaussian error. Comparison is made with two recog-
nition functions'®?; namely, the linear function con-
structed using dual sets and a polynomic function
which in some ways resembles a committee machine.

The results reported here were obtained both by
computer simulation and by testing on standard data
bases. The computer simulation which is detailed
later, utilized a random number data base with vari-
able standard deviation. In a second test the Highley-
man deck'" of fifty hand written characters was util-
ized. Finally, multispectral data, taken over Califor-
nia’s Imperial Valley, was utilized with the I'; consist-
ing of the emmissions from the various crops present.

* Sponsored in part by the Air Force Office of Scientific
Research under Grant AFOSR 73-2427 and 77-0352.
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PRELIMINARIES

It is noted® that Hilbert spaces provide a natural
setting for studies of the pattern recognition problem.
In the simulation studies a concrete Hilbert space.
namely R" equipped with the natural innerproduct

n

oy = ) Xy,

i=1

X.ye€R",

was used. The norm on R" is the usual one namely
[[x]]? = {x,x>, xe R".

The Highleyman character deck consists of fifty
handwritten samples of the twenty-six alphabetic
characters plus the ten integers 0,....9. Each charac-
ter was scanned on a 12 x 12 lattice which encoded
each character as a 144 binary tuple. Thus n = 144
in the above inner product while each I';, i = 1,... .36
consists of the fifty coded versions of a single charac-
ter. The typifying element 7; € I'; was taken to be the
average tuplet,

1

?i=%;~/,. i=1,...,36 (1)
While each coded character has binary entries the
averages, 7,, do not and in general have components
0 <7/ < 1, taking on values in multiples of 1/50. In
the same vein the deviations y; — 3, for y; e I'; about
the average are tuplets with both negative and posi-
tive entries.

The Highleyman data base can be preprocessed in
several ways. Having computed the 7, i=1,....36
one can compute the covariance matrices

1
b = — vy — P i
i 49;(/ h)(’} h) !

1,....36,  (2)

and construct an innerproduct(s)

(X We={x, P 1,‘”>a
which would reflect a Gaussian assumption on the
deviations {7, — 7;). Secondly, the identification
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algorithm could be allowed to shift the individual pat-
terns as a means of improving an appropriate
measure of confidence in the identification. Other
authors"* have reported marked improvement when
pattern shifting is allowed.

In our experiments the presence of substantial pat-
tern variation is actually helpful in documenting the
properties of the identification functions. For the
Highleyman data base, the numbers

2 My =il

vel;

A 1
T50
were computed and it was found that the errors were
often bigger than the patterns in that A; ranged as
large as 125% of [|7;||" It was also noted that the
A; were roughly proportionate to the ||7;||. This is
intuitive since the misshape of a letter with many unit
entries produces an error with many unit entries in
the respective code vectors. To illustrate, the numeri-
cal values of ||7;|| and A; are listed below for the
ten numerals 1,....9,0.

The covariance matrices @; defined earlier were also
computed for selected I'; and found to have substan-
tial nondiagonal entries. To avoid needless complex-
ity the simulation utilized an error data base con-
structed from a random number generator with the
Highleyman data base used as a consistency check
at the end of the simulation.

The error data base consisted of 300 tuplets of
length 144 drawn from a Gaussian random number
generator. The data base was given minor adjust-
ments so that the finite sample average and the finite
sample standard deviation for each vector component
were zero and one respectively.

i=1,...,36, 3)

THE RECOGNITION FUNCTIONS

In this section we summarize the definitions and
properties of the various recognition functions that
were tested in the simulation.

The dual functions

Consider once more the thirty-six pattern classes
I'; of the Highleyman data bank and the associated
mean patterns 7; computed in equation (1). Each 7,
is a 144 tuple with components 0 <73 < 1. It was
found that the set {J,;} is linearly independent in R”
with n = 144. Thus the dual set 3" satisfying

Linear span {%;} = linear span {;"}

<7i7’Yj+> = 5ij Lj=1,...,36
can be readily determined®.
The dual set has properties relevant to pattern
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property means that the functions {¢;} defined by

dly) =i y> i=1,...,36 “)
qualify as recognition functions.
Secondly, we note that the matrix
36
P =756, )
1

is readily computable and is, in fact, the orthogonal
decomposition of R" onto the linear span of {§;}. Thus
if yeR" is arbitrary Py is the closest element to y in

span {7;}. Moreover, Py is a linear combination
36
Py = Z %Tis
1

where

i=1 ,36.

% = $i(Py) = ¢i(y)

In general then for arbitrary

PR

36
7= ;Wi)i()’) +{ — Pp.

The ratio | Py|/llyll can be viewed as a noise suppres-
sion factor.

In the simulation the recognition function con-
structed by choosing the maximum of the numbers
fpiy): i =1,...,36} was tested. This function, which
is referred to as linear case 1, chooses the maximum
coefficient in the best fit linear expansion of y in the
subspace span {7;}.

Corollation technique

In many early studies character recognition
schemes of the following type were considered. Define
the functions

i=

ni(y) = <7n‘y> 1) T 5369

and choose i such that m(y) > m(y) all j # i. A vari-
ation on this used the normalized function defined
by

i=1

wi(y) = <Foy 2/l 11y 1)

which is interpretable as the direction cosine set
resolving y along the {¥;}.

When the set {y;} has several almost colinear sub-
sets, that is {3.5;> ~ |[7:]|-117;ll. it has been suggested
that penalty weights be added to the J; to more or
less help orthogonalize the test pattern set. The ulti-
mate of this, however, is to use the dual set described
above, and we shall not mention penalty methods
further. :

Of more importance is the relationship of the =,
to statistical estimation. Assuming that the class I,

.,36,

PR

recognition. First, note that the <(§,7,> =3, is Gaussian distributed with mean 7, and covariance
Table 1. Pattern and pattern deviation measures
r; {1} {2} {3} 14} {5} {6} {7} (8} {9} {0}
H7:ll 246 3.17 3.18 3.62 3.14 3.39 322 378 3.62 3.20
A 242 3.67 3.72 3.59 3.86 371 323 4.09 3.71 391




Comparison of selected pattern recognition functions

matrix @, it is well known'® that the relevant condi-
tional distribution function is given by

py/T) = Zgexpl =%y — Flli),
where:
()2 = (Y det @,
and
Iy = vulle = & = Pk Oy ~ TP

When @,=1, k=1,...,36 and noting the mono-
tonicity of the exponential function we are led naturally
to consider the functions

2k

Py = 7~ % L....36.

Using the orthogonal projection, P, defined earlier we
have

pdy)= I — P)y
Since (I — P)y||* is constant in all functions we
delete the term and focus on

2 —
2+ 1Py = 5l

. k=1...36.

Py = 1Py — 3% k=1,....36. (6)
Similarly we note that
Py =5t = PRI = 20T + IS
and hence the functions
qy) = =2m(y) + 177 7

give the same ordering as p, and p,.

In the simulation the recognition function formed
by choosing the minimum of the set of {p(y):
k= 1,....36} was studied. This case, which is referred
to as linear case 2, was implemented using equation

(6).

The polynomic functions

Our interest here is with a specific class of polyno-
mic functions introduced in Ref. 2. These functions

are defined by
s { w— “,,v——z“/'j?_}’ k
Vi

70
As with the dual functions of equation (4), we have
i) = O Sk =1.....36.

Il

itk

We note. however, that the {i,! are well defined pro-
vided only that the set {7} is distinct. It is also easily
seen that each , is a polynomic operator of order
thirty-five. This sets it apart from other polynomic

recognition functions considered in the literature.
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All of the recognition functions defined earlier util-
ized explicitly or implicitly the {F;}. The polynomic
function, of course, utilizes the differences (7, — 7,1
This results in a distinctive behavior when, for in-
stance, 7, 72, and 73 are almost colinear but have
differences 7, — 7,. 75 — ¥3. 73 — 74 which are nearly
orthogonal.

THE SIMULATION TESTS

The statistical simulations summarized in this sec-
tion were developed for several reasons. First, it was
found that simulations on the entire thirty-six symbol
Highleyman data base were consistent with simula-
tions on the ten pattern subset consisting of the in-
tegers. As a result. attention was focused on the in-
tegers with suitable simulations on the larger data
base to check for consistency. The net effect was a
considerable savings in computer time and cost.

As to the statistical properties of the Highleyman
data sets I, related to the integers, some of these

are summarized in the following table where
{ Ny
= gni n=201..., 9
50
A,,:S—OZI:;\H,-—ﬁH n=0,1.....9
] 30 1;2
L«ﬂ:[ﬁgni—an n=20,1.....9

{n*} is the dual of {1}, and o, = 17 — A?]' 2

Concerning these statistical properties, we note that
in each case A, and ¢, are approximately the same
size as ||7]]. This indicates the fluctuations about the
mean pattern are often as big as the mean pattern
itself.

As a prelude to the experiment using the Highley-
man data base simulations were run using a Gaussian
error data base. The purpose of these simulations was
to help isolate properties related to the pattern recog-
nition functions from properties related to the poss-
ibly non-Gaussian characteristic of the Highleyman
data base.

In the next two tables the properties of the polyno-
mic functions of equation (8) and the linear functions
of equation (4) are compared. In both simulations
the input set was compiled by choosing me {0.2.4.6.8!
and then forming y; = m + kv; where ;€ V and
k/||m|| was chosen in multiples of 0.2 as indicated
on the Tables.

Table 2. Data base variation measures

n 1 2 3 4 5 6 7 8 9 0
7l 2.46 3.17 318 3.62 314 3.39 3.22 378 3.62 3.20
[ 0.76 0.87 0.89 0.97 0.83 0.79 0.76 1.08 1.08 0.68
A, 2.42 3.67 372 3.59 3.86 371 323 4.09 3.71 391
, 2.48 3.74 379 3.65 394 381 3.30 4.20 3.80 399
oy 0.61 0.72 0.72 0.65 0.79 0.85 0.69 0.96 0.83 0.78
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Table 3. M[y4(mk)] and o[y (m.k)] respectively

m 2 4 6 8 0
K/l1m]|
0.0 0.00(0.00) 1.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00)
0.2 0.00(0.00) 1.02(0.21) 0.00(0.00) 0.00(0.00) 0.00(0.00)
04 0.00(0.00) 1.06(0.45) 0.00(0.00) 0.00(0.00) 0.00(0.00)
0.6 0.00(0.00) 1.14(0.74) 0.00(0.00) 0.00(0.00) 0.00(0.00)
0.8 0.00(0.00) 1.26(1.06) 0.00(0.01) 0.00(0.01) 0.00(0.00)
1.0 0.00(0.00) 1.42(1.56) 0.00(0.02) 0.00(0.01) 0.00(0.00)
12 0.00(0.00) 1.64(2.21) 0.01(0.03) 0.01(0.03) 0.00(0.01)

For convenience the notation

300

My am. k)] = = Z Yalm + kv)

1 300

altha(m, k)] = {299 Y [alm + kuvy)

— M[Ym. ka} )

is adopted. The quantities M[ ¢ (mk)] and o[ @4(m.k)]
are defined analogously, however, the linearity of the
¢; and the unbiased nature of v simplifies these latter
computations. In the following tables the values of
oY 4(mk)] and ofp4(mk)] are placed in parentheses.

The most interesting property displayed in these
two tables is the ability of ¥/, to reject false patterns.
For Gaussian distribution errors with standard devi-
ations as large as 1209, of the input pattern, the func-
tion , continues to reject false patterns, that is
me{2,68,0!, with remarkable consistency. The cor-
rect pattern, m = 4, is recognized by ¥, with a confi-
dence level which varies inversely with error size. For
k/||m|| = 0.9 the sample {} & + kv;)} mean and S.D.
are approximately the same and hence occasional
small {or even negative) numbers appear. The tenacity
with which v, rejects the false patterns suggests the
misclassification errors can be easily minimized by
imposing a threshold level, p. If the maximum v (u)
does not exceed u then the pattern is not classified.

Before leaving Table 4 it is noted that simulations
of the ¥,, Y, ¥g and o on the same input set pro-
duced similar behavior. The direct use of the Highley-
man data base also confirms the properties of the
¥ functions summarized here.

As a footnote to the above data on the functions
{¢r; we recall that the operator, P, of equation (5)
is linear. When P projects on the linear subspace

Table 4. M[ @ (mk)]} and

spanned by {0,1,...,9} it reduces dimensions from
144 to 10. Thus, on the average, || Py;|/|lv;l| =~ 1//14.4.
By experiment it was determined that for the data
base used

300 u; IPyll/llv;ll = 026 = 1//148.

Turning now to the Highleyman data base, the poly-
nomic character recognition functions were applied
to the entire data base. The results summarized in
the following tables are entirely indicative of the total
simulation.

In Table 5 the outputs of {y,:i=1,...90} are
recorded when the 50 copies of the numeral 4 are
applied. In examining these data it is clear that the
functions y, for i = 1,2,3,5,7 output ~ 0 for all in-
puts. The functions y; for i = 6,8,0 output numbers
> 0.20 a total of 4 times. The function ¥, is more
active giving a > 0.20 reading 10 times. The function
V4 gives outputs which vary widely. The output of
4 fails to be maximum among the 10 outputs a total
of 10 times. This only happens twice, however, when
the 4 output is > 0.20.

In Table 6 the function v, is applied to each of
the 50 copies of the 10 numerals. We note that ¥,
never responds to numerals 1,3,5; to numerals
2,6,78,0 it gives a total of 12 readings > 0.20 and for
9 gives outputs > 0.20 a total of 13 times. Although
the data displayed is different, Tables 3, 5 and 6 all
have a similar character.

For comparison purposes the experiments summar-
ized in Tables 5 and 6 were repeated using the ¢,
functions of equation (4). The contrast between
Tables 5 and 7 and Tables 6 and 8 is visually appar-
ent and in the linear cases an error is picked up in
all recognition functions. In the polynomic case errors

o[ p4(mk)] respectively

m 2 4 6 8 0
k/tim]|
0.0 0.00(0.00) 1.0(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00)
0.2 0.00(0.05) 1.0(0.06) 0.00(0.05) 0.00(0.06) 0.00(0.05)
0.4 0.00(0.10 1.0(0.12) 0.00(0.11) 0.00(0.13) 0.00(0.11)
0.6 0.00(0.15) 1.0(0.18) 0.00(0.17) 0.00(0.19) 0.00(0.16)
0.8 0.00(0.21) 1.0(0.24) 0.00(0.23) 0.00(0.25) 0.00(0.21)
1.0 0.00(0.26) 1.0(0.30) 0.00(0.28) 0.00(0.31) 0.00(0.26)
1.2 0.00(0.32) 1.0(0.36) 0.00(0.34) 0.00(0.35) 0.00(0.32)
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have an effect in at most two or three of the recogni-
tion functions.

For completeness of our comparison, the classic
maximum probability recognition functions were also
tested. This was done indirectly by using the related
functions p, of equation (6) in the same experiment.
The results are given in Tables 9 and 10. Noting that
the smallest number is the maximum probable choice,
it is easily determined that Tables 9, 10 have the same
character as Tables 7, & respectively.

In numerical terms Table 5 has 9 false maximums,
Table 7 has 15 false maximums and Table 9 has 19
false minimums On a much larger simulation, it was
found that polynomic recognition function excelled

over the minimum distance function which excelled
over the linear recognition function. The margins of
gain varied, but were generally closer than that of
the data of Tables 5. 7, and 9.

CLOSING

In addition to the experiments described pre-
viously, some preliminary experiments were run using
multispectral data taken over California’s Imperial
Valley. The results of these experiments have not been
included here because of the limited size of the data
sample available and the relatively sparse documen-
tation of these data. The experiments run, however, did
not conflict with the Tables of the previous Section.

Table 5. The ; responses to the numeral 4

¥ ¥, B Va vs Ve Yy s Yy o
—0.00 0.00 0.00 1.60 0.00 —0.00 —0.00 0.72 1.31 —0.00
0.00 0.00 0.00 0.44 0.00 0.01 0.00 0.00 001 —0.00
—0.00 —0.00 0.00 1.09 0.04 0.00 —0.00 —-0.00 0.08 0.00
0.00 0.00 0.02 0.02 0.00 0.00 0.00 —-0.00 0.07 0.00
0.00 0.00 0.00 0.49 0.00 -0.00 0.07 0.00 0.07 0.00
0.00 —-0.00 0.00 0.33 0.00 —0.00 0.00 0.03 0.26 0.00
0.00 0.00 0.00 0.08 0.01 0.00 0.03 —0.00 0.02 0.00
0.00 0.00 0.00 16.56 —0.00 —0.00 0.00 0.01 —-0.67 0.00
—0.00 0.09 0.00 0.08 —0.00 0.14 0.00 0.00 —0.00 0.00
—-0.00 0.02 0.00 0.75 —-0.00 0.00 0.00 0.00 —0.01 0.00
0.00 0.00 0.00 0.71 0.02 —0.00 0.01 0.02 —-0.01 0.00
0.00 0.02 0.00 0.04 0.00 0.00 —-0.00 0.00 0.29 0.00
0.00 0.17 0.00 0.01 —0.00 0.13 0.00 —0.00 0.00 0.00
0.00 0.00 —0.00 2.85 —0.00 0.00 0.00 —0.00 —-004  —0.00
0.00 0.00 —0.00 1.12 —0.00 —0.00 —0.00 0.01 3.51 0.00
0.00 0.00 0.00 0.45 0.00 0.02 0.00 —0.00 0.08  —0.00
0.00 0.00 0.00 1.30 —0.00 —0.00 0.00 —-0.00 —-0.01 —0.00
0.00 —-0.00 0.00 1.62 0.00 0.08 -0.00 0.00 —-0.02 0.15
—0.00 0.00 0.00 1.46 0.00 0.01 —0.00 0.19 —0.00 0.00
0.00 0.00 0.01 0.61 0.00 0.05 —0.00 0.00 —0.00 0.01
—0.00 0.00 —0.00 0.75 0.04 —0.00 0.00 0.00 024 —0.00
0.00 0.00 0.00 1.01 —0.00 0.00 0.12 —0.00 —0.01 0.00
—0.00 —0.00 —0.00 491 —0.00 —0.00 —0.00 —-0.01 —0.04  —0.00
0.00 0.00 —0.00 9.22 —0.00 —0.01 0.00 —0.01 —0.26 0.00
—0.00 0.00 0.00 1.50 0.01 —0.00 —0.00 0.01 -0.02 —-0.00
0.00 —0.00 0.01 0.20 0.04 0.00 0.00 0.00 003 =000
0.00 —0.00 —0.00 0.70 0.00 0.00 0.00 0.29 —0.00 0.00
—0.00 0.00 0.00 2.90 0.00 —0.00 0.00 0.08 —-0.01  —0.00
—0.00 —0.00 —0.00 8.67 —0.00 0.00 —0.00 -0.02 -0.17 =000
0.00 0.00 0.00 0.60 —0.00 0.00 0.00 —0.00 0.06 0.00
0.00 0.00 —0.00 1.74 —0.00 —0.00 0.00 0.00 —-0.01 0.00
0.02 0.00 0.01 0.07 0.00 —0.00 0.06 0.00 0.00 0.00
0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00
—0.00 —0.00 —0.00 4.64 —-0.00 0.00 0.00 0.00 0.64 0.00
0.00 —-0.00 —0.00 3.62 —0.00 —0.00 —0.00 —0.01 —-0.06  —0.00
0.00 —0.00 —0.00 0.51 0.00 0.00 -0.00 0.00 0.66 0.00
0.00 0.00 0.03 0.03 0.00 0.20 —-0.00 0.00 -0.00 —-0.00
—-0.00 0.00 0.00 1.48 0.00 0.04 0.00 —0.00 —0.03 0.00
0.00 —0.00 —0.00 25.18 -0.00 —0.00 0.00 —-0.12 —-0.83  —0.00
0.00 0.00 0.00 235 —0.00 0.15 —0.00 —-0.00 —0.01 0.00
—0.00 0.00 0.00 2.57 0.00 0.08 —0.00 —0.00 —-0.04 0.00
0.00 0.00 0.00 1.02 0.00 —0.00 0.00 0.02 0.03 0.00
—0.00 0.00 0.00 0.98 0.00 0.02 0.00 0.00 0.05 0.01
0.00 0.00 —0.00 3.37 0.00 —0.00 0.00 0.00 055 —0.00
—-0.00 0.00 0.00 3.00 0.00 —0.00 0.00 0.07 000 —0.00
0.00 -0.00 0.00 0.04 0.00 0.44 —0.00 0.01 0.00 0.55
0.00 0.00 —0.00 0.95 —0.00 —0.00 0.02 0.00 0.09 0.00
0.00 —-0.00 0.00 0.30 —0.00 —0.00 0.00 0.00 0.18 0.00
—0.00 —0.00 0.00 1.73 0.04 0.00 —0.00 0.00 058  —0.00
0.00 —0.00 0.02 0.00 0.01 0.00 —0.00 0.02 0.21 0.00
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Table 6. The y, response to {1},..{9},{0}
() {2 {3} (4] {5} {6} 7 {8} {9} 10}
0.00 0.00 0.00 1.60 0.00  —0.00 000 —001 0.23 —0.00
—0.00 000 ~0.00 0.44 0.00 0.01 0.03 0.10 0.00 0.66
0.00 0.00 0.00 1.09 -000 —0.00 000 -000 —003 0.00
0.00 -0.00 0.00 0.08 -0.00 000 —-0.00 000 -000 —-000
—0.00 —0.00 0.00 0.49 0.00 000 —-0.00 000 —-002 0.01
—0.00 0.32 0.00 0.33 0.00 020  -0.00 0.11 —0.01 0.02
-0.00 000 —0.00 0.08 0.00 0.00 0.00 0.02 000 —0.00
—0.00 0.01 —000 16.56 0.01 —0.00 0.03 —0.00 0.35 0.00
0.00 0.00 0.00 0.08 000  —0.00 000 —-0.00 009 —-000
—0.00 000  —0.00 0.75 000 —0.03 0.00 0.00 0.15 0.00
0.00 0.00 0.00 0.71 —0.00 000 -000 -000 0.01 0.00
—0.00 0.29 0.01 0.04 000 —0.00 000  —0.00 0.00 0.00
0.00 0.00 0.00 0.01 0.00 000 000 0.00 0.00 0.01
0.00 —-000 -000 1.85 —0.00 0.00 0.01 —0.00 0.00 0.00
0.00 -000  —-000 1.12 —0.00 0.00 0.00 000 —-001 0.00
0.00 0.00 0.00 045 0.12 0.33 0.00 0.51 0.10 0.01
—0.00 —0.00 0.00 1.30 000 —-000 —001 -000 —0.14 0.00
—-0.00 0.00 0.00 1.62 -000 -0.00 0.00 0.01 —-000 —-0.00
—0.00 000 —0.00 1.46 0.00 —0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.61 000 —-000 -000 —000 054  -0.00
=0.00 —-0.00 0.00 0.75 —-000 —-0.00 0.00 000 ~020 0.00
—0.00 0.00 0.00 1.01 0.00 0.51 —0.00 0.00 0.00 -0.00
—0.00 000 -0.00 491 000 —-000 —-000 000 —0.01 —0.00
—0.00 0.00 0.00 9.22 -000  —0.00 000 -000 008 0.00
—0.00 000  —0.00 1.50 0.00 0.04 0.26 0.00 0.32 0.05
0.00 0.00 0.12 0.20 0.14 0.88 0.01 1.06 043 0.14
0.00 —0.00 0.00 0.70 0.01 0.00 0.00 000 —-0.01 0.01
—0.00 —0.00 0.00 290 -000 —-000 -000 —-000 —0.05 —0.00
—-0.00 —0.00 0.00 8.67 -000 —0.00 000 —-0.00 0.00 0.00
—0.00 —0.00 0.00 0.60 —0.00 0.00 0.01 0.09 1.06  —0.00
0.00 —0.00 0.00 1.74 -000  —0.00 000 -000 -010 0.00
—0.00 0.00 —0.00 0.07 —0.00 0.01 005  —0.00 0.42 0.06
—0.00 —0.00 0.00 0.00 0.00 0.08 0.01 0.00 -005 -0.00
—0.00 0.03 —-0.00 4.64 —0.00 0.00 002 -0.00 0.00 -000
—0.00 —0.00 0.00 3.62 —-000 —-000 -000 —0.01 0.73 0.00
0.00 0.00 0.00 0.51 000 —-000 —-000 —-000 —-0.0 043
—0.00 —-000  —0.00 0.03 000 -000 ~000 0.00 000 —0.00
0.00 0.00 0.00 1.48 0.00 0.02 0.00 0.00 -002 0.00
—0.00 000 —-000 2518 -000 —003 000 -0.01 000 -0.00
0.00 -000 —-0.00 235 000  —0.00 000 —~000 000 —0.00
0.00 000  —0.00 2.57 000 -000 -000 —-000 —005 —0.00
0.00 0.01 0.01 1.02 —0.00 0.00 0.04 0.01 0.69 0.05
0.00 —0.00 0.00 0.98 0.00 0.00 0.00 002 001 —0.00
—0.00 0.00 0.00 337 -000 -001 004 -0.00 0.31 0.00
—0.00 0.00 0.00 3.00 —0.00 0.00 000 —-001 —0.00 0.00
0.00 0.00 0.00 0.04 000 -000 -000 —-000 —0.03 —0.00
—0.00 000 —0.00 095 —-000 -000 0.00 0.01 0.74 0.00
0.01 0.00 0.00 1.30 000 —001 -000 —0.00 0.82 0.06
0.01 0.02 0.00 1.73 —0.01 002  —0.00 0.01 0.90 0.11
—0.00 -000  —-0.00 0.00 0.00 000 —0.00 000 -009 0.00
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Table 7. The ¢; responses to the numeral 4

@1 P2 P3 Pa s Pe ] Py Py Do
-0.11 0.23 —0.53 0.48 0.84 —0.05 —0.01 0.02 0.71 0.20
-0.04 0.61 -0.29 0.59 0.57 0.47 0.09 —1.16 0.52 —0.38
-0.52 —0.67 —0.01 0.67 0.20 0.24 —0.15 0.46 0.42 —0.16
-0.05 0.04 0.56  0.69 0.17 —041 —0:24 -0.44 0.45 —{0.15
-0.19 0.53 —093 0.74 —0.49 -0.12 0.45 0.30 0.13 0.02
0.11 —0.19 —1.08 0.06 0.21 0.13 0.26 0.93 0.61 ~0.33
-0.32 —0.47 0.05 0.51 0.01 0.21 0.52 0.31 —0.06 -0.42
-0.51 0.28 —0.21 1.72 0.23 —0.34 0.02 -0.20 —0.06 —0.19
-1.07 0.51 048 1.01 —0.47 0.69 0.61 0.16 —0.96 —-0.49
-0.32 0.50 0.53 1.46 —0.34 —0.26 —0.55 —0.22 —0.18 0.24
0.32 -036 —0.16 115 0.33 —-0.53 0.34 0.69 —0.59 —0.21
-0.08 0.48 —0.57 0.08 —0.08 —0.15 —0.18 0.6l 0.89 —-0.53
-0.06 0.66 0.22 0.35 —0.39 0.66 —-0.17 —0.69 0.37 —0.04
0.02 0.20 —-070 076 —0.28 0.46 0.23 0.23 0.19 0.13
-0.44 0.62 —0.46 1.03 —043 —0.71 0.13 0.12 0.31 (.59
0.81 0.01 —0.08 0.44 0.34 0.41 -0.42 —0.97 0.96 0.06
0.50 —-0.09 0.44 1.77 -0.02 —0.48 0.02 —0.42 -0.74 0.23
0.56 —0.11 —0.78 0.94 0.27 0.32 —0.27 —0.82 0.22 1.02
0.78 0.19 —0.59 1.37 —0.65 —0.07 0.11 0.57 —0.91 0.89
-0.31 -0.08 112 1.94 —0.26 —0.06 —0.01 —0.28 — 138 0.59
-0.64 —0.64 0.31 0.69 0.27 0.10 —0.10 0.43 0.47 —0.54
0.23 0.42 —0.44 1.45 0.04 —-0.75 0.51 0.19 —0.68 0.00
0.43 -0.20 0.27 1.80 0.03 0.02 0.1t —0.48 —0.7% 0.31
0.28 0.25 -0.09 1.79 —0.20 —-0.24 -0.08 —0.63 —0.31 0.86
-0.09 —-0.29 0.19 0.99 .46 0.14 0.27 0.15 —0.13 —-0.63
-0.54 —0.53 0.89 0.81 0.30 0.21 0.22 0.06 —0.00 —0.74
0.31 —0.01 —0.11 0.86 0.27 0.06 0.66 0.34 —0.50 —-0.41
0.09 0.18 —-0.75 0.79 0.16 0.03 0.20 0.63 -0.17 —0.43
-0.34 0.21 —0.36 1.30 0.07 —0.47 —0.59 0.62 0.47 —0.24
0.34 —-0.39 0.47 0.96 —0.29 0.20 0.15 —0.11 0.03 —0.25
0.18 —0.86 0.39 1.30 0.07 —0.11 —0.23 —0.75 0.26 0.17
0.07 —0.23 0.66 1.21 —-0.02 —0.47 0.54 0.22 —0.79 —0.44
0.36 -0.19 —-0.32 0.09 —0.25 —0.06 0.10 0.99 —0.05 —0.19
0.52 0.32 0.02 1.34 0.43 —0.68 —0.49 —0.15 0.55 0.02
0.78 —0.30 0.50 1.65 —0.27 0.13 0.06 —0.51 —0.50 0.09
-0.21 -0.28 —-0.39 0.15 0.25 0.66 0.15 -0.51 1.07 —0.08
0.34 —0.50 0.74  0.61 -0.17 0.55 -0.49 0.06 0.04 -0.27
0.14 0.60 0.22 1.39 —0.31 0.20 —0.16 —L13 —0.09 0.67
0.27 —0.01 —0.41 1.7 0.06 —0.25 —0.07 0.26 —0.15 —0.17
0.00 —0.09 0.43 1.63 ~0.11 0.45 0.23 —0.56 -0.91 0.32
0.25 —0.55 0.88 1.52 —0.49 0.23 —0.65 —-0.11 ~0.07 0.13
-0.51 —0.14 0.18 0.94 0.13 —0.04 0.00 0.61 0.04 —0.74
0.13 0.32 0.40 111 —0.29 0.00 —0.74 —0.75 0.53 0.79
-0.11 0.60 —L16 058 0.24 —0.02 —0.12 0.22 0.91 —0.38
0.03 0.30 0.63 237 0.33 —0.71 —0.30 0.02 —1.57 0.30
-0.54 0.37 0.16 0.98 —0.31 0.44 0.05 0.05 —0.87 0.95
0.10 0.48 —130 048 —0.11 0.07 0.50 0.51 0.25 —0.10
0.78 —0.73 0.18 0.84 -0.23 0.06 —0.19 0.07 0.44 0.22
-0.35 —0.70 0.12 0.85 0.48 —0.15 0.03 0.27 0.42 -0.23
-0.34 —091 0.70  0.06 —0.30 0.01 —0.34 0.82 0.72 —0.03
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Table 8. The ¢4 response to {1},..{9},{0}
{1 {2} {3 {4} {5) {6} {7 {8} {9} {0}
0.25 027 —085 048 —0.02 012  —0.63 0.56 0.03 —0.35
—0.11 040 -029 059 0.64 0.41 0.25 0.11 0.03 0.75
0.64 0.10 086  0.67 —-0.01 0.00 0.65 -097 -027 -030
-0.21 0.04 0.69  0.69 —0.39 —0.05 0.40 0.09 —0.18 —0.46
0.23 -044 =013 074 0.53 0.00 0.06 —-044 —008 0.24
0.20 1.11 025 006 0.25 076  —-0.36 034 008 0.71
—038 0.31 —-0.t6 051 0.12 —0.32 0.29 0.33 0.68 —0.03
—0.36 0.97 0.12 1.72 0.19 -0.63 1.07 049 033 0.25
—031 0.54 0.00 1.01 —0.61 0.39 0.08 —024 045 0.24
-0.70 0.16 0.10 1.46 —0.40 0.11 0.63 0.39 0.31 —0.14
0.67 036  —0.35 115 0.36 0.52 —0.67 —0.20 0.50 0.62
—0.16 1.21 049 008 0.07 —0.04 0.14 012  —-025 045
—0.19 0.09 002 035 —0.14 0.22 —0.05 -029 -0.14 0.57
0.55 —0.81 0.04 076 040  -045 ~0.63 035 -029 0.46
—0.38 —1.03 0.09 1.03 —0.20 004 —075 -039 —-053 —-0.23
0.25 —0.28 —0.66 044 0.44 0.46 0.36 0.79 0.36 0.82
-0.15 0.11 0.27 1.77 0.17 0.09 032 —091 —0.53 —-039
0.23 —0.28 060 094 -0.73 —-062 -—-1.14 0.t0  —081 -0.20
—0.01 —-0.39 —0.36 1.37 0.00 0.17 —0.36 —0.56 —0.56 -0.09
0.02 —1.56 0.29 1.94 0.37 —0.29 0.21 0.20 045 —1.10
0.06 0.83 —-0.17  0.69 0.15 -0.56 —0.44 025 -020 —065
0.25 0.23 —-0.44 1.45 0.60 0.71 —0.18 —0.78 0.58 —0.16
—0.15 —0.59 0.06 1.80 0.57 —0.18 0.18 —-058 —033 —1.00
0.46 -024  -0.02 1.79 -040 -034 076 034 -035 045
—0.59 -0.19 —0.08 099 0.10 0.28 1.19 0.38 0.83 0.73
0.41 0.21 070 081 0.58 0.60 0.42 0.61 0.94 0.72
044 —-066 —021 0.86 0.28 —0.26 -0.62 026 —041 0.62
—0.13 —-0.12 0.51 0.79 —0.13 0.03 —0.28 —0.18 —0.58 0.13
0.30 0.33 —0.11 1.30 -0.98 —0.55 —0.61 0.08 0.25 042
0.10 0.01 —-094 096 026 —040  —0.69 0.65 077 =027
—0.35 0.37 —0.38 1.30 0.19 -0.00 022 —-0.61 -037 =072
—0.66 —0.03 —0.25 1.21 0.60 0.41 0.82 0.53 0.59 1.19
—-043 -056 -022 009 0.09 0.23 0.45 —0.75 0.39 097
—0.84 062 —-0.52 1.34 —0.11 0.41 —-0.06 —061 -0.71 -0.12
—0.03 0.11 0.28 1.65 -0.33 0.08 0.31 0.28 0.60 0.24
0.25 —0.04 0.56 0.15 0.35 —0.40 0.62 0.29 —-043 0.95
—0.34 0.05 049 06l —0.67 —0.35 0.27 —0.18 0.25 —0.09
0.08 0.23 —0.05 1.39 —043 0.10 0.05 -0.33 -0.71 0.72
-0.20 -0.51 0.20 1.71 0.28 0.0 =070 0.08 —042  —-036
—0.40 —0.21 0.12 1.63 —-034  -015 0.12 —-055 —0.11 —0.17
0.17 —0.73 0.15 1.52 —-046 =001 —0.18 037 -027 —-049
0.46 0.27 020 094 —0.13 0.13 0.87 0.10 0.54 0.57
—0.48 —0.48 0.19 1.11 —-082 -029 025 ~0.53 -030 —1.56
0.41 —0.01 —-033 058 0.13 —0.10 067 ~1.14 0.45 0.35
—0.64 0.17 —-078 237 -0.37 087 —098 037 -040 —-0.78
0.38 —-086 —-033 098 —-054  —086 0.14 026 -049 144
—0.15 —-0.14  —008 048 0.10 -023 —047 0.74 056  —0.11
0.97 027 —023 084 0.53 —-005 —003 0.2t —042 0.01
0.79 0.17 0.51 0.85 0.06 0.49 0.07 0.69 0.17 0.73
-0.23 0.60 —0.66 006 —0.18 -0.75 0.01 0.71 -067 —-101
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Table 9. The p, responses to the numeral 4

P P2 P3 Pa Ps Pe P Psg Po Po
8.79 13.69 6.75 7.78 5.54 10.02 7.59 7.03 3.25 11.77
9.82 5.65 14.47 2.51 4.89 593 7.52 3.17 6.04 2.31
7.89 8.45 8.15 2.76 6.43 5.12 5.65 8.08 5.44 12.22
9.09 8.41 6.09 3.16 7.13 5.26 6.83 5.18 8.91 8.54
9.68 11.53 10.38 4.56 5.18 5.59 7.08 7.38 4.45 4.07
9.74 3.87 7.26 334 5.59 3.26 8.61 248 4.87 4.67
10.27 9.19 9.09 3.39 7.01 8.30 9.78 4.75 6.24 10.00
11.24 6.19 10.33 2.07 4.85 8.79 451 6.03 2.27 11.75
8.43 7.51 11.49 4.70 11.13 6.30 5.85 7.37 314 13.09
10.24 6.15 7.48 2.64 873 792 7.00 7.87 3.75 12.33
8.58 5.68 8.35 2.74 775 6.85 9.81 4.33 4.68 575
11.18 348 3.08 4,06 5.00 5.73 5.14 791 4.54 8.26
7.25 6.24 5.05 4.80 8.61 4.80 5.88 6.05 398 5.53
6.75 12.70 11.03 1.88 11.90 11.73 12.08 11.83 4.69 11.47
7.01 11.73 13.02 5.13 8.55 12.18 10.13 8.12 6.29 10.25
6.60 523 6.67 2.48 1.59 2.81 6.82 1.83 2.31 6.4%
10.43 9.52 10.36 1.97 9.94 7.62 7.63 5.00 8.51 13.61
8.80 16.77 8.31 5.06 9.24 9.53 14.3] 3.80 542 13.79
9.02 15.2% 11.73 5.46 7.74 9.13 13.59 9.70 10.46 12.31
9.22 12.53 10.65 5.30 5.73 11.35 5.78 11.16 318 16.88
9.83 8.97 945 3.01 9.08 8.39 9.57 5.15 5.96 13.85
10.32 6.22 8.62 3.37 5.37 3.36 7.19 7.10 5.40 6.54
11.56 6.88 7.15 2.04 4.80 5.06 7.96 9.25 8.98 14.55
9,71 12.04 14.54 3.56 11.99 7.55 12.76 8.98 4.39 16.07
10.04 6.08 8.68 .61 6.97 5.43 395 5.38 4.43 4.94
7.85 5.37 4.63 291 4.13 2.80 4.32 1.79 215 5.10
7.90 8.15 9.17 4.04 403 5.68 10.86 7.04 13.79 8.89
10.29 12.26 8.88 2.20 993 5.62 5.61 5.37 4.51 9.87
9.55 5.2 7.74 3.08 10.19 8.14 10.47 6.92 4.36 7.91
10.21 928 9.24 1.34 8.12 5.76 11.20 271 5.33 7.59
8.59 8.82 7.81 1.73 577 6.82 6.45 12.7 5.38 10.88
11.04 7.51 6.83 4.10 6.98 4.53 4.16 8.52 2.67 6.31
10.46 793 6.62 5.30 5.23 342 478 5.29 3.85 9.28
12.56 4.75 7.11 295 8.98 7.05 10.76 7.05 8.70 ¥.69
10.97 7.99 7.59 3.28 10.85 7.84 7.98 7.73 2.01 9.80
9.08 8.82 5.68 2.85 445 7.15 6.32 5.97 4.65 2.40
10.57 8.46 8.67 392 6.47 7.85 6.26 10.65 3.80 15.72
6.91 6.87 13.51 3.64 10.01 4.13 9.33 6.47 7.3¢ 791
11.03 17.17 891 281 7.95 6.67 9.59 9.53 10.94 6.47
8.59 13.07 12.28 2.81 5.58 10.03 11.30 14.59 9.49 13.22
592 10.60 12.48 295 5.88 6.05 9.87 10.58 8.49 16.38
7.46 5.80 597 1.92 8.67 5.63 6.03 543 2.08 3.39
7.35 19.11 10.11 443 18.42 9.06 5.51 13.75 996 20.98
8.99 5.34 6.46 3.07 8.27 7.27 4.12 11.19 347 3.30
12.11 12.39 13.13 493 11.00 8.80 13.60 8.86 9.06 14.40
6.82 14.35 14.42 8.14 11.97 9.57 8.00 11.28 7.58 19.11
10.99 6.89 6.31 319 7.14 6.48 10.81 6.13 2.06 15.68
6.86 13.69 14.16 2.19 7.76 8.45 9.43 7.19 323 5.32
7.80 5.54 5.90 272 8.84 5.07 8.85 4.59 3.74 6.84
9.66 13.36 9.81 4.88 12.50 8.83 5.50 7.85 8.63 12.29
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Table 10. The p, responses to {1},..{0}
{1} {2} {3} {4} {5} {6} {n (8} 9} {0}
2490 16.55 16.45 7.78 11.41 13.55 14.81 8.82 8.06 14.76
7.23 597 7.50 2.51 535 4.60 5.90 7.55 4.15 9.01
13.40 11.18 9.60 2.76 496 6.09 9.11 6.08 4.08 7.38
5.21 5.06 3.76 3.16 444 6.94 448 5.89 2.81 6.98
9.00 7.82 11.72 4.56 10.28 9.77 5.36 9.01 5.52 9.46
8.86 9.16 10.32 334 6.02 791 5.90 495 3.58 10.36
5.87 7.60 6.74 3.39 4.55 6.32 3.58 6.59 4.11 741
15.15 11.16 12.58 207 8.67 9.84 9.22 8.59 5.15 11.53
11.06 4.63 6.49 4.70 8.09 4.03 8.05 6.62 7.50 8.51
11.88 497 6.15 2.64 7.07 5.29 10.51 5.20 5.04 7.38
7.18 8.88 8.62 274 5.06 9.11 5.10 495 491 10.80
6.70 4.79 7.49 4.06 7.53 791 6.77 4.66 3.26 11.28
6.50 2.64 445 4.30 7.54 2.59 7.85 6.14 5.14 6.96
13.00 8.34 10.84 1.88 8.52 5.41 8.00 5.09 3.96 8.90
18.61 11.06 13.24 5.13 12.60 13.54 8.28 8.89 4.65 9.34
7.44 7.38 7.08 248 6.12 4.49 7.68 593 3.44 9.50
6.13 7.11 6.68 1.97 6.25 7.06 5.64 6.61 5.29 8.55
14.34 13.56 14.14 5.06 8.42 6.83 11.10 10.95 8.34 6.08
13.42 9.96 12.89 5.46 12.10 8.29 11.41 7.06 9.34 10.28
16.18 9.51 8.05 5.30 8.94 6.59 12.41 7.78 9.46 7.36
12.17 10.51 8.44 3.01 5.01 7.22 8.44 6.13 373 9.39
7.45 7.67 10.01 337 3.18 10.94 4.25 7.34 5.65 11.03
10.76 9.73 9.35 2.04 7.36 6.17 8.31 7.20 6.40 9.22
1692 11.86 12.84 3.50 11.12 9.21 10.64 9.17 6.96 8.94
945 8.38 7.52 1.61 4.04 6.22 8.56 445 373 11.38
8.55 7.89 5.02 291 4.07 6.00 6.06 5.79 3.79 9.49
10.88 9.06 9.56 4.04 7.90 9.01 6.99 5.00 5.88 14.14
11.04 8.62 11.03 2.20 7.64 797 7.79 4.60 4.08 12.94
1596 10.78 12.63 3.08 9.44 10.13 12.75 6.44 5.16 13.26
5.66 6.20 525 1.34 6.18 5.07 4.73 4.66 274 9.44
8.53 9.10 7.52 1.73 5.88 6.42 6.28 7.81 3.65 7.19
430 6.44 5.33 4.10 6.10 9.19 3.57 6.46 546 10.92
2.07 4.68 5.70 5.80 5.38 6.32 5.22 4.63 5.55 8.36
17.07 10.80 10.98 2.95 7.32 10.52 10.06 7.11 4.11 10.33
11.73 10.39 9.77 2.85 593 5.66 6.20 7.69 2.89 7.03
5.48 570 4.12 392 5.36 2.49 10.12 4.65 592 9.18
13.76 7.78 9.07 3.64 10.20 5.65 991 8.44 6.35 7.38
14.33 12.34 14.08 2.61 10.52 10.42 11.08 7.73 6.37 15.30
12.85 9.27 8.97 2.81 7.69 447 9.49 7.46 7.26 7.75
11.95 9.41 7.83 295 8.91 5.08 12.70 6.47 6.19 10.33
943 7.10 7.20 1.92 5.32 6.53 7.59 4.24 6.48 11.02
16.83 9.20 9.14 443 10.84 6.72 12.98 7.39 583 7.57
12.43 9.24 12.02 3.07 8.99 9.20 9.02 6.99 4.15 12.93
15.21 10.08 10.25 493 8.57 9.18 14.09 7.34 10.49 11.91
20.50 1043 11.25 8.14 10.53 6.23 14.39 8.54 11.14 5.48
943 7.84 11.94 3.19 8.62 8.44 5.34 6.31 4.35 10.45
9.23 9.80 8.14 2.19 7.43 6.76 7.26 S.11 327 9.77
14.04 12.54 10.07 2.72 5.28 9.05 7.55 6.44 344 9.50
9.56 8.14 472 4.88 5.00 6.53 7.64 4.53 325 594
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It was pointed out'® that pattern recognition func-
tions could be synthesized with specified Frechet deri-
vatives at the test points. In particular, by choosing
zero derivatives the pattern recognition function is
made very insensitive to small errors. This behavior
was observed experimentally. However, is it is a pro-
perty which the i ; functions have naturally (see Table
3) and hence experiments in this direction were not
pursued.

As a closing remark, we note that the ability of
the 1y, functions to illuminate a large number of false

choices and order the few possible true choices sug-
gests application where inter-data context can be
used.
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