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This paper uses Hilbert space methods to develop a rigorous proof that the sum of two un- 
correlated moving average processes of order q1 and qz is an MA process of order q 6 max 
((I~, q2). The methods establish the existence of suitable random shocks for the summed process, 
they illuminate relationships between the coefficients of such processes and their random shocks, 
and they provide means for proving that the random shocks of the summed processes are nor- 
mal when the shocks of the underlying processes are normal. The role of the Weld decomposi- 
tion is examined in terms of multiple representations of an MA process. 

1. Introduction 

In a recent paper in this journal O.D. Anderson (1975a) discusses the theorem 
that the sum of two independent moving average processes of order q1 and q2 

is itself a moving average process of order q 2 max (ql, q2). This summation 
theorem has considerable practical importance. Box and Jenkins (1970, p. 121) 
used it without proof to investigate the effects of correlated noise and white 
noise on ARMA processes. O.D. Anderson (1975a, b) shows how the theorem 
can be used to explain the development of composite models from simpler 
processes which are amenable to practical interpretations. The result has also 
been used by Zellner and Palm (1974) and by Zellner (1975). In two important 
papers they have investigated relationships between structural assumptions in 
simultaneous equation econometric models and their associated final equations 
and transfer functions. Their approach, which in turn uses the Box-Jenkins 
ARMA model formulation procedures, makes implicit use of the theorem above 
[Zellner and Palm (1974, p. 19) and Zellner (1975, p. 378)]. 

Although this theorem may appear to be intuitively obvious, the work of a 
number of authors has shown that its proof is far from trivial. T.W. Anderson 
(1971, pp. 224-225) outlines the proof of a result which can be used to prove this 
theorem. This development requires lengthy arguments and is not simple. 
Granger (1972) attempted a proof of the theorem based on frequency domain 
arguments, but according to O.D. Anderson (1975a, p. 151), ‘it has a number of 
flaws’. O.D. Anderson’s attempt to develop a simple proof rests on a convexity 
property of vectors of MA processes of fixed order q. However, in his develop- 
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ment of this convexity property, there is a crucial omission which renders his 
proof incomplete. 

This paper uses Hilbert space methods to develop a rigorous proof of the 
summation theorem. We begin by discussing the Wold decomposition, a now 
classical result, using a Hilbert space formulation. Directly from the Hilbert 
space development of the Wold decomposition we are able to give a simple proof 
of a result of T.W. Anderson, referred to earlier, which showed that any station- 
ary process for which the autocorrelations vanish after lag q has an MA(q) 
representation. We then show that the random shocks in the MA representation 
of the sum of two independent, normal MA processes are themselves normal. 
This result is of particular importance to the work of Zellner and Palm, because 
it justifies their use of Box-Jenkins estimation methods for final equation and 
transfer function models. 

The Hilbert space approach has several advantages. First, although based on 
sophisticated mathematical arguments, it is both elegant and conceptually 
simple. Second, because Hilbert space methods depend only on covariance pro- 
perties, the proof of the generalization of the summation theorem to uncorrelated 
rather than independent processes is immediate. Third, the Hilbert space frame- 
work specifies clearly the relationships between the MA process and its random 
shocks. We point out that O.D. Anderson, in attempting to prove the summa- 
tion theorem, addressed only the problem of the existence of suitable MA co- 
efficients but ignored the question of whether an appropriate stream of random 
shocks can be found. Our Hilbert space development resolves the problem of 
the existence of suitable random shocks by giving explicit representations of 
them as elements in the Hilbert space. 

2. Examination of O.D. Anderson’s argument 

Anderson’s argument (1975a) is based on the convexity of the set of vectors 
of autocorrelation functions of MA(q) processes. The major omission in his 
approach results from the way in which he attempts to establish the convexity 
property. To understand the nature of this omission consider the class of MA(q) 
processes 

J&e-a J t-j? 8, = 1, 
0 

whose autocorrelations are 

q-k 
pk = c ejej+k 

I 
2 e:y k = 1, . . ., q. (2) 

j=O j=O 

Let 

w=i jioe3, I (3) 
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and denote each of two MA(q) processes by one and two primes, respectively.’ 
Then for 0 < A < 1 we have 

q-k q--k 
l&+(1-A)/$ = Iw’ c o;e;+,+(l-QV” c e;o;+,. 

j=O j=O 

Eq. (4) can be written in the form (2) if the system of nonlinear equations 

has real solutions 8,, . . ., 8,. Anderson asserts without proof that such real 
solutions exist. [‘We obtain q equations for the q unknowns 8,, . . ., t),, . . ., 
and so the resulting equations are soluble.’ See O.D. Anderson (1975a, p. 155).] 
The remainder of his argument rests on this assertion. 

However, it is not obvious that (5) has real solutions and a proof of this 
point is required. We develop such a proof and comment in the final section oi 
this paper on the existence of multiple solution sets corresponding to multiple 
representations of MA processes. 

Besides showing the existence of suitable coefficients, it must also be proved 
that there exist suitable random shocks {a,} such that 

yt = fe. ,4-j, e. = 1, 
0 

with probability i, where yt = y: + yp and where y; and yl are the MA processes 
whose autocorrelations appear in (4). Establishing this is especially important 
if one wants to make inferences concerning distributions of statistics associated 
with time series data. As mentioned earlier, O.D. Anderson’s convexity argu- 
ment is incomplete because he has not considered this problem. The existence 
of a stream of such random shocks a, emerges naturally from the Hilbert space 
approach we take below. In particular, we show that the random shocks asso- 
ciated with the sum of independent normal processes are themselves normally 
distributed. 

3. Some and Weld 

In order to the results indicated earlier, some concepts and 
wide stationary and their representations in a Hilbert 

space must be introduced. We first define a wide sense stationary process {y,} 
as a process with the following properties : 

note that class of processes, q* -C is embedded the class of 
processes. 
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(i) E(y,) is a constant for all t, i.e., E(y,) = ,u for all t; and 
(ii) cov (JJ,, JJ,) is a function of s- t alone, i.e., cov (v,, u,> = ys- t for all s, t. 

This definition is sometimes referred to as covariance stationarity. Note that 
the definition implies that the variance of {y,} (assumed to be finite) is a constant 
for all t. Without loss of generality we assume that p = 0 for the remainder of 
this paper. 

Following Rozanov (1967, p. 3) a Hilbert space H can be generated from the 
closure with respect to mean square convergence of the linear manifold generated 
by the random variables {yt; - co < t < co}. The elements of the Hilbert space 
H are random variables and the inner product of any two random variables 
x1, x2 E His 

(Xl, x2) = cov (Xl, -4. (7) 

We write H(t) to represent the (Hilbert) subspace of H formed by the closure 
in mean square of the linear manifold generated by {JJ,; s s t}. Further, let 
D(t) denote the orthogonal complement of H(t - 1) in H(t). Then every x1 E D(t) 
is orthogonal to every x2 E H(t - 1). D(t) is a closed subspace of H(t), and H(t - 1) 
is a closed subspace of H(t). 

If S is a closed subspace of H and x E H, we write E*(x]S) to represent the 
projection of x on S.’ 

As Parzen (1961, p. 961) points out, the best linear predictor of Yt+s, in terms 
of mean square error, given all the values of the time series up to and including 
yt, is E*(y,+,lH(t)), the projection ofy,,, on H(t). 

We are interested in processes with no deterministic component, i.e., in pro- 
cesses for which the best linear predictor E*(y,+,jH(t)) + 0, the mean value, 
as the prediction interval s + co for all t. Such processes are called regular 
processes. 

Rozanov (1967, p. 156) has shown that for regular processes there is a unique 
sequence of constants {cj; j >= 0} such that 

Yt = g CjU,-j, Co = 1, 
0 

for all t, and where 

a, = E*(&W. (9) 

ZParzen (1959) uses this notation because the projection in a Hilbert space of random vari- 
ables has many of the properties of conditional expectation. For the same reason, Doob 
(1953, p. 155) refers to projection as ‘wide sense conditional expectation’. Parzen discusses 
a necessary and sufficient condition for projection to be conditional expectation. 
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The {a,} form a sequence of uncorrelated random variables with constant 
variance ~7,“. 

This representation, having been first investigated by Wold (1954), is known 
as the Wold decomposition. If {y,} is a real process, the coefficients cj and the 
random variables a, are necessarily real. 

An important application of this decomposition is in providing an explicit 
representation for E*(yt+,(H(t)). F rom the Wold decomposition (8) we note 

s-1 

Y:+s = 
; 

Cj4+.-j+zCj%t,-j. 

Now 

s-l 

7 Cjat+s-j 

is orthogonal to H(t), because each a,+,_, in this sum is an element of D( t + s -j), 
which is orthogonal to H(t+s-j- 1) 2 H(t). Also 

is an element of H(t) because each U,+,_j in this sum is an element of H(t +s-j) 
c H(t). By the standard uniqueness properties of projections in Hilbert space 
[see e.g. Parzen (1959, p. 306)] we have 

E*(Y,+slH(t)) = i cja,+s-j. 
s 

(10) 

A special case exists where the covariance function is identically zero after a 
given lag q, i.e., for s > q, 

(Y,+s,Yt) = Ys = 0. (11) 

We show that such a process has a MA(q) representation. It is clear from (11) 

that~~+~ is orthogonal to H(t) for s > q, and thus 

E*(Y,t@(t)) = 0. 

This establishes regularity and for all s > q we have from (10) 

IIE*<Yt+slH<t>>ll” = d 5 Icj12 = O, 
s 
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giving cj = 0 for allj L s > q. Thus for such a process the Wold decomposition 
can be written as 

Yt = f Cjat-j, co = 1, 
0 

and {y,} has a MA(q) representation as asserted. 3 
Consider now an MA(q) process 

Yt = f @jut-j, e. = 1, 
0 

(13) 

where {u,} is an uncorrelated sequence of random shocks with mean zero and 
constant variance 0:. This process has autocovariance function yS = 0 for 
s > q, so that from (12) an MA(q) process has the unique Wold decomposition 

Yt = i Cjat-j, 

0 
(14) 

where 

a, = E*(y,lNt)), (15) 

as in (9). The representations (14) and (15) are not as obvious as they might 
appear at first sight, because an MA(q) process may have multiple representa- 
tions. The representation (14) is a canonical representation in which the Cj may 
not coincide with the Bj used in the defining eq. (13), nor the a, coincide with the 
z+ We will discuss some of the implications of multiple representations as they 
affect the summation theorem in the final section. 

4. Normal processes 

In this section we show that if {y,} is a normal stationary process then every 
non-zero element in the Hilbert space H generated by {yt ; - 00 < t < CO} has 
a normal distribution. By a normal process we mean a process {y,} where any 
finite set of random variables {yti, . . ., y,,) from the process has a multivariate 
normal distribution. A stationary normal process is therefore strictly stationary 
in the sense that all the moments of the joint distribution of yS and yt depend on 
s - t alone. An example of a normal stationary process would be an MA process 
generated by independent normal random shocks. We can extend the primary 
results by showing that any two (non-zero) elements xi and x2 in H, and indeed 

3This is a simple proof of the result of T.W. Anderson (1971, pp. 224-225) and referred to 
earlier. 
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any finite set of (non-zero) random variables from H, have a multivariate normal 
distribution.4 

To prove these results, we note that for any non-zero x E H there exists a 
sequence {x,,} of finite linear combinations of {y,; - cc < t < co} such that 
x, --f x. Suppose that x, and x have respectively variances gi > 0 and rs2 > 0, 
distribution functions F,, and F, and characteristic functions & and 4. We have 
by mean square convergence 

and 

0,’ -+ fJ2, (16) 

F,, -+ F, (17) 

at every continuity point of F [see Fisz (1963, p. 238)], and therefore for all h 
such that - co < h < co we have 

[see Fisz (1963, p. 188)]. Each x,, is a finite linear combination of random vari- 
ables with a multivariate normal distribution and, therefore, is itself normally 
distributed. Now from (16), 

4,(h) = exp [ -0;5h2/2] + exp [-a2/z2/2]. 

Therefore from (18) we have 

C/J@) = exp [-a2h2/2], 

and x has a normal distribution as asserted. 
We extend this result to more than one variable by noting that (17) and (18) 

extend to multivariate distributions and that if x1,, -+ x1 and x2,,, + x2, then 

cov c%l, X2m) = hl, XZnJ -+ (x1, x2> = cov (x1, x2) 

as n, m + co. Noting that xln and x2, have a bivariate normal distribution, 
we have 

Am(hI, A,) = exp [-3(~3~+2h~2 cov hn, GJ+&~~)I 

+ exp [-$(a:h:+2h,h, cov (x,, x2)+&)] 

= 4(k h2), 

41n this case uncorrelated random variables are also independent, and we see that projection 
becomes conditional expectation. 
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so that x1 and x2 have a bivariate normal distribution as asserted. Clearly, 
using an identical argument this result extends to a finite family x1, . . ., x, of 
random variables in H. 

In particular, if {ut} is a normal stationary process, then the random shocks 
{a,} in the Wold decomposition (8) are uncorrelated multivariate normal and, 
therefore, are independent normal, random variables. 

5. The summation theorem 

The theorem can be formally stated as follows. Suppose that {vi,} and {vz,} 
are uncorrelated stochastic processes with MA(q,) and MA(q,) representations 

Yit = ~ eijUit_j, eie = 1, i = 1, 2, 
j=O 

(19) 

where for i = I,2 and for all s and t, 

var (ait) = Of, 

COV (ait, ais) = 0, 

E(ait) = 0. 

Then {v,}, where yt = ylt +yzr, has a MA(q*) representation, where 

q* 5 4 = m=hqd. 

Moreover, if {ylt} and {yzt} are independent normal processes, then {y,} is 
normal and its associated random shocks have independent normal distribu- 
tions. 

We begin the proof by observing that {JJ,} is wide sense stationary with co- 
variance function {yk} such that 

Yk = O, k > q = max(ql,q2). 

It follows immediately from (12) that {rt} has the (Wold) MA(q) representation 

Yt = k Cjat-j, co = 1, 
0 

where 

at = E*(y,P(O), 

and where {cj} and {a,} are real. Note that we do not exclude the possibility 
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that cj = 0 for 1 5 j 5 q, and therefore we see that {y,} has an MA(q*) re- 
presentation for some q* where 0 2 q* 2 q and where cql # 0. 

If (vi,} and {y,,} are independent normal processes, we see immediately that 
{y,} is also normal, and, by the results developed earlier, that its random shocks 
are independent and normally distributed. Q.E.D. 

6. Comments on the summation theorem 

We conclude this paper with some observations on how our results relate to 
the coefficient structure of MA processes. 

First, we have pointed out that in the proof of the summation theorem it is 
possible that q* is less than max(q,, q2). It is not difficult to see that this will be 
the case whenever q1 = q2 = q and yq = a:(?,,+&,, = 0. Moreover, it is 
possible that the sum {vt} may be an uncorrelated sequence of random variables, 
i.e., an MA(O) process. An example is 

y1, = a,,-ea,,_,, a: = cr2, 

and 

P2f = a,,+8a,,-,, CT; = cr2. 

Then {VA, where yt = .IQ~+Y~,, is a sequence of uncorrelated random variables 
with variance 2(1+ e2)02. Because an MA process may have multiple representa- 
tions (see below), there is no simple way to state the conditions which are neces- 
sary and sufficient for this situation to arise. 

Although it may seem improbable that either of these situations could arise 
in practice, it is easy to imagine a situation where some of the yk were very small 
after a given lag, and not regarded as significant after identification or estima- 
tion of the MA(q) model using standard Box-Jenkins methods. This is an im- 
portant point to bear in mind when using Zellner’s and Palm’s technique for 
examining structural assumptions in econometric models. 

We return now to our result (12). If a process (yt} has autocovariances {yk} 
that vanish after a given lag q, we have in effect shown that the set of q+ 1 
equations 

q-k 

0,’ 7 ejej+k = Yk¶ O,= 1, k=O ,..., q, 

in the q+ 1 unknowns or, . . ., O,, 0,” has at least one real solution. T.W. Ander- 
son (1971, pp. 224-225) reaches the result (12) by showing directly that a real 
solution exists. 

We now discuss how multiple solutions can arise. Box and Jenkins (1970, 
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pp. 196-197) show that for the MA(q) process, 

there are multiple choices of the 8j and a, which lead to multiple representations 
of {ut}. Essentially, they consider the characteristic function 

C(B) = 1+&B+ . . . +ep 

and show that one can construct another function 

C*(B) = ~(I-u.:B) = i+eg+ . . . +ep, 
1 

by arbitrarily setting $ equal to either Cli or I/Ui. Then by choosing suitable 
random shocks {a,*} we have a new representation 

Y, = C*(B)af = i 8Ta,*_j, 
0 

(21) 

where B is the backward shift operator. There are 2q different ways of choosing 
the ai to be replaced by their inverses in C*(B); this implies that there are up to 
2q different solutions to eqs. (20). The actual number of solutions may be less 
than 2q for two reasons. First, some of the 2q possible choices of C*(B) may be 
identical, because two or more of the factors (1 -c$B) may be identical. Second, 
some of the cli may be complex. Such a, appear in complex conjugate pairs 
because the coefficients of C(B) are real, and, to ensure that the f3: are real, the 
c$ must also be chosen in complex conjugate pairs andnot independently. 

Box and Jenkins do not consider the existence of suitable random shocks for 
(21). However, it can be shown that suitable random shocks can be found for 
the multiple representations provided C(B), and thus C*(B) have no zeros on 
the unit circle. If all the zeros of C*(B) lie outside the unit circle, then the random 
shocks a: can be written in the form 

The representation in this case is said to be invertible. If all the zeros of C*(B) 
lie inside the unit circle, we can write 



C.F. Ansley et al., Structwe of MA processes 131 

and if some zeros lie outside and some inside the unit circle, we can write 

a: = ~rj~,- j. 

In each case 

and the limits can be shown to exist in mean square. In the case where all the 
zeros lie outside the unit circle, we see that a: in (22) is an element of H(t), 
and the corresponding representation is therefore the Wold representation (14). 

Our proof of the result (12) establishes the existence of one set of coefficients 
(those in the Wold decomposition) which satisfies eqs. (20). By using the pro- 
cedures of Box and Jenkins to construct multiple representations of the resulting 
MA process, we see there are corresponding multiple solutions to (20). 

The existence of multiple representations and therefore multiple solutions 
to (20) can be illustrated by the following example. Consider the MA(2) process, 

where 

y, = U,-u,_,+o.25 z&-2, (23) 

C(B) = 1 -B+0.25 BZ = (l-O.5 B)2. (24) 

Both zeros lie outside the unit circle, and (23) is therefore the Wold representa- 
tion (14). We note that 

Ut = ~ (1 +j) (0.5)j4’r-j, 
0 

and 

var (u,) = (16/33) yo. 

We can now construct 

C”(B) = (l-2B)’ = I-4B+4B2, 

and write 

where 

Yt = L&-4&, +4a”,_ 23 

a”, = 0.25 2 (1 +j) (o.5)jy,+2+j, 
0 
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and 

var (6,) = (1/33)y,. 

The remaining possibility is to choose 

C*(B) = (1-2B)(l-0.5s) = 1 -2.5B+Bz, 

and write 

y, = u:--2.5 u:_,+u*- t 2, 

where 

ZL: = -5 2 (o.5)‘j’y,+,_j, 
--m 

and 

var (ur) = (4/33) yO. 

Note that the number of possibilities is reduced from 2’ = 4 to 3 because 
there is a double factor of (l-O.5 B)’ in (24). 

Finally, we comment on the case where C(B) has a zero on the unit circle. 
It is not easy in this case to show directly that suitable random shocks exist 
corresponding to solutions of (20). T.W. Anderson (1971, p. 226) specifically 
excludes this case from his discussion. The problem is that we cannot write the 
random shocks in the Wold representation (14) in the form (22). 

This special case is now illustrated by a numerical example. Consider the 

MA( 1) process. 

Y, = at--at-l; (25) 

the characteristic function C(B) = 1 -B has a zero B = 1 on the unit circle. 
Solving for a,, we see that 

a, = y,+y,_l+yt_2+ . . . (26) 

Clearly, this does not converge. To gain some insight into the relationship 
between the process and its random shocks, we now construct a sequence of 
finite linear combinations of {y,; s 5 t} which does converge to a,. 

Consider first the sequence {a”!“‘, II = 1, 2, . . .> defined by 
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We note that a”$“) is a well defined element of H(t) because 

where y0 = var (y,). The sequence {a”‘,“‘} is a Cauchy sequence because 

as n, m + o(j. Thus {@“)} approaches a unique limit point in H(t) which, by 
considering the inner products (&“), a,) for s 6 t, we can show to be a,. 

If we choose N, such that 

I[@)- 2 2-k’n,+_k,, < l/2”, 
k=O 

and define 

aj”’ = $o2-k’“y‘_k, 
it is clear that 

(27) 

a, = lim aj”) = lim 2 2-k’” Y*_~. 
n-tm n-tm k=O 

We have constructed a sequence of finite linear combinations of {y,; s 5 ‘} 
which converges to a,. It has already been shown from (27) that a, cannot be 
expressed in the form (22) and it can now be observed that this situation arises 
because limiting operations in (27) cannot be interchanged. This is analogous to 
the situation where uniform convergence of a power series no longer holds on 
its radius of convergence. In fact, this property can be dirtctly related to the 
divergence of the inverse of C(B) on the unit circle. 

Now, by a similar argument we can show that 

a, = - lim 2 2-k’nyt+k+1, 
n-+m k=O 

corresponding to (27). Thus we can recover the random shocks a, by a limiting 
process on either pas”. or future values of the process. 0.D Anderson (1975b) 
calls this the semi-invertible case. 

h 
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As we said earlier, the problem of showing the existence of a sequence 
(u$“‘} converging to {a,} in the general case where C(B) may have a zero on the 
unit circle is not a simple matter if approached directly. However, the problem 
is almost deceptively easy using the Hilbert space approach: a, is simply the 
projection ofy, on the subspace D(t). 
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