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ABSTRACT 
A finite-difference numerical method is developed to solve heat and 
momentum transfer problems in viscous, incompressible, laminar flow 
through parallel ducts with abrupt contraction and enlargement. Con- 
sideration is gi'ven to two limiting thermal conditions: constant wall 
temperature and constant wall heat flux. Theoretical results are ob- 
tained for the loss coefficients due to abrupt contraction and ex- 
pansion, heat transfer performance and combined hydrodynamlc and ther- 
mal entrance length. The effects of the flow-area variation, thermal 
boundary conditions, and Reynolds and Prandtl number on the contrac- 
tion and expansion coefficients, entrance length, and local and average 
Nusselt number are determined. The present numerical scheme is cap- 
able of producing results for the complex channel flows up to the 
transition Reynolds number. It is disclosed that the flow constric- 
tions cause a substantial enhancement in heat transfer. 

I n t r o d u c t i o n  

The problems of  momentum and hea t  t r a n s f e r  i n  l amina r  flows through long 

passages  i n c l u d i n g  the  e n t r a n c e  r eg ion  have been tho rough ly  t r e a t e d  and t h e i r  

t h e o r e t i c a l  and emp i r i c a l  r e s u l t s  are wel l  documented, f o r  example r e f e r e n c e  1. 

However, owing to  mathematical  ~ , ~ l e x ~ t y ,  on ly  l i m i t e d  e f f o r t  has been de- 

voted to hydrodynamic behav io r  [2-9] and none to thermal  c h a r a c t e r i s t i c s  in  

i n t e r n a l  flows with abrupt  en la rgements  and c o n t r a c t i o n s .  The knowledge i s  

n e v e r t h e l e s s  of  g rea t  impor tance  to  the  des ign  of  p i p i n g  systems,  hea t  exchange 

dev ices  and a r t i f i c i a l  c a r d i o v a s c u l a r  systems.  
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Kays [2] has obtained semi=empirical results on the expansion and con- 

tractlon coefficients, K e and K c respectively, for flows through tubes and 

ducts with abrupt constrlctions. These loss coefficients whose magnitude is 

a measure of pressure drop Ap* due to abrupt expansion or contraction can be 

determined from the Darcy equation 

* 2 /  2g c ~p = Xp(V*) ( ) (I) 

Here, p denotes the fluid density, V*, the bulk velocity inside the flow pas- 

sage, and gc, the conversion factor. His results are applicable to only the 

flow passage of large length-to-hydraulic diameter ratio L*/~, since the study 

was performed on a fully-developed flow in either the laminar or turbulent 

range. This is evidenced by a single curve in the K-o plot for the laminar 

range having the Reynolds number Re less than 2000. o represents the ratio of 

free-flow area to frontal area. Benedict et al [3] have extended the study 

on the loss coefficients to compressible and constant-density fluids including 

applications to typical globe valves and associated piping systems [4]. Num- 

erical studies have been performed on viscous, incompressible flow through an 

orifice in a circular tube using the methods of finite differences [5] and 

finite elements [6]. The Poiseuille velocity profile has been imposed both at 

the entrance and exlt of the tube. Flow profiles have been obtained for the 

Reynolds numbers up to 500. The separation vortex is seen at downstream of a 

constricted step. Flows of a viscous incompressible fluid through axisynm~tric 

circular ducts of variable axial geometry have been conducted for applications 

to cardiovascular flow systems including arterlal stenoses [7,8] and the aortic 

valve [9]. It is disclosed in reference 9 by a finite-difference numerical 

method that a vortlcity is formed and grows in a spherical cavity during the 

accelerating-flow phase. 

While the flow profiles and pressure losses in constricted flow passages 

have been fairly well studied no effort has ever been directed toward heat 

transfer problems in such a flow system. 

In the present paper, a finite-difference numerical method is employed 

to study heat and momentum transfer in laminar flows through constricted par- 

allel ducts. Results are compared with those for a parallel duct. 

Analysis 

Consider a viscous, incompressible flow through a parallel channel of 



Vol. 4, NO. 4 TRANSPORT P ~ I N ~ C T I ~ D U C T S  251 

width a* with a rectangular constriction of width b* and length L* situated 
w 

at a distance L 1 from the channel entrance, as shown in Fig. I. The channel 

ends at a distance L 2 downstream of the step. The flow is laminar and fully 

developed as it enters the channel, while only the walls of the constriction 

are heated. The constriction is of sufficient length so that there is an es- 

sentially fully developed velocity profile at the exit. The flow is then dis- 

rupted again at the abrupt enlargement. The case of short channels will be 

treated in a separate paper. 

The vorticity, continuity, momentum and energy equations in dimensionless 

form read 

3~ a~ a2~ a2~ 
u~y+ v~= C +-- (2) 

ax 2 ay 2 

au av 
E + ~  = 0 (5) 

8u au ap a2u a2u 
u ~ + V ~  = - C  ~-~  + C ~ + - ( 4 - a )  

[}x 2 ay 2 

8v 8v _ aP c82V ,a2v (4-b) 
u~-~ + V~y ay + BX 2 + ~y2 

aT aT 1 a2T a2T. 
(c 

u ~-;  + v w  = ) 7  ax 2 ay2 ----¢3 (s) 

r e s p e c t i v e l y .  Here, the  o r i g i n  of  the  C a r t e s i a n  coo rd ina t e s  (x ,y)  i s  f i xed  

at  the  channel  e n t r a n c e  with x measuring the  d i s t a n c e  i n  the  flow d i r e c t i o n ,  

as shown in  Fig.  1. u,  v, ~, P and T denote  the  x- and y- d i r e c t i o n  v e l o c i t y  

components, v o r t i c i t y ,  p r e s s u r e  and t empera tu re ,  r e s p e c t i v e l y .  C i s  de f ined  

as (b*/L*) 2. The c o n t i n u i t y  equa t ion  (3) can be s a t i s f i e d  by the  use of  the  

s t ream function ~ de f ined  as 

u = a , / a y ,  v = - a , / a x  (6)  

Then the  vorticity reads 

m = C a2@ a2~ 

ax-- ~ + 
C73 

The appropriate boundary conditions are specified as follows: the flow 

at the inlet x = 0 is fully developed, that is, u = 3 ~[i_(~) 2- 
5 1.2y,2 ~ __ ], v = 0, 

= ~- ~[I- ~[-~-) ]y and m = -12E y/a 2, where H is the mean velocity over the 

channel cross section. Along the walls including the corners, one has zero 

velocity components, constant stream function and C a2~- + a2~ = 0. The center- 
ax 2 ay 2 
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llne of the channel geometry y = 0 is a streamline for which % = O, ~ = 0 

and, by symmetry, v = 0 and ~u/~y = O. 

We choose P = 0 at x = 0 arbitrarzly as a reference pressure value. The 

fluid temperature at the entrance and the wall (excluding the constriction sur- 

T* f a c e )  t e m p e r a t u r e  a r e  m a i n t a i n e d  a t  . The c o n s t r i c t i o n  s u r f a c e  a t  L 1 < x< L 2 

i s  h e a t e d  t o  a c h i e v e  two l t m i t l n g  t h e r m a l  c o n d i t x o n s ,  n a m e l y  c o n s t a n t  h e a t  

r a t e  ~T/~y = 0 and  c o n s t a n t  s u r f a c e  t e m p e r a t u r e  T a t  L l <  x <  L 2 and y = b / 2 .  

C o n s t a n t  h e a t  r a t e  p r o b l e m s  a r i s e  i n  e l e c t r z c  h e a t x n g ,  r a d i a n t  h e a t i n g ,  n u c -  

l e a r  h e a t i n g ,  and  i n  c o u n t e r - f l o w  h e a t  e x c h a n g e r s  when t h e  f l u i d  c a p a c i t y  

r a t e s  a r e  t h e  same. The c o n s t a n t  s u r f a c e  t e m p e r a t u r e  c a s e  o c c u r s  i n  e v a p o r a -  

t o r s ,  c o n d e n s e r s  o r  any h e a t  e x c h a n g e r s  where  one f l u z d  h a s  a v e r y  much h i g h e r  

h e a t  c a p a c i t y  r a t e  t h a n  t h e  o t h e r .  T h e s e  two c a s e s  c o v e r  t h e  u s u a l  e x t r e m e s  

met i n  h e a t  e x c h a n g e r  d e s i g n  and a r e  t h u s  o f  g r e a t  t e c h n i c a l  i m p o r t a n c e .  

Fo r  a g i v e n  s y s t e m  o f  d i f f e r e n t x a l  e q u a t x o n s ,  many d i f f e r e n t  s e t s  o f  

d i f f e r e n c e  schemes  can  be  f o r m u l a t e d .  Each s e t  r e p r e s e n t s  a d i f f e r e n t  a p p r o x i -  

m a t i o n .  The p a r t i c u l a r  c h o i c e  o f  d z f f e r e n c e  scheme and  t h e  me thod  o f  i t s  s o l u -  

t i o n  as  w e l l  as  t h e  c h o i c e  o f  t h e  f i n i t e - d z f f e r e n c e  mesh w z l l ,  zn g e n e r a l ,  

d e t e r m n e  t h e  c o n s z s t e n c y ,  a c c u r a c y  and  c o n v e r g e n c e  o f  t h e  s o l u t i o n .  The 

p r a c t i c a l  c o n s i d e r a t i o n s  zn making  t h e s e  c h o i c e s  a r e  m o s t l y  b a s e d  on a v a z I a b l e  

c o m p u t e r  txme and s t o r a g e .  

One p r i m a r y  e m p h a s i s  i n  t h i s  s t u d y  zs  on t h e  p r a c t i c a l  a p p h c a t i o n  o f  

n u m e r i c a i  m e t h o d s  t o  t h e  t r a n s p o r t  p r o b l e m  o f  s e p a r a t e d  v i s c o u s  f l e w  t h r o u g h  

p a r a l l e l  d u c t s  o f  compIex  a x i a l  g e o m e t r i e s .  P r o p e r  t r e a t m e n t  o f  t h e  b o u n d a r y -  

r e g i o n  f l o w  i s  e s s e n t i a l  t o  t h e  r e a l i s t i c  s i m u l a t i o n  o f  t h e  s e p a r a t e d  f l ow .  

Of p a r t x c u l a r  i m p o r t a n c e  i s  t h e  t r e a t m e n t  o f  t h e  f l o w  i n  t h e  w c z n i t y  o f  t h e  

c o r n e r s  Q and  R a t  t h e  two ends  o f  t h e  f i ow  c o n s t r i c t i o n .  In  r e s p o n s e  t o  t h e s e  

c o n s z d e r a t x o n s ,  t h e  c h o i c e  o f  f i n e - m e s h  s y s t e m s  r u n n i n g  p a r a l l e l  t o  t h e  s o l i d  

w a l l s  was made. C o n s i d e r a t i o n s  o f  a v a i l a b l e  c o m p u t a t i o n a l  r e s o u r c e s  l e d  t o  

t h e  c h o z c e  t h a t  t h e  f i n e  g r i d  be  r e s t r i c t e d  t o  t h e  b o u n d a r y  r e g z o n s  n e a r  t h e  

two ends  o n l y ,  and  t h a t  a p r i m a r y  and  c o a r s e r  g r i d  be  e s t a b l z s h e d  i n  t h e  r e -  

m a i n i n g  b u l k  o f  t h e  f low r e g i o n .  The n e t w o r k  o f  f i n i t e - d x f f e r e n c e  meshes  

o c c u p y i n g  t h e  f l o w  f i e l d  i s  shown i n  F i g .  2.  I t  c o n s i s t s  o f  f o u r  g r i d  s z z e s :  

Ax A x AYA, Ax A x AYB, Ax B x AyA, and Ax B x Ay B. A c c o r d x n g l y ,  f o u r  d i f f e r e n c e  

schemes  a r e  f o r m u l a t e d  f o r  t h e  i n t e r i o r  n o d e s  d e p e n d i n g  upon t h e i r  l o c a t i o n :  

( i )  scheme D f o r  t h e  n o d e s  a t  z = k l ,  k 2 ,  £1 o r  £2 and  j = Pl  o r  P2;  ( l i )  

scheme C f o r  t h e  n o d e s  a t  j = P l  and  P2 e x c I u d i n g  t h o s e  c o r r e s p o n d i n g  t o  
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Fig. I. The conduit model configuratlon and coordinate system. 
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scheme D; (iii) scheme B for the nodes at i = kl, k2, £i and £2 excluding those 

corresponding to scheme D; and (iv) scheme A for all other nodes. In the 

difference formulation, all variables at the node (i,j) are denoted in the 

form of fi,j- The finite-difference formulas for the derivatives read 

(1) scheme A: 

a f = fi+l,j -f" " 
z,3 + O(Ax) 

ax Ax 

f i + l , j - f i - l , j  O([Ax] 2) = + 
Ax 

fi,~-fi-i ~ + 0([Ax] 2) 
Ax 

.+f. a2f fi+l ~-2fi j x-l,j + 0(Ax)2 

ax 2 (A x) 2 

(forward) 

(central) 

(backward) 



254 S. Bunditkul and W.J. Yang !/ol. 4, No. 4 

( z i )  scheme B: 
Of hXl Ax2-AXl 

O-~: Ax2Axl------~ fi+l,j + AXlAX 2 f'1,3" 

f. f 
O2f .fi+l,J ___I, 5 z-i,) . R: 
---Ox 2 2(Ax-~12 AXlAX 2 + AXlAXI2 ) + 

Ax 2 
+ R v 

AXlhXl2 f i - l , 3  x 

(iii) scheme C: 

8f _ ~Yl AY2-AYI AY2 
f .  + - -  f .  . - ~ f .  + R' 

8y Ay2AYI2 z,j+l hylhy 2 1,3 hylAYl2 1,j-I y 

02f 2(fi,j+l fi,j fz,j-l. R" 

8y 2 "AY2AYI2 AYlAY 2 AYIAYI2 ) Y 

Scheme D is the combination of schemes B and C. Here, AXl2 and AY12 are de- 

fined as Ax I + Ax 2 and Ay I + AY2, respectively. The subscripts I and 2 re- 

p r e s e n t  t h e  u p s t r e a m  and downs t ream nodes  o f  ( i , j )  and t h u s  may c o r r e s p o n d  t o  

e i t h e r  A and B o r  B and A, r e s p e c t i v e l y .  R' and R" d e n o t e  t h e  r e m a i n d e r  t e rms  

f o r  t h e  f i r s t -  and s e c o n d - o r d e r  d e r i v a t i v e s ,  r e s p e c t i v e l y .  The f o u r  d i f f e r -  

e n c e  schemes p roduce  f o u r  s e t s  o f  d i f f e r e n c e  e q u a t i o n s  and boundary  c o n d i t i o n s  

c o v e r i n g  t h e  e n t i r e  f l o w  f i e l d .  Due t o  space  l i m i t a t i o n ,  t h e s e  f i n i t e - d i f f e r -  

ence  e x p r e s s i o n s  a r e  n o t  p r e s e n t e d  h e r e  bu t  a r e  a v a i l a b l e  i n  r e f e r e n c e  10. 

The f o l l o w i n g  s t e p - b y - s t e p  i t e r a t i v e  p r o c e d u r e  i s  employed  f o r  n u m e r i c a l  

s o l u t i o n s  o f  each  i n t e r i o r  node ,  node by node ,  p r o c e e d i n g  downst ream from t h e  

i n l e t :  a t  t h e  b e g i n n i n g  o f  t h e  i t e r a t i v e  p r o c e d u r e  f o r  each  i n t e r i o r  node ;  

t h e  s t a r t i n g  s o l u t i o n s  f o r  w, ~, u,  v ,  and T must be p r o v i d e d .  The use  o f  

f i , j  = f l , j  f o r  g e n e r a t i n g  t h e s e  s t a r t i n g  s o l u t z o n s  from t h o s e  a t  t h e  channe l  

i n l e t  i s  found t o  r e s u l t  i n  v e r y  r a p i d  c o n v e r g e n c e .  The v o r t i c l t y  m f o r  t h e  

new node i s  d e t e r m i n e d  u s i n g  t h e  a p p r o p r i a t e  v o r t i c i t y  e q u a t i o n  by t h e  Gauss-  

S e i d e l  i t e r a t i v e  scheme [11] ,  w h i l e  t h e  s t r e a m  f u n c t i o n  ~0 o f  t h e  node i s  c a l -  

c u l a t e d  f rom t h e  a p p r o p r i a t e  d i f f e r e n c e  f o r m u l a  o f  Eq. (7) by means o f  t h e  

successive row iteration method [12]. The velocity components u and v at the 

node are then evaluated from the definition of the stream function, Eq. (6) 

in difference form. The iteration procedure is terminated when the desired 

level of convergence in the stream function at each node is attained. After 

the solutions ~, ~, u and v for all nodes are calculated, the pressure distri- 

bution in the flow field is determined using the momentum equations (4). The 

difference equation corresponding to (5) is then employed to determine the tem- 

perature distributions for both thermal boundary conditions of constant heat 

rate and constant surface temperature utilizing the Gauss-Seidel iterative 

scheme. Again, a desired level of convergence is imposed on the temperature 

solution for the procedure. 
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Results and Discussion 

Computations were carried out using a digital computer for various flow 

levels in the laminar range up to the transition Reynolds number. For each 

flow level, the Prandtl number of the fluid was varied to cover gases and 

common liquids. The ratio of free-flow area to frontal area of the constric- 

tion o was also varied between two limiting values 0 and 1. The channel geome- 

try corresponding to L = L 1 = L2/2 was divided into a grid network of i = 144 
1 , , 

and j = 21 with Ax A = 3 ~ Ax B and Ay A = 3 AYB, in which L = L /L =1.0, L I = 

L~/L* and L 2 = L~/L*. The criterion for convergence of ~ and T was set at 

0.1%. 

Numerical results were obtained for the loss coefficients K e and Kc, 

hydrodynamic and thermal entry lengths, pressure, streamline, velocity and 

temperature distribution, average Nusselt number Nu and limiting Nusselt number 

for fully-developed velocity and temperature profiles Nu~ for the cases of 

constant heat rate and constant surface temperature. 

Figure 3 illustrates variations of the loss coefficients with the area 

ratio o for various Reynolds numbers up to 2000. The results for higher Rey- 

n o l d s  numbers obtained through extrapolation are included for completeness. 
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Kays' semi-empirical resu l t s  for K c and K e [2] are shown by a single broken 

line for the entire laminar regime, Reynolds numbers less than 2000. The in- 

accuracy of his results is obvlous. 

Temperature distribution in the flow field at Re = 2000 is shown in Figs. 

4 and S for constant surface temperature and constant heat rate, respectively. 

The Prandtl number is varied to determine the effects of thermal diffusivity 

on thermal stratificatlon in a laminar flow through a heated constriction. 

All isothermal lines are originated from the inlet of the constriction heated 

at constant surface temperature, while the constant heat rate case has all 

isothermal hnes originated from the heated constrictlon surface. For a fluid 

of low Prandtl number, all isothermal lines in the constriction are short and 

terminate almost perpendicularly at the channel center line for both thermal 

boundary conditions. As the Prandtl number increases, these isothermal lines 

are forced downstream and elongate. At a sufficiently high Prandtl number, 

high temperature lines terminate at the exit corner of the constriction from 

which other isothermal lines are originated and extend downstream. 

Figure 6 shows the effects of the area ratio o on thermal-entrance-length 

Nusselt numbers for the cases of constant heat rate and constant surface tem- 

perature at Re = 2000 and Pr = 0.72. It is seen that the combined thermal 

and hydrodynamic entry length is practically independent of the area ratio and 

the thermal boundary conditions. The limiting Nusselt number Nu~ takes a con- 

stant value which is independent of the area ratio: 9.5 and 10.7 for constant 

surface temperature and constant heat rate, respectively. Both are higher 

than their counterparts in a long parallel channel flow, 7.54 and 8.235, re- 

spectively [I]. 

The following expressions are derived from the numerical results: 

(i) "Critical" constriction length, £H 

~H/Dh = 0.065 Re/o (8) 

Here, £H i s  def ined as the minimum c o n s t r i c t i o n  length beyond which the loss 

c o e f f i c i e n t s  remain constant and ~ i s  equal to  2b. 

(ii) Combined hydrodynamic and thermal entry length, Z T 

£T/Dh = CTRePr (9) 

which is valid for both thermal boundary conditions. The constant C T has the 

value of approximately 0.06, which is higher than 0.05 for laminar flow in two 

parallel planes [i]. 
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2.0, 5.0, i0. 
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s u r f a c e  t e m p e r a t u r e  c a s e s  

(iii) Average Nusselt number, Nu 

Nu = 2.26 Gz I/3 Gz > 70 (lO-a) 

= 9.3 Gz < 70 

for constant surface temperature and 

Nu = 2.60 Gz I/3 Gz > 70 (lO-b) 

= 10.7 Gz < 70 

for constant heat rate, where Gz is the Graetz number defined as RePrO/L*. 

Nu is independent of o since only sufficiently long constrictions are con- 

sidered in the study. In comparison, laminar flow heat transfer between 

parallel planes is theoretically determined as [13] 

Nu = 1.85 Gz I/3 Gz > 71.4 

= 7.6 Gz < 71.4 

and 

Nu = 1.99 Gz I'3 / Gz > 71.4 

= 8.24 Gz < 71.4 

f o r  c o n s t a n t  s u r f a c e  t e m p e r a t u r e  and c o n s t a n t  h e a t  r a t e ,  r e s p e c t i v e l y .  A 

variation i n  flow cross-sectional area in parallel ducts causes an enkance- 

ment in laminar-flow heat transfer, as expected. 
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Concl us ions 

Numerical analysis has been performed on laminar transport phenomena in 

parallel ducts with a long constriction. The numerical scheme is distinguished 

in two respects: (i) capable of treating high velocity flows up to the transi- 

tion Reynolds number and (ii) no restriction imposed on the velocity profile 

at the channel exit. Figure 3 determines the loss coefficients due to abrupt 

contraction and enlargement. It is concluded that (i) The "critical" con- 

striction length, combined hydrodynamlc and thermal entry length and average 

Nusselt numbers in the constriction can be predicted by EQs. (8), (9) and (I0), 

respectively; (ii) The area ratio affects the hydrodynamic entrance length 

and the local Nusselt number near the constriction inlet but not the thermal 

entry length and the average Nusselt number, and (iii) The flow constrictions 

cause a substantial augmentation in heat transfer performance. 
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