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A simple and general argument is given for the deep inelastic behavior of the dynamic structure function of quan-
tum fluids at zero temperature. The resulting high-energy tail is shown to give a reasonable fit to existing neutron data

for liquid 4He.

Inelastic neutron scattering [e.g. 1] from quantum
fluids at low energy transfers has been used extensive-
ly as a direct measure of the elementary (density) ex-
citations characteristic of the quantum fluid. At higher
energy transfer, more complicated features associated
with multiexcitations appear and the simple picture
of elementary excitations breaks down. At even higher
energy transfer, it might be expected that the response
of the quantum fluid would become independent of
its elementary excitations, long-range order, particle
statistics, etc., and would be understandable in terms
of a universal picture. The purpose of this note is to
propose such a simple and general picture of scatter-
ing at high energy transfer from quantum fluids at
zero temperature.

The linear response of a quantum fluid to a densi-
ty probe like neutron scattering is given by the dynam-
ic structure function S(k, w) defined as

Stk ) = 21 Koh),oP(e0 — a,9). (1)

The summation is over a complete set of normalized
energy eigenstates |v) with total momentum k (# = 1);
[v} is coupled to the ground state |0) by density fluc-
tuations p;fc with matrix elements (p;rc)v0 ;and w g =
w, — Wy is the excitation energy. Since the elemen-
tary excitations [1) exhaust the f sum rule in the long
wavelength limit, it is useful [2] to divide |} into
elementary excitations |1) and the remaining multi-
excitations |#). In the region in k, w space where ele-
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mentary excitations are not important, the back-
ground of S(k, w), which arises from real multiexcita-
tions, is given by scattering function

X(k, ) = 2310}yl 8(e> — 2,0), (2)

where the sum is over the set of multiexcitations |»).
The background region can be divided into the quasi-
free region w ~ k2/2m and the deep inelastic region
w > k2/2m. The deep inelastic region is of interest
here.

The matrix elements (p};) o Satisty the equations

wnO(pz)nO = k(j-lrc)nO’ (3)

wnO(jz)nO = 1A, jIZ]nO’ (“4)

where (3) is the continuity equation, (4) is the equa-
tion of motion for the longitudinal current j};, and H
is the many-particle hamiltonian for the quantum
fluid. In the long wavelength limit k - O, [H, j};] van-
ishes as a consequence of translational invariance. The
leading k dependence of [H, j};] can then be obtained
by a straightforward power series expansion:

[H,j§1 = m™! $k + O(k?), (5)

where m i§ the particle mass, and the k-independent
operator P is exhibited below. It follows from (2)—(5)
that the leading k dependence of X(k, w) is given by

” )
Xk, @) = = 33 1(),,28(e — ). 6)
m-w’ n
b=} 2k ) UG, ™
i#j
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where a term in ® that vanishes upon acting on |0)
has been omitted, r;; is the position of the ith particle
relative to the jth, r;; = |r;;|, U is the interparticle po-
tential, and U'(x) = dU(x)/dx.

Egs. (6) and (7) are valid for small momentum
transfer. To reduce (6) further, it is necessary to in-
troduce a specific form for w,. At high energy trans-
fer, the multiexcitation energy is like that of free par-
ticles, e.g., wyg = €g_g + €4, Where €, = q%/2m and ¢
is the intermediate momentum. The contribution to
X(k, w) from pair excitations {2) can then be written
(V is the volume)

k4 3 2

Xz(k, w)= —7—4 vy (L4 l<I> 20! 6(w—2eq), (8)

@m?
which is valid in the deep inelastic region. To obtain
the explicit form of @20 and hence X, (k, w), we ap-
proximate the ground state 0) by [0, the vacuum
state of a model system of non—mteractmg excitations,
and approximate |2) by |k—q,q> ~ pk a” IO) Re-
taining only the terms with the same large interme-
diate momentum ¢, we find

__A Npk 32,
el o GOSN
o) = [Er(@-r)? e TIU0), (10)

where A is a dimensionless factor introduced to take
into account the terms omitted in the approximation
leading to (9). Since ¢ in ¢(g) is taken to be large in
(9), the interparticle potential at small r is important
in (10) and the r-integral can be effectively cut-off at
large . If the potential is short-ranged at smallz, e.g.,
Ulr) ~ 8(r), then p(g) = constant and X,(k, w) ~
k*w=7/2 1f the potential is long-ranged at small r,
eg., U(r)~r—1 then w(g) ~¢~2 and Xy(k, w)~
k4w 112 45 ¢y — oo, Both of these results agree with
previous work [3, 4] . The present argument however
is more general in that it is explicitly independent of
the particular elementary excitations, long-range or-
der, and particle statistics.

We shall now apply (9) and (10) to liquid 4He. The
dominant interaction between 4He atoms is the hard
core, which produces a ground state |0) with, roughly
speaking, excluded volumes. On the other hand, the
model vacuum {0) is one with uniform density. It is
clear in this case that the approximation [Q) ~ [0)is
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Fig. 1. The high energy tail in the intensity function of inelas-
tic neutron scattering from liquid *He at a fixed momentum
transfer kK and temperature 7. The dots represent the neutron
data from ref. [4], the vertical arrow denotes the elementary
excitation peak, and the solid curve is the two-parameter fit

(11).

not valid and that a straightforward substitution of a
hard core potential into (10) is misleading. These dif-
ficuities can be circumvented in the limit of small mo-
mentum transfer by the use of an effective potential
Uygr ~ 8(r), where the proportionality constant is lin-
ear in the scattering length. It then follows from (9)
and (10) that X, (k, w) ~ k%w=7/2. The behavior
however is not expected to persist at high energies
when the hard core begins to soften. Calculation of
X3(k, w) shows that the high-co dependence of X3 is
slower than that for X,. We therefore assume that for
a finite interval in w, X}, =X — X, is more or less
w-independent and forms a background for X, (k, w).
In fig. 1 the intensity function J(w) of neutron scat-
tering [5] from liquid #He at fixed momentum trans-
fer is plotted versus w. The solid curve is our two-
parameter fit based on (9), the effective potential
Ueg ~ 8(r), and the assumption that X, ., forms a
constant background:

Hw)=14%10" w72 +25, (11)

where w is measured in K. The fit is seen to be fairly
good in the range 25 K < w < 70 K, which is encour-
aging.

Without explicit reference to the particular elemen-
tary excitations, long-range order, and particle statis-
tics of a quantum fluid, we have argued that deep in-
elastic scattering from a charged quantum fluid dis-
play a high-w tail ~ w—11/2; whereas deep inelastic
scattering from a neutral quantum fluid, e.g., liquid
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4He, displays a tail ~ w2
Hence the relevant distinction is between charged
and neutral quantum fluids, and within each class the
deep inelastic scattering is expected to be universal,
barring complications from multiexcitations higher
than pair excitations.

* The relevant distinction in backflow is also between neutral
and charged quantum fluids, as shown in ref. {2].
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over a finite high-w range.
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