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WC have appl~tl Pcchukas aEd Mclafterty’i tclt for the cxactnoss of classical transItion state theory (TST) to t[lc 
cnllrncar subsurface of Porter and Karplus’ H3 hypcrsurface and have detcrmmcd that TS r is c\act to at lca~t o.0592131 cv 
above the saddle point energy. 

1. Introduction 

The basic assumptron of classical transition state 
theory is that rrajectorrcs pass through the transttlon 
state at most once. Wagner [l] lab&d this his “third 
assumption”, and Miller [2] and Pechukas and 
McLafferty [3 ] have emphasized its importance more 

recently. Transition state theory (TST) is said to be 
exact to energy E. if, and only if, for all E < Eo, no 
trajectory crosses the transition state more than once. 
Pcchukas and McLafferty (designated hcrcafter as PM) 
have provided a test for dctermming if TST is exact to 
a given energy for a given potential energy surface. We 
have. applied their test to the collinear subsurface of 
Porter and Kiirpius’ [4] semicrnpmcal 1i3 Ilypcrsur- 

GICC * and hdvc determined that TST is exact to at 

least -4.291208 cV (relative to 3 H atoms), which is 
0.059281 eV above the saddle point energy. We rc- 
port our results to six decimal places simply to indl- 
catc their numerical accuracy_ 

2. Theory 

Pechukas and McLafferty’s test is that TST IS ex- 
act to energy E if the band of the coordinate plane 
enclosed between the V = E equipotentials can he 
covered by a continuous one-parameter family of 
straight-line segments such that at every pomt on a 

* WC IXLVC uwd their surface 2. 

lmc In the product (reactant) region the force - V V 
does not lie to the reactant (product) side of the tine. 
If natural collision coordinates IS] are used, the lines 
of constant reaction coordinate provide a convenient 

continuous one-parameter family of straight-line seg- 
ments so that the PM test follows as shown ‘o&&z 
from the equations of motion. Ihe natural coliision 
coordmatcs are (s, u) and arc expressed in niass werght- 
cd and skewed coordmates [6] in which the kinetic 
energy of rnotlon is dqpnal_ The rcactian coc>rdinirte 
s is the distance along a generating curve C and the 
10~1 vibrationa! coordinate u is the perpendicular dis- 
tance from the curve C. The gencrating curve C diGdes 
the coordnwc plane mtO two regions; u is positive irr 

one r&on and ncy,:divc UI the other. III this WI& WC’ 
have taken LJ as positive in the region containing drsso- 
ciated configurations, that is, those in which thr: inter- 
nuclear distances R 12 and Hz3 are both lztrge_ Let K(S) 
be the curvature of C and let T&, u) = 1 f K(S)U 731~ 
classical hamiItonian is 

H=fr(P,/Q)2 +&I f K U) 

where r?, and pU are the momenta conjugate to s and u 
respectively, and V is the potential energy of the con- 
figuration (s, u). The equations of motion arc 

Wdr = P&I2 9 (24 

du/dt =pu, (=I 

dpJdt = (vpz/q3) dKc/ds - a Vf &, (24 

dp,/dt = K$/q3 - i3V/au. (24 
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The reaction coordinate s can be considered a mo- 
notonic measure of reaction progress; it is ncgativc in 
the reactant region, lcro at the transition state, and 
positive m the product region. If both s and ps arc 
positive, the trajectory is moving away from the tran- 
sition state toward products_ It follows from (2a) that 
as long asps remains non-negative the trajectory can 
never return to the transition state. Using (2c), 
Pechukas and McLaffcrty’s test may be written as: 
TST is exact to energy E if a V/as < 0 for s > 0 and 
a V/as > 0 for s < 0 for all points (s. u) with s # 0 be- 
tween the V = I:‘ cquipotcntials. The converse, how- 

ever, is not true; the PM test for exactness is sufficient 
but not necessary. There may exist another contmu- 
ous one-parameter family of straight-line segments for 
which the PM criterion for exactness is met. Even if 
no such family of line segments exists, TST may stdl 
be exact. The PM test only dctcrmmcs if there exists 
a trajectory which starts back toward the transition 
state; It says nothirzg about whether such a trajectory 
ultimately returns to the transitlon state. 

While in natural collision coordinates the lmes of 
constant s provldc a continuous one-parameter family 
of straight-lint segments suitable for the PM test, not 
every family of segments suitable for the test can bc 

defined in such a manner. The use of natural colbsion 
coordinates in testmg for exactness is a special cast of 
the more general PM test m that lines of constant reac- 
tion coordinate must not cross wlthin the region be- 
tween the V = E equipotentials. Such crossmgs arc, in 
themselves, insufficient to make a family of straight- 
line segments unsuitable for USC m the more general 
form of the PM test [3]. We now consider the condi- 
tions under whtch hnes of constant reaction coordinate 
cross. Let u,(s) = --I/K(?); the absolute value of u,(s) 
is the radius of curvature of the generating curve C at 
S. At the points (s, u,(s)), hncs of constant s cross, 
~(s, u,(s)) = 0, and therefore the hamiltoman (1) and 
the cquatxons of motron (2) arc singular. When 9 = 0 

the jacobian of the transformation from (QI, Qz) to 
(s. u) is also Lcro. Thus for a generating curve C to dc- 
fine natural colhsion coordinates suitable for use up 
to cncrgy E, (s. u,(s)) must not lie wnhin the region 
between the V = E equipotentials for any s. 

3. Calculations 

In this work we have considered only collinear col- 
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Iisions of particles with equal masses on a symmetric 
potential energy surface, but one could consider col- 
linear collisions of particles with arbitrary masses on 
asymmetric potential energy surfaces using similar 
methods. The coordinates (Q1. Qz) in which the na- 
tural collision coordinates (s. u) are expressed are mass 
weighted and skewed to diagonalize the kinetic energy 
of motion T. 

T=+ [(dQr/dt)* + (dQ2/dt12]. 

We have chosen Q1 and Q2 to be 

(3) 

Q,=c,(Rlz*Rd Q2 = ~262 -R,,), (4) 

where c1 and c2 are functions of the particle masses 
and the units in which the R’s and Q’s are expressed. 
In this worlc we have expressed Ql and Q2 in cgs units, 
g*j2 cm. Since the potential energy surface used is sym- 
metric about the line R t2 = X23, it is also symmetric 
about the line Q2 = 0, and thus only one half of the 
surface need be examined for exactness. We have cx- 
amined the half with Q2 > 0, which is the half with 
s > 0. The transition state, the path of steepest ascent 
from the saddle point, is the line Q2 = 0. 

We have applied the PM test for exactness usmg 
scvcral continuous one-parameter families of straight- 

line segments: each family is defined by a generating 
curve. First, the path of steepest descent from the 
saddle point was used as a generating curve for natural 
collision coordinates. The path was determined numer- 
ically by taking steps of 1 X 1O-23 gt12 cm. Halving 
the step size changed the path insignificantly. A cubic 
spline, fit to every 16th step, was used as the generat- 
ing curve C. The curvature of C is always non-positive 
and thus u,(s) > 0 for all s. For fixed values of the re- 
action coordinate s, the vibrational coordinate u was 
increased from 0, where aV/as < 0, until either the 
root a V/as = 0 was located or u = v,(s) was reached. 
The location of the root was designated u+(s). Next, u 
was decreased from 0 until a similar root was found 
and its location was designated u_(s)_ The curves 
u_(s),u+(s),and u*(s)are shownin fig. 1 ,and the potcn- 
tial energies along these curves, V(u_(s)), V(u+(s)), and 
V(u, (s)), arc shown m fig. 2. If the energy of a trajec- 
tory E is less than the lowest value of any of these po- 
tential energies, then a V/as < 0 for the entire region 
between the V = E equipotentials, and thus, by the 
PM test, TST is exact to energy E. The lowest value is 
on V(u_(s)) and is -4.345827 eV, which is 0.004662 
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l’ig 1. Lines of xm J V/is, labclcd a~ v_ and u+ (--), for col- 
hnear H3. The reaction coorchnate s IS the distanw from the 
saddle point (0) along the path of stcepcst descent (---). 

hny traJCCtcry movmg away fro111 the tranSitiOn 4tatC (&2 =O) 

cannot turn bdck toward it at any point within the region be- 
twccn u_ ami vI 5incc a V/i& < 0 wltbin this rgion. Along 
v* (---), q = 0 and natural collision coordmates xc undcfin- 
cd. Succcssnx CquipotentlaIs ( -) are scpdratcd by 0.2 eV; 
the lowect cyuipotentlal shown is -4.6 cV. 

-4 51 I I I I 
0 0.5 I.0 

Pig. 2. Potential merges along the lmcs of zero a V/as, labeled 
as V(L) and V(U+) (- ). The potential cncrgy V(u,) along 
the hnc of 9 = 0 IS alqo shown (---). SW fig. 1 for the lines 
u_ v+_ and u*. 

eV above the saddle point energy. 
The second type of generating curve we have used 

consists of the cquipotentials on the concave side of 
the path of steepest descent from the saddle point. 
Consider the region between the VI= I:‘equipotentials. 
For energies of interest this region hes entirely to the 
convex side of the generating curve, and thus the 
straight-line segments perpendicular to the generating 

curve cannot cross in this region. Use of this equipo- 

tential as the generating curve C trivially gives a v/as 
= 0 when u = 0. The sign of av/as can be evakatcd 
aiong the other l’/= Eequipotential, and if a V/as > 0 
for any point along this other cquipotential, then E is 
above the energy to which the exactness of TST can 
be proven using the PM test wzth this choice ofgerrcmt- 

ing curve. For each E a different generating curve of this 
type is required. Using this method we have found 
that a v/as becomes positive for at least one point 
when E > -4.29 1208 eV. For this energy the sign of 
a v/as was calculated throughout the region between 
the V= Eequzpotcntials and found to be always nega- 
tive. Thus, we have shown that TST is exact to at 
least -4.29 1208 eV, which is 0.059281 CV above the 
saddle point energy azld hzgher than the value obtain- 
ed using the path of steepest descent as the generating 
curve. 

The third type of generating curve we have consid- 
ered consists of the equipotentials on the convex side 
of the path of steepest descent frozn the saddle point. 

At energies of interest some straight-hne segments per- 
pendicular to this generating curve cross within the re- 
goon between the V = E cquipotentials, so that with 
these famzIies of strazght-line segznents the more gcn- 
era1 forzn of the PM test must be urcd. Consider the 
region between the V = I:‘ cquipotentials. Along the 

cquipotential used as the generating curve C, the force 
- V V trlvialty lies along the line segments perpendicu- 
lar to C. The direction of the force was caIcuIated 
along the other equipotential and was found to Iie to 
the side nearer the saddle point for at least one point 
when E > -4.29 1208 eV, the same value (to seven 
significant figures) obtained using the other equipoten- 
tial. For this energy the direction of the force was cai- 
culatcd throughout the region between the V = E 
equipotentials and found always to lie to the transi- 
tion state side of the straight-line segments. 

Thus, if the region between the v = -4.291208 eV 
equipotentials is covered by either family of straight- 
line scgmcnts which arc perpcndicula_r to one of these 

equipotentials, the force at every point on any line 
does not lie to the szde of the line nearer the transition 
state. But if the region between the V= -4.29 I207eV 
equipotczltials is covered by either famiIy of segments 
defined in the same fashion, the force at some point 
on at least one fine does lie to the side of the line near- 
er the transition state. Therefore, by applying the Phf 
test, TST has been shown to be exact to at Ieest 
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-4.291208 eV. The possibility remains that TST 
could be shown to be exact to a higher energy using a 
different type of famdy of straight-line segments. 

4. I.xscussion 

Using Pechukas and McLafferty’s test, we have 
shown that for the colhncar subsurface of Porter and 
Karplus’ H, hypcrsurface, transition state theory is 
exact to at least 0.059281 CV above the saddle point 
energy. This is within the range of Pechukas and 
McLaffcrty’s estimate that TST can be shown to be 
exact to an energy roughly between 0.01 and 0.1 eV 
above the saddle point energy. We hare not shown, 
however, that trajectories of higher energy cannot re- 
turn to the transition state once they have left it. 
Chapman et ai. 171 have shown tltat for the system 
consldered here, TST is “essentially exact” for cncr- 
gies up to over 0.2 eV above the saddle point energy. 
TST is said to be “cssent~~lly exact” for a given cncr- 
gy E if at most only a small fraction of trajcctorics of 
energy E pass through the transition stat,- more than 
once. 

The PM test for exactness was formulated for col- 
linear triatomic colhslons, but could be extended to 
more general collisions. Let s be a reaction coordmate 
and let {I_+} be the set of remaining coordinates (vlbta- 
tions and rotations). Let each uj be orthogonal to s, 
but the vartous u, need not be orthogoI~a~ to one an- 
other [8,9]. As in the collinear case, lets be negative 
in the reactant region, zero at the transltion state, and 
positive in the product region. TransitIon state theory 
coultl bc sad to he exact to energy I? if for all cnnfigur- 

ations 0. {u;)) with s # 0 for which V(s, (vi)) < E, the 
conditions hold that 3 V/i% 6 0 for s > 0 and a V/as 
20 fors<O. 

The information contained in fig. 2 has an addi- 

tional potential use. If one were calculating trqecto- 
ries for a collinear triatomic system, and if only the 
probability of reaction and not the final distribution 
of energy between product modes were of interest, a 
diagram like fig. 2 would provide a criterion for stop- 
ping the integration of trajectories. For a given total 
energy, one can obtain from fig. 2 a value of the reac- 
tion coordinate s beyond which the trajectory cannot 
return toward reactants and thus must continue to 
products. Once this value of s IS reached, integration 
may be stopped without fear that, were integration 
contmued, the trajectory might lead back to reactants. 

Finally It should be remembered that as useful a 
concept as a ‘%caction coordinate” is, there are many 
cases in which it is impossible to find a single rcactlon 
coordinate for which reaction “progress” is a mono- 
tonic function of reaction coordinate for all trajecto- 
ries which lead fram reactants to products_ 
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