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We have applicd Pechukas and McLafferty’s test for the exactness of classic] transition state theory (TST) to the
callinear subsurface of Porter and Karplus’ Hz hypersurface and have determined that [ST i exact to at least 0.059281 eV

above the saddle point encigy.

1. Introduction

The basic assumption of classical transition state
theory is that trajectories pass through the transition
state at most once. Wigner [1] labeled this his “third
assumption”, and Miller {2] and Pechukas and
McLafferty [3] have emphasized its importance more
recently. Transition state theory (TST) is said to be
exact to energy Fy 1if, and only if, for all £ < F, no
trajectory crosses the transition state more than once.
Pechukas and McLafferty (designated hereafter as PM)
have provided a test for determining if TST is exact to
a given energy for a given potential energy surface. We
have applicd their test to the collinear subsurface of
Porter and Karpius™ {4] semicmpincal 1iz hypersur-
face ¥ and have determined that TST is exact to at
least —4.291208 eV (relative to 3 H atoms), which is
0.059281 ¢V above the saddle point energy. We re-
port our results to six decimal places simply to indi-
cate their numerical accuracy.

2. Theory

Pechukas and McLafferty’s test is that TST 1s ex-
act to energy E if the band of the coordinate planc
enclosed between the V = E equipotentials can be
covered by a continuous one-parameter family of
straight-line segments such that at every point on a

* We have used their surface 2.

Iine n the product (reactant) region the force — VV
does not lie to the reactant (product) side of the line.
If natural collision coordinates [5] are used, the lines
of constant reaction coordinate provide a convenient
continuous one-parameter family of straight-line seg-
ments so that the PM test follows as shown below
from the equations of motion. The natural collision
coordinates are (s, v) and are expressed in muss weight-
ed and skewed coordinates [6] in whick the kinetic
energy of motion is diagonal. The reaction coordinate
s is the distance along a generating curve C and the
local vibrationa! coordinate v is the perpendicular dis-
tance from the curve C. The generating curve C divides
the coordindte plane into two regions; » is positive in
one region and neaative 1n the other. In this work we
have taken v as positive in the region containmng disso-
ciated configurations, that is, those in which the inter-
nuclear distances R 5 and R53 are both large. Let k(s)
be the curvature of C and let 5(s, v) = 1 + k(s)u The
classical hamiltonian is

d=3[(p/my*+p%] ¢V, M

where p¢ and p,, are the momenta conjugate to sand v
respectively, and V is the potential energy of the con-
figuration (5, v). The equations of motion are

ds/dt = py/n°, (24)
dv/dt =p,, (2b)
dpg/dt = (up?/n>) dx/ds — 8V s, 2c)
dp,/dt = kplin® ~ aV/ov. (2d)

487



Volume 48, number 3

The reaction coordinate s can be considered a mo-
notonic measure of reaction progress; it is negative in
the reactant region, zero at the transition state, and
positive mn the product region. If both s and p are
positive, the trajectory is moving away from the tran-
sition state toward products. It follows from (2a) that
as long as p, remains non-negative the trajectory can
never return to the transition state. Using (2¢),
Pechukas and McLafferty’s test may be written as:
TST is exact to energy £ if 0¥/0s <0 for s >0 and
oV/ds = 0 for s <0 for all points (s, v) with s # 0 be-
tween the V = E equipotentials. The converse, how-
ever, is not true; the PM test for exactness is sufficient
but noi necessary. There may exist another continu-
ous one-parameter famuly of straight-line segments for
which the PM criterion for exactness is met. Even if
no such family of line segments exists, TST may still
be exact. The PM test only determines if there exists
a trajectory which starts back toward the transition
state; 1t says nothing about whether such a trajectory
ultimately returns to the transition state.

While in natural collision coordinates the Iines of
constant s provide a continuous one-parameter family
of straight-linc segments suitable for the PM test, not
every family of seagments suitable for the test can be
defined in such a manner. The use of natural collision
coordinates in testing for exactness is a special casc of
the more general PM test in that lines of constant reac-
tion coordinate must not cross within the region be-
tween the V = E equipotentials. Such crossings are, in
themselves, insufficient to make a family of straight-
line segments unsuitable for use in the more general
form of the PM test [3]. We now consider tie condi-
tions under which lines of constant reaction coordinate
cross. Let v, (s) = —1/k(s); the absolute value of v,(s)
is the radius of curvature of the generating curve C at
5. At the points (s, u,(s)), lines of constant s cross,
1(5, v, (s)) = 0, and therefore the hamiltoman (1) and
the equations of motion (2) are singular. When =0
the jacobian of the transformation from (@,,Q,) to
(s, v) is also zero. Thus for a generating curve C to de-
fine natural collision coordinates suitable for use up
to energy E, (s,v,(s)) must not lie within the region
between the V = E equipotentials for any s.

3. Calculations

In this work we have considered only collinecar col-
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Iisions of particles with equal masses on a symmetric
potential energy surface, but one could consider col-
linear collisions of particles with arbitrary masses on
asymmetric potential energy surfaces using similar
methods. The coordinates (@4, @,) in which the na-
tural collision coordinates (5, v) are expressed are mass
weighted and skewed to diagonalize the kinctic energy
of motion 7,

=3 [(dQ,/dt)? + (dQ,/d1)*]. ®)
We have chosen Q| and Q, to be

O;1=c1(Rp+Ry3), 0Qy=c(R;p~Ry3), G

where ¢; and ¢, are functions of the particle masses
and the units in which the R’s and Q°s are expressed.
In this work we have expressed @y and @, in cgs units,
g!2 ¢cm. Since the potential encrgy surface used is sym-
metric about the line Ry, = Ry, 1t is also symmetric
about the line @, =0, and thus only one half of the
surface need be examined for exactness. We have ex-
amined the half with Q5 >0, which is the half with

s 2> 0. The transition state, the path of stecpest ascent
from the saddle point, is the linec @, =0.

We have applied the PM test for exactness using
several continuous one-parameter families of straight-
line segments: zach family is defined by a generating
curve, First, the path of steepest descent from the
saddle point was used as a generating curve for natural
collision coordinates. The path was determined numer-
ically by taking steps of 1X 10—23 gV/2 cm. Halving
the step size changed the path insignificantly. A cubic
spline, fit to every 16th step, was used as the generat-
ing curve C. The curvature of C is always non-positive
and thus v, (s) = O for all s. For fixed values of the re-
action coordinate s, the vibrational coordinate v was
increased from 0, where dV/9s <0, until either the
root 3¥/ds = 0 was located or v = vy, (5) was reached.
The location of the root was designated v, (5). Next, v
was decreased from O until a similar root was found
and its location was designated v_(s). The curves
v_(5),v,(s),and v« (s) are shown in fig. 1,and the potca-
tial energies along these curves, V(v_(s)), V(v,(s)),and
V (v, (s)), are shown 1n fig. 2. If the encrgy of a trajec-
tory E is less than the lowest value of any of these po-
tential energies, then 8¥/ads < O for the entire region
between the V' = E equipotentials, and thus, by the
PM test, TST is exact to energy £. The lowest valuc is
on V({u_(s)) and is —4.345827 eV, which is 0.004662
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Q, (0% g'2 cm)
)
U1
!

Q, (0% g*2 em)

Fig 1. Lines of zero 3 V/as, labeled as v_and v, (—-), for col-
hinear H3. The reaction coordinate s 15 the distance from the
saddle point (e) along the path of steepest descent (——).
Any trajectery moving away from the transition state (@, =0)
cannot turn back toward 1t at any point within the region be-
tween v_and v, since 3¥/as < 0 within this region. Along

v, (---), n = 0 and natural collision coordmates are undefin-
ed. Successive equipotentials ( ) are separated by 0.2 eV
the lowest equipotential shown is —4.6 cV.

35 1

1
o 0.5 1O
s (072 g"z cm)
Fig. 2. Potential energles along the lines of zero 8 V/as, labeled
as V(w-)and V(v,) ( ). The potential cnergy V(v,) along

the lne of 1 = 0 15 also shown (---). Sce fig. 1 for the lines
v_vy.and vg.

eV above the saddle point energy.

The second type of generating curve we have used
consists of the equipotentials on the concave side of
the path of steepest descent from the saddle point.
Consider the region between the V = F equipotentials.
For energies of interest this region lies entirely to the
convex side of the generating curve, and thus the
straight-line segments perpendicular to the generating
curve cannot cross in this region. Use of this equipo-
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tential as the generating curve C trivially gives dV/as
=0 when v = 0. The sign of 3¥/9s can be evaluated
aiong the other V'= E equipotential, and if 3V/as >0
for any point along this other equipotential, then E is
above the energy to which the exactness of TST can
be proven using the PM test wath this choice of generat-
ing curve. For each F a different generating curve of this
type is required. Using this method we have found
that 9 ¥V/9s becomes positive for at least one point
when £ > —4.291208 eV. For this energy the sign of
9V/0s was calculated throughout the region between
the V= Fequipotentials and found to be always nega-
tive. Thus, we have shown that TST is exact to at
least —4.291208 eV, which is 0.059281 ¢V above the
saddle point energy and higher than the value obtain-
ed using the path of stecpest descent as the generating
curve.

The third type of generating curve we have consid-
ered consists of the equipotentials on the convex side
of the path of steepest descent from the saddle point.
At energies of interest some straight-line segments per-
pendicular to this generating curve cross within the re-
gion between the V = FE cquipotentials, so that with
these families of straight-line segments the more gen-
eral form of the PM test must be uscd. Consider the
region between the V = E equipotentials. Along the
equipotential used as the generating curve C, the force
— VV tnwvially lies along the line segments perpendicu-
lar to C. The direction of the force was calculated
along the other equipoiential and was found to [ie to
the side nearer the saddle point for at least one point
when £ > —4.291208 eV, the same value (to seven
significant figures) obtained using the other equipoten-
tial. For this energy the direction of the force was cal-
culated throughout the region between the V=F
equipotentials and found always to lie to the transi-
tion state side of the straight-line segments.

Thus, if the region between the V'=-4.231208eV
equipotentials is covered by either family of straight-
line segments which are perpendicular to one of these
equipotentials, the force at every point on any line
does not lie to the side of the line nearer the tansition
state. But if the region between the V'=—-4.291207eV
equipotentials is covered by either family of segments
defined in the same fashion, the force at some point
on at least one line does lie to the side of the line near-
er the transition state. Therefore, by applying the PM
test, TST has been shown to be exact to at least

489



Yolume 48, number 3

—4.291208 eV, The possibility remains that TST
could be shown to be exact to a higher energy using a
different type of family of straight-line segments.

4. Discussion

Using Pechukas and McLafferty’s test, we have
shown that for the collinear subsurface of Porter and
Karplus® Hy hypersurface, transition state theory is
exact to at least 0.059281 eV above the saddle point
energy. This is within the range of Pechukas and
McLafferty’s estimate that TST can be shown to be
exact to an energy roughly between 0.01 and 0.1 eV
above the saddle point encrgy. We have not shown,
however, that trajectories of higher energy cannot re-
turn to the transition state once they have left it.
Chapman ct al. [7] have shown that for the system
considered here, TST is “essentially exact™ for ener-
gies up to over 0.2 eV above the saddle point encrgy.
TST is said to be “essentially exact” for a given cner-
gy E 1f at most only a small fraction of trajectories of
encrgy E pass throuzh the transition state more than
once.

The PM test for exactness was formulated for col-
linear triatomic collisions, but could be extended to
more general collisions. Let s be a reaction coordinate
and let {y,} be the set of remaining coordinates (vibra-
tions and rotations). Let each v; be orthogonal to s,
but the various v, need not be orthogonal to one an-
other {8,9]. Asin the collinear case, let s be negative
in the reactant region, zero at the transition state, and
positive in the product region. Transition state theory
could be said to be exact to energy I if for all configur-
ations (5, {y;}) with s # 0 for which V{5, {v;}) <E, the
conditions hold that 8V/os <O fors >0 and 0¥/0s
20 fors <0.

The information contained in fig. 2 has an addi-
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tional potential use. If one were calculating trajecto-
ries for a collinear triatomic system, and if only the
probability of reaction and not the final distribution
of energy between product modes were of interest, a
diagram like fig. 2 would provide a criterion for stop-
ping the integration of trajectories. For a given total
energy, onc can obtain from fig.2 a value of the reac-
tion coordinate s beyond which the trajectory cannot
return toward reactants and thus must continue to
products. Once this value of s 1s reached, integration
may be stopped without fear that, were integration
continued, the trajectory might lead back to reactants,

Finally 1t should be remembered that as usefula
concept as a “reaction coordinate” is, there are many
cases in whtch it is impossible to find a single reaction
coordinate for which reaction “progress” is a mono-
tonic function of reaction coordinate for all trajecto-
ries which lead from reactants to products.
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