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Abstract: SU(3) and SU(4) recoupling are used to develop techniques for the calculation of norm and
overlap matrix elements for properly antisymmetrized cluster wave functions. These techniques are
illustrated in detail by the calculation of a and ®Be cluster amplitudes for states of a few Aw
excitation in s-d shell nuclei. These extend earlier SU(3) strong coupling results for states of highest
intrinsic deformation to all vatues of (4x), making it possible to calculate a-amplitudes for SU(3)
weak and intermediate coupling wave functions. The extreme SU(3) weak and strong coupling
limits for a-amplitudes are compared for states of 1w excitation in light s-d shell nuclei. A general
formulation is given for the calculation of spectroscopic amplitudes for the transfer of ®Be clusters
in (*2C, a) or (**N, °Li) reactions on nuclei for which SU(3) and SU(4) are meaningful symmetries.
The method is illustrated by predictions of ®Be amplitudes to the prominent rotational bands in
20Ne.

1. Introduction

Recent multinucleon transfer reactions induced by °Li or heavy ion projectiles
have furnished much new information on cluster structures in nuclei over a wide
mass range ). The relationship between cluster spectroscopic amplitudes and the
norm and overlap kernels of properly antisymmetrized resonating group wave
functions 2~4) is a very useful one since much progress has recently been made in the
treatment of nuclear systems by the resonating group method. The most elegant
techniques for the calculation of resonating group kernels make use of various integral
transforms 3~ %), Although many challenging nuclear problems have been investigated
by this technique !°~!3), applications have been limited mainly to very light nuclei
(A S 12). Closely related techniques making use of harmonic oscillator generating
functions have been developed by a group of Japanese workers !4~ 18), Their method
is particularly simple if the internal and relative motion wave functions of the
resonating groups are constructed from harmonic oscillator wave functions with the
same oscillator size parameter. Much of the power of the technique comes from the
recognition ') that the eigenfunctions of the overlap operator, K, are SU(3) strong-
coupled cluster wave functions. For this reason, however, many of the applications
with this technique, particularly in the approximation of the so-called orthogonality
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condition model '°), have been limited to nuclei near the doubly magic system
10, with SU(3) symmetry (4u) = (00). Specific applications include for example,
a+12C [ref. 29)], a+ 10 [refs. 21724)], 3a [refs. !7>2%)] and 2x+ 160 [ref. !7)].
Supermultiplet symmetry and harmonic oscillator properties have been elegantly
exploited by Kramer and collaborators 26~28) in their studies of nucleon clustering
in light nuclei. Both SU(3) and SU(4) symmetry properties have also been exploited
by Smirnov et al. °:3%) in terms of a translationally invariant shell-model descrip-
tion, but applications again have been restricted mainly to very light nuclei.

It is the purpose of the present work to show that the calculation of cluster
spectroscopic amplitudes can be extended, for states up to a few Aw of oscillator
excitation, to any nuclear system for which SU(3) is a meaningful symmetry, hence
for nuclei through much of the s-d shell and certain core-excited states of nuclei
reaching up into the Ca region. By using harmonic oscillator SU(3) strong-coupled
resonating group wave functions the calculation of cluster spectroscopic amplitudes
is reduced to an exercise in SU(3) and SU(4) recoupling and is made feasible by the
simplicity and ready availability of the needed SU(3) and SU(4) recoupling
- coefficients ' ~33), as well as the needed shell-model parentage coefficients in the
SU(3)-SU(4) scheme 3*). The complications of embedding the angular momentum
in the SU(3) symmetry are saved till the last step in any calculation. This step is again
made feasible through the ready availability of a computer code for the Wigner
coefficients in the SU(3) > R(3) basis 32).

Although the techniques presented here can be used to calculate spectroscopic
amplitudes for any few-nucleon cluster, the applications in this work will be limited
to a~clusters and ®Be (or double o) clusters. Since the internal wave functions for
these clusters can be approximated by SU(4) scalar functions, the SU(4) recoupling
for these systems is essentially trivial. Alpha spectroscopic amplitudes for s-d shell
nuclei and states of Ohw excitation have been calculated by Draayer 3%) using the
c.f.p. of ref. 3%). Predictions based on the simplest SU(3) approximations seem to be
in remarkably good agreement with experiment 3¢~3%) and differ but little from
those calculated with much more complicated shell-model wave functions 4®). Some
a-spectroscopic amplitudes for states of 1hw and 2hw excitation in s-d shell nuclei
have been given in ref. 34); but these results are limited to cluster states which can
be approximated by SU(3) strong-coupled wave functions, with SU(3) quantum
numbers which in general are high enough so that the states are automatically free
of spurious c.m. excitation. There is some evidence 2°- 4!~ 42) that a weak coupling
approximation may be better for states of a few hw excitation in s-d shell nuclei.
Alpha spectroscopic amplitudes in the weak coupling approximation can be cal-
culated once the strong coupling amplitudes for translationally invariant cluster
states have been calculated for states of all possible SU(3) couplings of the internal
and relative motion functions by the technique to be presented here.

Sect. 2 establishes the notation and outlines the general method of calculation.
Calculations of a-cluster amplitudes are illustrated in sect. 3. Detailed results are



a AND °Be CLUSTERS 225

given for states of 1A excitation in nuclei in the beginning of the s-d shell. Results
of the extreme weak and strong SU(3) coupling approximations are compared, and
tabulations are given of the SU(3) norm factors needed to calculate a-spectroscopic
amplitudes for any intermediate coupling wave function. Since the extraction of
a-spectroscopic amplitudes from direct reaction cross sections or decay widths must
make use of realistic a-residual nucleus relative motion wave functions, harmonic
oscillator a-spectroscopic amplitudes may be needed up to many units of hw oscillator
excitation. As a further example of the present technique SU(3) norm factors are
therefore given for the 2#Mg = a +2°Ne system for all states based on a (Ap) = (80)
20Ne core up to oscillator excitations of 4hw. Sect. 4 illustrates the technique with a
more comphcated cluster, the ®Be (or double a) cluster. Calculations of ®Be ™
spectroscopic amplitudes for s-d shell nuclei have so far been limited to the nucleus
24Mg. This has been treated by Katd and Bandé '7) who have calculated ti.e eigen-
values of the overlap operator, K, for the '®O+a+a system by an elegant
generating function technique which, however, is tailored to a core of SU(3) symmetry
(A) = (00). Interesting rotational bands are known in 2°Ne and “°Ca which can be
reached only by eight-nucleon transfer but not by four-nucleon transfer reactions
[refs. 43~48)]. Spectroscopic amplitudes for core+8-particle systems with a core
of arbitrary SU(3) symmetry are therefore of interest. Specific applications are given
of ®Be spectroscopic amplitudes to certain core-excited rotational bands in 20Ne.

2. Method of calculation

The general method of calculation will be illustrated with the simplest example,
a single a-cluster coupled to a core residual nucleus. The cluster wave function for
an o+ core-system can be specified in SU(3) strong-coupled form by

P = o[ -al& )U"’"")m] X ¢4(5¢)¢(Qo)(' )]xISJMJTM'r’ M

where the internal wave functions, ¢(£), are functions of intrinsic coordinates £,
and hence free of spurious c.m. excitation. It is assumed that the internal functions
¢, and ¢, are constructed from single particle harmonic oscillator wave func-
tions ®(r)) with r; = [ma/h]*r,, while the wave function for the relative motion of
the cluster, &(r._,), is also a harmonic oscillator wave function. The prime on the
variable r again indicates a dimensionless coordinate, which is now the relative
coordinate r,__ = [4(A—4)mw/Ak]}r.,. The harmonic oscillator frequency o is
assumed to be the same in all size parameters. It is also assumed that the core cluster
function has good SU(3) and supermultiplet symmetry. The SU(3) quantum numbers
are given by the Elliott labels (4x), the SU(4) quantum numbers by [ 7] derived from
U(4) partition numbers conjugate to the space symmetry labels [ f]. [The notation
follows that of refs. 3':3%:34)] The a-particle internal function is built from Os
oscillator functions and transforms according to scalar representations of SU(3)
and SU(4). [The quantum numbers (4,4,) = (00), [7.] = [0] are omitted but are
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to be quietly understood.] In this strong-coupled form the square bracket of eq. (1)
designates SU(3) and SU(4) coupling (the latter being trivial with [7,] = [0]). The
SU(3) strong-coupled cluster function can thus be expanded in angular momentum
coupled functions:

b PN () o R R (AT (700 I, (2a)

where the square bracket now designates ordinary angular momentum coupling
in the separate orbital, spin, and isospin spaces (the latter being trivial with
S, = 0, T, = 0). The SU(3) strong-coupled functions are related to these angular
momentum coupled functions by

[ 4- s(E)FHNe) x (£ )P, JIAM) 1o

= Ebr((lcﬂc)xcllc;(QO)L.IIU-#)KL)V[%-4(fc)£f,°£fs’57r‘f><¢4(f.)¢‘£°’(r;.¢)]wu,m,,
) 3)

where the double-barred coefficients are reduced SU(3) > R(3) Wigner coefficients
in the notation of Draayer and Akiyama 3!). [Subgroup labels and phase conventions
are those of ref. 3!).] In the special case S, = 0 the cluster function (2a) corresponds
to an SU(3) weak-coupled wave function in which only the internal cluster wave
functions and the relative motion wave functions have good SU(3) quantum numbers.
With S_ #0, a cluster wave function in the SU(3) weak coupling approximation
must correspond to a definite state of the core cluster. It should have good J,
and x,_if it is the band head of a rotational band of good «,_[refs. 3!:3%)] (rather
than the x, associated with the orbital angular momentum L ). In this case an SU(3)
weak-coupled cluster function has the form

P = [ §a_ EIFW, % DulEI PN N spt, i,

= Y U(S.LJL;JLX—1yI=+te"Lelxo
KoLoL

X [ - S ENLLI x PuEIPEN )N isoirasTobir, (2b)

In this SU(3) weak-coupled function the angular momentum coupling is that of
J, with L_ to total J. The U-coefficient is an angular momentum recoupling
(Racah) coefficient in unitary form which relates this function to the function
defined in eq. (2a). The c, ;_are expansion cocfficients of states with good x,_J,
in terms of states of the x L basis. The antisymmetrizer & of egs. (1) and (2)
exchanges only nucleons between different clusters. It is normalized according to

[ g

where the P, are permutation operators which exchange at least one pair of nucleons
from the a and (4 —4) particle clusters.
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The overlap between two cluster wave functions of the type (1) can be expressed
in terms of a Feshbach overlap operator *°), X,

PP = (oll -Kw), ()

where |P*) = of|u) and u stands for the full set of quantum numbers, (4i.u)
[7.J(QOXAwKL . . ., of wave function (1). The diagonal matrix elements of the
operator, 1K, serve to normalize the antisymmetrized cluster functions. Pauli-
forbidden or redundant states are eigenstates of 1 — K with eigenvalue zero. The
simplicity of the harmonic oscillator SU(3) strong-coupling basis was exploited by
Horiuchi !¢) through the recognition that the K-operator is an SU(3) scalar. The
K-operator is thus diagonal in (Ag), and its matrix elements are independent of the
subgroup labels kL . . . of eq. (1). The overlaps of functions of type (1) are diagonal
in (A4) and independent of kL .. .. In the single channel approximation of the
SU(3) strong-coupling scheme (based on a core state with a single ()-ch)[?e]) the
operator 1 — K is thus a simple number which gives the normalization of the cluster
function (1). In this case 1 —K = 1/N?, where the normalized cluster function is
N¥*, and N is dependent on (4.u), [£.], @, (Ax) but independent of xL . . ., and is
abbreviated by NZ,. The normalization constant of the corresponding weak-
coupling wave function (2) is abbreviated by N¢_. With S, = 0it is related to the
N(an) by

1
INeTE = > [Ng m]zz«icuc)xch,(QO)L [(AppcLy>. (6a)

(An)

With S, #+ 0, the normalization constant of the SU(3) weak-coupled function (2b)
is given by
‘1 xy Jo xg J,
KJ ] K.I © 1 +L¢
T~ 5 P, e
x ¥ US.LJL;J L)US.LJIL,; J.L)
'L

x Y {Ate) Le; (QOILNAMKLY(Aeptoei L; (QOILI(AW)KLY.  (6b)

If the state of nucleus A is approximated by the weak-coupling wave function,
(2a) or (2b), the spectroscopic amplitude, A2 , for the dissociation of nucleus 4 into
an a-particle and a residual nucleus in the state specified by ¢(£,) is given by

AZ = 1/NE. ™
[See eq. (3.27) of ref. 4).] Although extensions to more complicated relative motion
wave functions are in principle straightforward, it should be emphasized that egs. (6)
and (7) give the a-spectroscopic amplitude in harmonic oscillator approximation,
since the relative motion function with quantum numbers Q (= 2N,+L) and L,
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has been approximated by a harmonic oscillator function of definite SU(3)
symmetry (Q0).
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Fig. 1. Relative and cluster ¢.m. coordinates.

The method to be used to calculate elements of the operator 1 — K makes use of a
“cluster-like” wave function ¥* introduced by Ichimura et al. %) in which the
relative motion function #@%(r._) of eq. (1) is replaced by a function $#©@(R’)
of the coordinate R, = [4mw/h]*R,, and in which the internal cluster function is
multiplied by a wave function of Os excitation for the c.m. motion of the core nucleus,
DON(R); see fig. 1a.

¥ = o[- (£ HITIPONR) x (£ )P COURY AN, 2 ®)

For these cluster-like (barred) functions overlaps are easy to calculate by projecting
them onto totally antisymmetric shell-model states:

CPIPTy = Y (P PL O PLIP™. ©

For states of a few hw of oscillator excitation the sum over shell-model states y is
restricted to a small number of terms since the overlaps are diagonal in the SU(3)
quantum numbers (Au) and in the total number of oscillator quanta; and the shell-
model states are restricted to those with the same core configurations found in the
cluster state. Note, however, that functions ¥*, P based on different (A1) are not
orthogonal to each other.

The final step in the calculation of matrix elements of 1 — K then makes use of a
transformation from the cluster center of mass coordinates R,, R, to relative
coordinates r__,, and R, , the coordinate of the c.m. of the whole system (fig. 1a),
by which the cluster-like [P™) for states of oscillator excitation khw are expanded
in terms of true cluster states |P*> of oscillator excitation khw, (k— how, . . ., Ohw.
This is a technique introduced by Ichimura et al. *) and also used by Aljadir 39),
which however is greatly simplified by the use of SU(3) strong-coupled wave functions
and SU(3) recoupling techniques. [It is interesting to note that integral transform
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techniques for the calculation of resonating group norm kernels have made use of a
similar intermediate step. Here also a transformation from cluster center of mass
coordinates to relative cluster coordinates is accomplished in the last step of the
calculation %).] —
Both of the basic steps of the calculation, the transformation from |[#*) to
|P*>, and the calculation of the overlaps {¥%,/?*>, make use of an expansion of
harmonic oscillator wave functions &(p’) in a variable p’ in terms of harmonic oscil-
lator functions &(r;), or ®(R;), where the variables p’ and r;, or R, are related by
unitary transformations, .
p;= ZI:"f“ua (10)

where, e.g., for some index j,

| HA=Y) mo o
p= A h P =Ty

A-4 ’ ’ ’ ’ 4 + ’ ’ ’
= W (rA_3+rA_2+rA_l+rA)— m (r1+r2+...+'A_4:). (11)

Or, with another choice of p’,
p' = [4mw/h]*R, = R,,
R, = JHru_s+ri_a+r 47

’ A-4 ! 4 + v
w5 [

- [A; 4]’ (‘“AA’ ) ?)*rﬂ + [%]’ (AT'"“’)*R“,. (13)

It will be convenient to express single particle harmonic oscillator wave functions in
terms of polynomials in harmonic creation operators, g,, for the ith particle, acting
on the oscillator ground state |0):

Pyim(ri[meo/h]*) = PE)(@)/0), (14)

with similar expressions for oscillator functions in the variables p. In place of the
principal quantum numbers 7, SU(3) representation labels (g0) will always be used,
where the number of oscillator quanta ¢ = 2n+ /. The basic expansion of a harmonic
oscillator function #(p) in terms of functions &(r;) has its simplest form in an SU(3)
coupled representation. For example,

A Q' i A
P8P =Yru)= X [ yi ] l__[ (4
' A a1 (O
i=1
X [ .. [[P(tho)(,h) x P(qzo)(,'z)](m +42,0) o P("’o)(l’s)](" t92+43. 00y
x Paa%y )18(0), (15)

(12)

Alternately
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a result given by Kramer 3!) which makes use of the transformation properties of
the A-particle harmonic oscillator function under the direct product group
U(A) x U(3), where Kramer’s result has been transcribed here into SU(3) coupled
language. The square brackets [ ] indicate SU(3) coupling. For example,

[P“"o)(t’l) % P‘"°’(qz)]§,‘{: +42,0)
= Y. <(g:0)01; @:005I(gs + g2, 00> X, <lymy Lm,[Im>Pion )PENn). (16)

L mymy

Since all SU(3) couplings are “stretched” couplings of commuting operators, the
order of the couplings in eq. (16) can be rearranged at will (without change of phase).
Note also that much of the simplicity of eq. (16) disappears in the analogous
expression in an angular momentum coupled representation.

Similar expansions making use of the unitary transformations of eqs. (12) and (13)
in four and two dimensions, respectively, can be used to expand harmonic oscillator
functions &(R) in terms of harmonic oscillator functions in the variables r/, _;,
ry_a r’y—, and r;, or the variables r,_, and R; . For example, the transformation

Q! T[A-4o 47t
wWr =~ X [Q,!Qz!] [T [z]

Q1+Q2=0)

x [@@ %) x @R, 1T, (17)
together with the trivial transformation

PONRY) = PONr ) x POUR; ) (18)

can be used to express the cluster-like function ¥* in terms of translationally
invariant true cluster functions ¥* in SU(3) strong-coupled form:

7 2 ol 7T

Q1+Q2=0)
x Y [ ha-al)0RNd x §(EJDQ O, Y] *4MP) x DOOR, VIO, 0y 1.
A'n')
X U(Ac1XQ10X4uXQ,0); (A'1'XQ0)), (19)

where the U-coefficient is an SU(3) Racah coefficient in unitary form. [The
notation is a generalization of that for angular momentum coupling, see refs. 3!+ 34).]
These SU(3) recoupling coefficients involving the simple stretched coupling of
(Q,0) x (Q,0) have a particularly simple form (see the appendix). The SU(3) re-
coupling transformation, illustrated in fig. 2, is needed to expand the right hand
side of (19) in terms of true cluster functions coupled to SU(3) representations
(A'w’). The oscillator functions &R ) carrying the excitations of the c.m. motion
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Fig. 2. The SU(3) recoupling transformation for eq. (19). The triangles represent SU(3) coupling.

are totally symmetric so that «f acts only on the true cluster functions. The c.m.
excitations range from 0, = 0 (the nonspurious component of ¥*)to Q, = k, where
k is the total number of harmonic oscillator excitations in the cluster-like function.
Since c.m. excitation functions with different values of Q, are orthogonal to each
other and since the overlaps of both cluster-like and true cluster functions are diagonal
in the SU(3) quantum numbers, (Au), the overlaps (P "|‘P"> are simply related to the
corresponding {P*|P") :

—4N2
<tp[(1:' n&XE)MM)'qI((kaW)](M)) = (A_4) <lp{(lé#é)(QO)](lﬂ)llp[(lonc)(QO)](M)>

A

Q! [A-4\2 (4\2: (AeENQLONA )| (A X Q10K A ')

+ L oagi\ 4 ) L (PRI plienX QORI
021 0,10,! Wu) -

+Q:=Q

X U((AcucNQ100AuXQ20); (X XQODU((AcuNQ,0XANQ,0); (X1 X Q0)). (20)

[1t has been assumed for simplicity that the core states (4.u) and (4_u.) carry the same
number of oscillator quanta.]

In the SU(3) strong-coupled single channel approximation [based on a single
core state (4.u)], the above relates the normalization coefficients of the cluster-
like states, Ng,), to the normalization coefficients of the true cluster states, N2,
(the normalized functions are N¥P* and N'P*, respectively). In this case eq. (20)
becomes

11 (A—4)° !
[N (An) 2 [Ng-u)]z A

=1 0:10:1\ 4 A ()-M)[Nglln)]z HREATRAHRL

0:1+02=Q

@n

Hence N¢, is determined from the norm of the cluster-like state if the normalization
constants for states O, < Q are known. If the core state is that of an s-d shell nucleus
in its ground-state configuration, e.g., the cluster function with Q = 8+k
corresponds to a shell-model function of k-units of oscillator excitation. Its norm
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is thus known if norms for cluster states corresponding to oscillator excitations
(k—1)hw, - -,0hw have previously been calculated. Since any application will
usually require knowledge of norm and overlap kernels up to a certain value of &,
the chain nature of this calculational technique will not be a disadvantage.

3. Alpha clusters and core excitations in s-d shell nuclei

Since there is considerable experimental information for a-transfer reactions to
negative parity and other core-excited states in s-d shell nuclei, states of a few hw
excitation in these nuclei are of special interest, particularly since deformed, low-lying
core-excited states may have large overlaps with a-cluster states based on cores of
good SU(3) and supermultiplet symmetry. In order to be able to make predictions
for both the weak and strong SU(3) coupling limits or specific intermediate coupling
wave functions, overlap and norm factors are needed for all possible (Au) in the

coupling of (4_u_) x (Q0).

3.1. AN EXAMPLE: STATES OF 1hw EXCITATION IN 2!Ne

Alpha cluster wave functions for 2!Ne are particularly simple since the ’O core
in its ground-state configuration is limited to the single SU(3) representation (20).
The calculations for 2! Ne nevertheless fully illustrate the method of calculation. The
cluster-like state is now

P* = oA[$,(E(TO)2NMIDONR, ;) x Gy(EIP LR HHM. (22)

States with Q < 8 are Pauli-forbidden. The normalization factors for states with
Q = 8 (i.e. states in the ground-state configuration of 2!Ne: s*p'2sd®) follow from
refs. 4 34), and in the notation of these references are

1 21\* .

N~ <ﬁ) G(sd*} (Al llxsoyll 120>, 23
()

with (Au) = (81), (62). The state with (Au) = (10, 0) is Pauli-forbidden. For states of

1hw excitation (Q = 9) the possible (Au) of (11, 0), (91), (72) are all allowed. The

states P* will project onto shell-model states

Wiy = P(*p* 2(sd)* (Aapss)[ fo] x (PN (30)[1]2M1,
with [7,] = [0] (space symmetry [4]), (Ax) = (80), (42) . . ., and with [f,] = [211]
(space symmetry [31]), (Au) = (61), (42).... The sum over 7 in the projection onto
shell-model states (eq. (9)) thus involves a small number of terms.

For (Ag) = (11,0), y: [f4)(A4ps) = [0J(80).
For (g) = 01, y: [fuJ(Aans) = [0)(80), [211]61).
For (Au) = (72), 7: [fa)(Aats) = [0](80) and (42), [211)(61) and (42).
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It will be convenient to express the 17O wave function inP* as
ATEE, . . ¥y 6) OO () )20MT),
and let the antisymmetrizers of and " act to the left in the overlap ( P, | P*>. In the
expansion of ®ONR, = 3(rig+rio+ry,+r3,)) according to eq. (15) only four
terms can contribute to the overlap with the shell-model states, the terms with
419,939, = 2223, 2232, 2322, 3222. From the total symmetry of ®#(R), and the

antisymmetry of ¢(§,) and Pg,, it follows that these four terms contribute to the
overlap with the same sign, so that

(Wl A [ b (E1TOYZMIPOOYR, ) x (£ )PAOHRY] ML)

21\/17 |4 91 1\ -
= — — 7 4,12 7 /' 1(00)}0]
[(17X16) [2!2!2!3! | (2) AP PEP %y - Fi6)

X P(sd, Fy 2O P(sA)’, Py .. . Po) ST x (P!, JOONTJSONOTIARNITY (20

where the binomial coefficients come from the action of of, &f’, and the last factor
of four follows from the combination of terms for the four possible ¢,4,4,4,. To take
the overlap it will now be convenient to decompose the shell-model wave function
according to configurations

Py, = A" P(s*p!?, r...r 6)(00)[01[lpv«sd)4»,.l1 4 o)(hm)l]’d
X W(pf)lral)(SO)(l]]U#)[l]’

where the antisymmetrizer of”’ antisymmetrizes between the three groups of
particles, (s*p*2), (sd)* and (pf)!. However, only the identity operator within of*’ can
contribute to the overlap with the right hand ket of eq. (24). The normalization co-
efficient of of”" contributes a factor [21!/16!4!11]~% to the overlap. Finally, the
SU(3)-SU(4) recoupling transformation illustrated by fig. 3 is needed to relate the
overlap of eq. (24) to a simple sd shell c.f.p.:

CP(ryg - . Pyo) T [ (p, )RONLT Plp! oty )EORLT|Ganal Tl

- ﬁi )L I GO IO, (29)

so)1% (CloT0g!
%ﬂ 20 Virgs
(30)I11
(2001) Vi) — o, (20) {30)(11
4,(7 o0y | Uan) ‘p(r" { (rg)
Ot Ol

Fig. 3. The SU(3), SU(4) recoupling transformation needed for the overlap (24). The triangles represent
both SU(3) and SU(4) coupling.
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which is here expressed in terms of the quadruple-barred matrix elements tabulated
in ref. 34). Thus ‘

, g '[9 P4 1 .
(PP = {[ ] [2!2!2!3!] 55 [(3)]*} (e AN x* GO 120N 11

)
x U((20X60XAuX30); (Au JOONU(1I[13I(1I[1]; [F.][0D. (26

The factor in curly brackets is [(9!/21212131)4]#/2%, the G-factor of Ichimura et al. *),
G((sd)*(ph*). The first U-coefficient is an SU(3) Racah coefficient, which in more
general cases is readily available through the code of Akiyama and Draayer 32).
Note that for most calculations with single a-clusters, such coefficients generally
involve a simple stretched coupling such as (60) x (30) — (90). For such coefTicients
a simple algebraic expression is available (appendix). In this particular example, in
addition, all representations of U(3) are two-rowed so that this particular SU(3)
U-coefficient can be read from tables of SU(2) Racah coefficients. The last U-
coeflicient is an SU(4) Racah coefficient of a particularly simple form thanks to the
SU(4)-irreducible character [0] of the a-particle. Its magnitude is given by simple
SU(4) dimension ratios 33). A consistent set of phases is obtained if all unitary
group recoupling coefficients are interpreted as permutation group recoupling
coefficients 32-33), and if the permutation group phase conventions of Kramer %)
are adopted. The ordinary SU(2) phase conventions and the SU(3) phase conventions
of Draayer and Akiyama 3!) are consistent with these. However, the SU(4) phase
conventions of refs. 33+ 34) must be modified. In the Kramer phase convention, a
multinucleon p-shell c.f.p. for the SU(3)-SU(4) coupled functions is given by simple
permutation group (S,) dimension ratios:

P@", 7, ... ) T e )Gl aT )
X |'P(P", fl v r:l=l1 +nz)(.‘:‘f)m>

< [dimg [f,]dimg [ f,] -
= (—1)® Lt} n2 , i -1)* =
( l) [ duns,.[f] T, with ( 1) 1 =s<ll—£n| + 16". (27)

where [f] describes the full three-rowed Young tableaux which give the space
symmetry of the p-shell wave functions, from which the SU(3) and SU(4) quantum
numbers can be read. The phase factor ¢ follows from the signs (g,,) of the axial
distances of the particles numbered s, t. [See egs. (3.2)-(3.4) of ref. 33).] Here s
ranges from 1 to n— 1 with s < ¢, while ¢ ranges from n, + 1 to n. The particle indices
n,+1 to n, whose removal from [ /] leaves the tableau [ f; ], must be placed in the
tableau for [ f] such that a shift up and/or to the left through an emptied tableau
for [ f,] of the labels n, + 1,7, +2, . . ., in order, leads to a tableau of shape [ f,]. The
analogous phase and dimension factors for the s-d shell multinucleon c.f.p. are
buried within the definition of the quadruple-barred reduced matrix elements of
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ref. 34), egs. (23) and (25). It is noteworthy that the norm factors for single a-clusters
in the single channel approximation [based on a single core state (4u)] are
completely free of phase difficulties, since all steps of the calculation involve only
the squares of overlaps, sce egs. (9) and (21). In more complicated cases the
requirement that the eigenvalues of 1 — K must be zero for redundant or spurious
states often serves as a valuable check on phases..

The norm factors N for the cluster-like states in 2!Ne with O = 9 follow from egs.
(26) and (9). The norm factors N for the true cluster states follow from eq. (21). The
state with (iu) = (11, 0) has no spurious c.m. component. Terms with @, = 1 in
eq. (21) are missing, and [1/N}, o] = G4°[1/N{},, 0] For the state with
(Ap) = (91), a term with Q, = 1 and (A'x’) = (81) makes a contribution to N,,,
since the cluster-like state (91) contains a spurious component with 1% of ¢.m.
excitation based on the Ohw state with (A'y’) = (81). Similarly, for the state with
(Au) = (72) a term with Q, = 1 and (A’y") = (62) in eq. (21) makes a contribution
to Ngyz-

3.2. APPLICATIONS

The norm factors needed for states of 1Aw excitation (Q = 9)in light s-d shell nuclei
are shown in table 1. In most of these nuclei a core state built from a single (4.u.)
is a good approximation. The one exception may be the core '®0 since both
(Acu;) = (40) and (02) are significant components in the [44442] space symmetry
piece of the 20 ground state. Norm and overlap factors for both representations are
therefore shown in table 1. Of the SU(3) strong-coupled cluster states in 22Ne,
however, only the state with (Ax) = (82) for Q = 8 and (92) for Q = 9 can be built
from a linear combination of (A u.) = (40) and (02) core states. For Q = 8 there is
only a single Pauli-allowed state with () = (82). The operator 1 — K has one eigen-
value of zero. The eigenvector associated with the other nonzero, eigenvalue gives
the single (normalized) nonspurious state

(;_2)4 6931_5 {\/S_Slplﬁo)"(80)1(82)_\/ﬁl11[(02)*(80)](82)}, (28)

where Pl(dero) X @ONAN) jg shorthand notation for the cluster state of eq. (1). The single
allowed state can be described in this “coupled channel” form or, equally well, as
the simple (normalized) cluster state

(E)‘ 27 lF[u.o) x (80)K(82) (29)

22) 5/33

The a-spectroscopic amplitude for (*20)y+ +a — (*3Ne)g,,,+ is of course inde-
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TABLE |
The a-cluster norm factors in light s-d shell nuclei
(k) ) (An) CPHPD/(A/A—- 2R [1/Ng,,0?

A =20 20) 8 81) 32x 52 x 71215 0.26061
: (62) 33x 50218 0.20104
9 (11,0) B x5x 7213 0.19316
91 Ix5x59/214 0.36179
(72) Ix5x7x61/2'7 0.32730
A=22: (40) 8 (82) Ix52x117214% 0.25075
(63) 33x 52214 0.20516

(44), 0 0
44), 33x11/213 0.18054
02) 8 82) 3x5x 72139 0.06383
) 32 x 52 x 772! 0.23935

(60), 0 0
(60), 32x5x 13214 0.17780
(40) 9 (a1 IxS5xTx13/2!8 0.25353
92) 32xSx7x11/2'6) 0.32179
(M) 32 % 5x 163217 0.34060
(54) 3% 52x491/11 x2'8 0.31090
02) 9 92) 33 x5x 711 x214Y) 0.22339
@1 P x§x T2 0.35105
(70) I*xS5xTx13/2'%x 11 0.31115
A=23: (60) 8 (83) 32x5x 11213 0.27862
(64) 33 x 11213 0.16717
4s) 33x 53214 0.18997
(26) 34x 7214 0.15957
9 11,2 3IxTx 13/21% 0.32552
93) - 32x7x13x89/216x23 0.26992
(74) 32 x 11 x 949/216 x 23 0.34791
(55) 3x52x11x101/2'6x 23 0.30856
(36) P x52xTx17/2'%x23 0.29745

*) Overlap between (4.u,) = (40) and (02): —3 x 5[770]'/%/2'4,
b) Overlap between (4.1.) = (40) and (02): —3*x 5 x 7/215[33]'72,

pendent of the description of this single (82) cluster state, and from either egs. (28)
or (29) leads to
22

18 22 4\/1_5
AL (*0+a— Ne) = | T2 | 57 {auon/55¢40)0; (BO)LI(82)r) >

—ay021/14¢(02)0; (BO)LII(82)xJD},  (30)

where g, are the amplitudes of the different components in the 0* ground state of
180. Eq. (30) is the ordinary shell-model prediction for the a-spectroscopic amplitude
[ref. 3%)] for this state of Ohw oscillator excitation. Both states (29) and (28) have
unit overlap with the single shell-model state P(s*p'2sd*) with (Au) = (82). For
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Q@ 2 9 and symmetries (4x) for which there exist states of spurious c.m. excitation, the
antisymmetrized cluster states pick out definite linear combinations of shell-model
states 54), free of c.m. excitation. The single and coupled-channel cluster descriptions
will now in general lead to different final states. In 22Ne, e.g., with Q = 9, (Ap) = (92)
the overlap operator 1—K has two nonzero eigenvalues in a coupled-channel
representation based on core states with (A_u.) = (40) and (02).

Since realistic a-residual nucleus relative motion wave functions may require
harmonic oscillator components including relatively high values of Q, norm factors
up to Q = 12 are shown, as an example, for Mg based on a 2°Ne core of pure (80)
symmetry (table 2). It is to be noted that the norm factors N§, for given Q have
very similar magnitudes, a result important for the approximations made in the
orthogonality condition model '°). There are, however, significant variations in
NG, for states near the highest possible A, which may be the most important com-
ponents in the wave function. Note also that N, tend toward unity as Q increases.
For very large Q the separation between core and a-clusters becomes so great that
the effects of the antisymmetrizer become negligible.

Alpha spectroscopic amplitudes follow at once from the norm factors of tables 1
and 2. The work of Draayer et al. 33 3~ 3%) shows that predictions for a-spectroscopic
amplitudes based on the SU(3) strong coupling model [leading (Au)] are in remark-
ably good agreement with experiment for states of Ofiw excitation in light s-d shell
nuclei. For core excited states, with Q = 9, the weak coupling model may be a better
approximation 20-41~42)_ 1t is thus of interst to compare the predictions of the two

TABLE 2
Norm factors for 2#Mg based on a 2°Ne core with (i) = (80)
Q (An) [1/NG,1? Qo A (1/Ng, )2

(84) 0.38601 1 a7, 1) 0.28273
(46) 0.33405 (15,2) 0.27550
(08) 0.29761 (13,3) 0.57580
a1, 4) 0.50849
9 (11, 3) 0.46058 (95) 0.60965
(94) 0.12282 (76) 0.57101
5) 0.45839 (&1)] 0.57396
(56) 0.21156 (38) 0.55475

(7 0.35075
(18) 0.25509 12 (20, 0) 0.19642
s, 1) 0.27826
10 (14, 2) 0.38547 (16, 2) 0.53549
12,3) 0.22675 (14,3) 0.55410
(10, 4) 0.56049 12, 4 0.67444
(85) 0.40147 (10, 5) 0.67203
(66) 0.49710 (86) 0.68661
“@n 0.42870 ©n 0.67272

(28) 0.43649 (48) 0.66059
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limiting cases. Spectroscopic amplitudes for the weak coupling limit are given by
egs. (6) and (7). When the sum over (4p) is restricted to the single term with highest

TABLE 3
The a-spectroscopic amplitudes for stripping to negative parity states of 1hw excitation

Y0+a—'Ne  A¥(Ap) = (20), ), = § » NE°
[strong coupling assumes x, = } band of pure (ig) = 11, 0)]

L, J A2, Alroog L, J A2 Al
1 3 0.308 0.055 5 4 0.324 0.027
1 § 0.335 0.004 5 3 0.337 0.008
1 3 0.303 0.059 5 3 0.325 0.015

5 i 0.320 0.021
3 ¥ 0.303 0.056 5 13 0.338 0.017

3 3 0.332 0.022 5 1 0.254 0.122
3 4 0.332 0.015
3 3 0.313 0.028 7 $ 0.330 0.012
3 2 0.338 0.011 7 i 0.334 0.003
3 i 0.280 / 0.090 7 n 0.325 0.012

7 13 0.329 0.015
7 17 0.337 0.024
7 12 0.225 0.156
180 + o - 22Ne A¥((Ap) = (40),J, =0~ J = L)2"°
[strong coupling assumes x = 1 band of pr  (4p) = (11, 1)]
L, A, AL s
1 0.229 0.004
3 0.238 0.023
5 0.253 0.048
7 0.272 0.067
9 0.293 0.059
19F 4o — 23Na AY(Ap) = (60),J. = 4 —» NE=?
[strong coupling assumes x, bands of pure (4u) = (11, 2)]
Al rons

L, J A2,

Ky= % Ky =% Ky =14

1 3 0.242 0.068
1 3 0.242 0.068 0
3 4 0.222 0.037 0.002 0.000, 4
3 3 0.222 0.037 0.001 0.002
5 $ 0212 0.007 < 0.009 0.006
5 il 0.212 0.007 0.007 0.009
7 13 0.234 . 0.001 0.023 0.023
7 i3 0.234 0.001 0.025 0.021
9 iz 0.262 0.014 0.030 0.046

9 12 0.262 0.014 0.047 0.029
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TABLE 3 (continued)

20Ne+a —» Mg A¥(Ap) = (80),J, =0 —» J = L)§=°
[strong coupling assumes x bands of pure (Au) = (11, 3)]

L A Adrong
x=1 k=13
1 0.153 0.016
3 0.266 0.063 0.000, 2
5 0.203 0.059 0005
7 0.200 0.006 0.029
9 0.230 0.028 0.089

possible (4u), or when weighted with proper amplitudes for each (4y), these equations
can also be used for SU(3) strong coupling or intermediate coupling wave functions.
[For S + 0, the final states kL also have to be weighted with coefficients %}’ ; see
egs. (3.1) and (3.6) of ref. 3%).] Results for the strong and weak coupling limits are
compared in table 3 for states of 1w excitation in light s-d shell nuclei. Since the weak
coupling function corresponds most closely to an a-particle moving about the core,
spectroscopic factors for the weak coupling functions are in general an order of
magnitude larger than those for the strong coupling limit. In the strong coupling limit
there are marked L, and J-dependences related to the fact that the L, and L, must
“fit” into a state of definite (4x). In the weak coupling limit on the vther hand there
is very little L, and J dependence. In the limit in which the NZ,, can be replaced by
an average value, the amplitudes are L, independent. For high values of Q, it is thus
sufficient to know an average value of N§,. For Q = 12 in ?*Mg, for example,
(table 2) the average value of N is 0.548; the values of 42 ,, are 0.56, 0.56, 0.55, 0.55,
0.57, 0.58, 0.60 for L _values of 0, 2, . . . ., 12, respectively. For 4 = 20-28, relative
spectroscopic factors for ground-state to ground-state transitions (Q = 8) are in
surprisingly good agreement with the SU(3) strong coupling predictions 3¢), with
the exception of A = 24 for which the experimental spectroscopic factor is too large
by a factor of about two. In this case the predicted 0* — 0* weak to strong coupling
ratio is 2.46. The 0* weak coupling wave function in Mg, based on a 0*(80) 2°Ne
core, has (Au) = (84), (46) and (08) components of 40.6, 34.7 and 24.7 %, It is in-
teresting to note that the shell-model calculation of Akiyama et al. >%) predicts
significant (46) and (08) admixtures for the ground state of 24Mg. The predicted shell
model (80), (46) and (08) percentages are 72.8, 11.0 and 4.8 9, the missing per-
centage corresponding to states of lower space symmetry. The ground-state wave
function for 2*Mg thus seems to be a superposition of strong and weak coupling
cluster limits. In the extreme weak coupling limit, however, all of the strength for
higher L-transfers would be shifted into the k = 0 band, whereas the experimentally
observed ratios are much closer to the SU(3) strong coupling limit 3%). For pure
(sd)" configurations in light s-d shell nuclei, therefore, the SU(3) strong coupling
model gives a very good approximation for a-spectroscopic amplitudes. The analysis
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for negative parity core excited states is as yet not sufficiently complete to decide
between the weak and strong coupling limits.

4. The *Be clusters

The cluster system, core+ 2«, has been treated by Katd and Bandd !7) who have
calculated the eigenvalues of the overlap operator 1—K for the 80O+« +a cluster
system by an elegant generating function technique. For nuclei with a core with
(A1) # (00) the SU(3) recoupling techniques developed in sects. 2 and 3 may have
some advantage. Although these techniques can be used for any three—cluster system
for which SU(3) is a meaningful symmetry, recent experimental results for the
(*2C, @) and (**N, SLi) reactions **~45) make the core+®Be cluster of particular
interest. For these reactions it is sufficient to treat a cluster model in which the
2x cluster is approximated by an eight-particle system corresponding to the 0%, 2+, 4+
states in Be with wave functions belonging to the SU(3) representation (40). The
technique to be used is sufficiently general so that higher excitations of the relative
motion of the a + « system are easily included. In the numerical applications, however,
the excitation of the internal degrees of freedom of the ®Be system will be restricted
to those which occur in the '2C or *N ground-state wave functions.

In the notation of sect. 2 and fig. 1b the cluster wave function for a core +a+a
system can be written in SU(3) strong-coupled form as

P = o[ o(E) N of [ y(&, o) POr )
x P! )]sl il . (31)

With both 4, # 0, u. ¥ 0 the multiplicity label p is needed for the SU(3) coupled
function whenever the coupling of (4.u,) x (Agug) yields the representation (Au)
with a d-fold multiplicity with d > 1. [The choice of p (p = 1,...,d) follows
refs. 31+ 34).] The relative motion harmonic oscillator functions in eq. (31) are

4 x 4mw

+
Py = P ([_Sh—] (R,, —R.,)) = #IVIR, —IR,), (32

where
R, = [4mw/hPir+r_y+ra+r,3),
R, = [4mo/h]* Hr s+ ra-s+ra_g+r4-7), (33)
A-88 mo P (r+...+r 7 rogt...+r
@Oy ) — B0 mw _ )
DENr.5) = B0 ([ 1 h] ( 3 1-38 (39)

The operator of” antisymmetrizes between the two a-clusters. It annihilates states
with ¢ < 4 since the eight-particle system must carry at least four oscillator quanta.
The number of oscillator quanta in the relative motion function is thus restricted
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to ¢ 2 4. The identity of the two a-particles further restricts ¢ to even values,
q=4,6,8, ... The spectroscopic amplitudes for (*2C — a+8-particle cluster) or
(**N — ®Li+8-particle cluster), calculated with harmonic oscillator shell-model
wave functions, further restrict the internal eight-particle cluster function to the
SU(3) representation (40). For our purposes therefore cluster states of the form of
eq. (31), with ¢ restricted to ¢ = 4, will be sufficient. The formalism, however, will
be carried out for general g. Even values of ¢, with ¢ > 4, correspond to the
dissociation of nucleus A into a residual nucleus (4—8) and two dissociated a-
particles not in the ground-state (40) band of %Be.

The method of calculation parallels that for single a-clusters. It again involves two
basic steps: (1) the transformation of overlaps of ‘““cluster-like” functions to overlaps
of true cluster functions, and (2) the calculation of the overlaps of cluster-like
functions, which is carried out by projecting these onto properly antisymmetrized
shell-model functions. The cluster-like function P is obtained from the true cluster
function P* of eq. (31) by replacing the relative motion oscillator function #(r..g)
in eq. (31) by an oscillator function &(R; = \/XR. +R.)) and by augmenting
the internal function ¢(£_,,) by a wave function of 0s excitation of the c.m. motion of
the core nucleus:

Pt = ot [ o(E)*HMTAPONRY) x A" [D4(Ee, )P (£, )PUNT, o))
% ,D(QO)(R'S)](A.ua)]('A_:f)nLTcl_ (35)

The transformation from P* to P* is accomplished by the analogues of egs. (15),
(17) and (18) applied to the 2 x 2 unitary transformation:

A-8 8
R; = [_A rest I:Z]’R::.m.’
8 A-8]}
R=-|2|r ZIr_.
] [ATrc-8+ |: A :| Rc.m.

(36)

This yields, e.g.

90 Q! PIA-—SPITBES, ooy, @'ONR’ 1429
lg()(R’B) = E W _A_ Z [¢ )(’c-a)x 4 )‘(Rcm)]w .
0+Q"=0

(37

This transformation, together with two SU(3) Racah or 6-0.;1) recoupling trans-
formations, make it possible to expand the cluster-like function P* for given
(A1), 95 Q, (Agig), coupled to final (Au), in terms of true cluster functions with the
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same (4_4.), g, but different (4gu,) and Q' < Q, coupled to resultant (A'u’):

Pllicuo) x (40) x (QO)KAREBIK Au)F'

] o Pa=sperse
_ugw (hzua) Q”z=:0 [Q'!Q"!T[ A Tq [A]”

o+0'=0

x U((qOXQ'0XA5/isXQ"0); (AgnsXQONU((A N Ag e XAUNQ 0); (X' p)p— ; (Agfls) - P)
x [ [N x o [$(E0)HENPTAr,c)
X PROYp!_ )]Aska) AP ¢‘Q"°’(R;_m_)]"-“)‘7°1. (38)

In the simple case when all cluster states are based on an (A4 — 8)-particle core with
a single (Au.), and the eight-particle cluster has a single, fixed value of ¢ (¢ = 4 in
our applications), the overlap of cluster-like functions ¥ is thus related to the overlap
of the true cluster functions ¥ by

< pllicue) X Hg0) x QO TaABIN AT I Plliopo) * I(g0) ¥ (QO)](IaFu)l(MW)

goil 7] 3]

Q'+Q

= [A —8 Plheto) * [90) X (QONALENAWZ | lldcke) X [@O0) * (QOINTaa) A7,

x U((qOXQ'0XAisXQ"0); (AsusXQONU (A XAsusXAuXQ 0); (A')p'- ; (Tailp) - )
x U((qOXQ'0XZ2sXQ"0); (A51sXQON U (At X AgpsXAuXQ"0); (A')p - ; (Xsite) - p)

x { Ppl(douc) * [(0) x (Q'O)](lbuh)](l'#')ﬁ" Pl(Acro) X (g0) (Q'O)](lsus)l(l'n’)ﬂ>_ (39)

The overlaps of two true cluster states ¥ with different (4g45) and (dgug) but the
same (44.), g, and hence Q, can thus be calculated if the overlaps for cluster states
with Q' < Q are known from an earlier step in a chain calculation. For Q' = Q—1,
the representations (4'y’) in the last term of eq. (39) are those for which a removal
of a single square from the Young tableau for (iu) leads to a permissible tableau
with a Pauli-allowed cluster function; for Q’ = Q —2, the representations (4’u’) are
those for which the removal of two symmetrically coupled squares from the
Young tableau for (Ay) leads to a permissible cluster function; etc. The derivation of
eq. (39) has made use of the orthogonality of c.m. excitation functions with different
Q" and of the orthogonality of cluster functions with different (4'u’).

In order to expand the cluster-like functions ¥ in terms of shell-model functions
in step (2) of the calculation process, it will be useful to apply the transformation (15)
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to the 2 x 2 unitary transformation,

ra=ViR,—ViR, Ri=IR, +/IR., (40)
to expand ®“%(r/,) and $P°(R}) in terms of the a-cluster functions $@O(R, ),
‘P(Q‘o)(R;z). Simple SU(3) recoupling leads to

[Sr) x BRI = T [HAOR,) x PR, )]
Q+ Qgi Q+q
(4,0) (420 (40)
X Y Xsusl(@1—41,0) (@3—4,,0) (Q0) |[(—1)
a +q:1 =q (2,0 (Q,0) (Aghs)

Q, QZXQX 0 ):I"
x[(‘lx 4 \0,/\@1—q,/ 1" 4y

The derivation of eq. (41) uses the fact that the coupling of two polynomials in the
same harmonic oscillator creation operators contributes a normalization factor ')

[PaOy) x PO~ 010 @0 = [(‘j‘)]’rﬂ?z%). @)

1

The symbol in square brackets in eq. (41) is an SU(3) 9-(Au) recoupling coefTicient
in unitary form 3%). Since it involves only SU(3) representations corresponding
to one- or two-rowed tableaux, it is equivalent to an ordinary 9j transformation
coefficient (in unitary form) which is of a particularly simple form since it contains
four “stretched” couplings. The transformation properties of the Moshinsky
brackets under the group U(2) x U(3), as elucidated by Brody and Moshinsky *6)
and Kaufman and Noack 37) show that the transformation coefficient in eq. (41)
can also be expressed as a simple SU(2) D-function with Euler angles a, 8,y = 0,
in, 0; so that

[G400r, ) x BOURYS = T [BOOR, ) x PO, )]
o+ chi Q+gq
X d}o,—0n. 4a-0@m):-  (43)

The calculation of the overlaps of cluster-like functions (¥*|P") through projection
onto shell-model states, eq. (9), is thus reduced to the calculation of (PZ,|¥*)
where the double-barred ¥ are double-a cluster-like functions

P = o [pUerlTYE YDOONRY)
x ' [H(E,, )bl 511)4’(0‘0)(“; )¢(on)( R;z)](zm)](f:_nwl]el_ (44)

The cluster system !2C+ %Be has been chosen as the prime example. The nucleus
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20Ne is of particular interest since it has been investigated both through the
(*2C, o) reaction *3) and the (14N, SLi) reaction “4* 4) on !2C. These reactions excite
a number of bands that are not observed in four-nucleon stripping reactions on *°0.
The K = 0* band with bandhead at 7.20 MeV has been tentatively assigned as a band
based on the 8p-4h configuration in 2°Ne, with SU(3) representations (84) and (04)
for the 8p and 4h pieces, respectively. The coupling of these representations leads
to a large number of resultant (Az). The SU(3) symmetry (4u) = (88), however,
corresponds to the most strongly deformed intrinsic state of 2°Ne. Since other low-
lying rotational bands based on core-excited states in 2°Ne seem to be approximated
well by SU(3) strong-coupled wave functions corresponding to large intrinsic
deformations, the ®Be cluster calculations will be limited to the SU(3) strong-
coupled approximation, based on states corresponding to large intrinsic deforma-
tions. Besides the K = 0" band at 7.20 MeV, the K = 2~ band (bandhead 4.97 MeV)
with (Au) = (82), 1hw excitation, and the K = 0* band (bandhead 6.72 MeV), pre-
dominantly (Au) = (42), Ohw excitation, are of particular interest since they are ob-
served in eight-nucleon transfer reactions but have a-spectroscopic factors of zero
in the extreme SU(3) limit. The ground-state K = 0* band, (Au) = (80), and the 5.80
MeV K = 0~ band, (A4u) = (90), are populated strongly both in « and ®Be transfer
stripping reactions. Additional states of 2hw excitation might be expected 8- %%)
around 10 MeV. For states of 2Aw excitation the SU(3) symmetries (84) and (92)
correspond to the largest intrinsic deformations. All of the 2°Ne bands listed can be
expected to have significant overlaps with (*2C+ ®Be) cluster wave functions of the
form of eq. (31), based on a '2C core with (4_u,) = (04), with ¢ = 4, and Q ranging
from Q = 8 (Ohw excitation) to Q = 12 (4hw excitation).

The general complexity of the calculations can be illustrated by the special example
Q = 9 (excitations of 1hw in 2°Ne). With ¢ = 4, Q = 9, the possible (4gu,) are
(13, 0), (11, 1), (92), (73), (54). All of these can couple with (A_u) = (04) to make
the single allowed nonspurious state with (ig) = (90) in 2°Ne. For (iu) = (90)
the overlap matrix (¥*|P") is thus a 5 x 5 matrix with four eigenvalues of zero and a
single nonzero eigenvalue. All of the possible (4g15) except (13, 0) can couple with
(A,) = (04) to make the Pauli-allowed states with (Au) = (82), (71). For both of
these the overlap matrices are 4 x4, again with a single nonzero eigenvalue. For
(Ap) = (63), (52) the overlap matrices are 3 x 3, etc. . . .. The double-a cluster-like
functionsP, eq. (44), which survive the antisymmetrization process are restricted
to the Q,Q, (or Q,Q,) values: 94, 85 and 76. These can project onto only two types
of shell-model states:

Pou = PE*[p* OD[13)(sd)*(Asus)[ fs] = [1]]4#1OD, (45a)
with (Ast5) = (81), (62), (43),..., and
Pou = P(s*p'2[(sd)*(A;15)[131(pF) ' (30)[1]]¢1, (45b)

with (Aspss) = (60), (22).
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Two examples will suffice to illustrate the complexity of the recoupling process
needed to calculate { P, |P). The function ¥ with 0, 0, = 49 is the simplest example.
It has a nonzero overlap only with the second type of shell-model function, with
(A3143) = (60), provided (iu) = (90) This overlap has the simple value

20! 4'12'3'1' 14
4!81414! 1'1'1'1' 2"' 2'2'2'3'

x U((04X40XAuX90); (00X Agps)) (51

The first factor comes from the action of antisymmetrizers.of, &, ... to the left.
The second factor is the normalization factor associated with the decomposition
of the antisymmetric shell-model wave function into the configuration s*p*2sd’pf*.
The factor in curly brackets is the transformation coefficient of eq. (15) for the
decomposition of $“%(R; ) and #°*(R; ) into single particle functions, the final
factor of four coming from the four possible decompositions of Q, = 9 into
41929:9, = 2223, 2232, 2322, 3222. The SU(3) recoupling U-coefficient is needed to
transform the SU(3) coupling from the order [p®[p*[sdpf!]]] to [[p®p*]1[sd3pf'1].
With one representation of (00) it is given by simple SU(3) dimensional factors and
is zero unless (4u) = (90). The final factor is the p-shell 8+4 particle c.f.p., given
by eq. (27). The sd shell c.f.p. is trivially equal to unity.

The function ¥ with Q,Q, = 58 has nonzero overlap with shell-model functions
of both types, egs. (45a) and (45b). The overlap with Pg(s*p'2sd3pf?) is given by

20! 411213111 51 4 8 P12
41814141 20! 1| 25 1rnit| 28

[1*] [1] [o] (30) (20) (50)
x Xguy | [1] [13] [0] | Xsus| (10) (70) (BO)
[o] [o] [o] (40) (A4} (Agug)

x U((20X(40)XAu)30); (43u43X70))
x U((04Y40XAuXAn); (00X Ag ) [F5]H{ Ot susn60) T 30 asumanr}(— 1)-

Additional recoupling transformations and coefficients are now needed to bring the
final single particle wave functions into the order s*p!2sd3pf!. The first of these,
given by the two X-coefficients, is a 9-(u), [f] recoupling transformation used
to transform the SU(3), SU(4) coupling for particles 13, 14, . . ., 20 from the order
[[p*(sd)'1lp' [(sd)*(®'11] to [[p°p'1(sd)'[(sd)*(pD']1]. This is followed by
recoupling transformations from [(sd)![(sd)?(pf)!]] to [[(sd)'(sd)*]1(pf)'], a pure
SU(3) 6-(Au) transformation since the resultant function must be an SU(4) scalar;
and finally a recoupling transformation from [s*[p®[p*[(sd)*(pf)*111] to [s*[[p®p*]
[(sd)*(pD)*]]], another pure SU(3) 6-(Au) transformation. The final factor of (—1)
is also associated with this reordering process: It is convenient to sandwich the
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identity operator = P? between Pg, and ¥ in (Wg,| P>, where P is here the permuta-
tion operator which exchanges particles 16 and 17. This P-operator is needed to bring
particle numbers 13, . . . 20 to cardinal order, acting to the right after the recoupling
process. It gives the factor (—1) when acting on g, to the left. The first recoupling
coefficient in square brackets is the SU(4) recoupling coefficient 34), needed for the
first recoupling transformation. It is given by SU(4) dimensional factors and has the
value 1, (independent of phase conventions). The second recoupling coefficient in
square brackets is the corresponding SU(3) 9-(Au) recoupling coefficient 34).
Since it contains SU(3) representations with one and two-rowed tableaux it can be
read from tables of SU(2) 95 coefficients.

The overlap of P(Q,Q, = 58) with the shell-model function P(s*p''sd®) is
given by

20! 411115! 51 PFal 8! 1
481414! 20! | 25fannnt | 28

x U((30X20)(45145X80); (SOXA5us))U((04N30X AN A5 145); (01X AgHts))

x 3514 — 30 assnsn) T [T%zﬁ]*‘s(z,u,xoz)}-

The overlaps (¥g|¥P) together with the transformation of eq. (41) lead to the
overlaps of the cluster-like states { P*|P*).

The quantum numbers within u are identical to those within v with the exception
of (Agug) so that the rows and columns of the overlap matrices can be labeled
by (Agug). With (A_u) = (04) multiplicity labels p are never needed. The final step
in the calculation involves the relation between (P*|P°) and {P*|¥®) given by eq.
(39). With ¢ = 4, Q =9, and (4u) = (82), for example, only the first term with
Q" = 0 survives in eq. (39), since the single 2°Ne shell-model state with 1hw excita-
tion and (4u) = (82) is free of spurious ¢.m. excitation. In this case the true cluster
function and barred function overlaps differ only by the trivial factor (20/12)°.
With (Au) = (90), however, eq. (39) involves contributions from the 0 = 1 term
with (4’u’) = (80). With (A3i%p) = (73), (A,iig) = (54), e.g. the Q' = 8 overlaps
with (Agug) = (82), (63) and (4gug) = (63), (44) contribute to the final value of the
overlap of the true cluster functions.

The states of interest in 2°Ne all lead to overlap matrices {¥*|¥") with a single
nonzero eigenvalue, hence a single nonspurious eigenvector. These matrices have the
simple (factored) form

KPP = £[<PIPHIPIPD] = s = CppuaCianmsr (46)
With (Au) = (04), ¢ = 4, fixed Q and (4y), the states ¥* are characterized by
(Ag#5)- The eigenvector corresponding to the single nonzero eigenvalue has the simple
form

N ¥ cumunP([(04) x [(40) x (Q0)](A515)](An)), 47

(Asps)
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TABLE 4
8Be cluster states in 2°Ne
Q “p) (Aatt4) KP"1P5/(20/12)9] Cann )

8 (80) (12,0) 3x7%x13/222 0.164701
(10, 1) 3x7x 11 x 13/220 0.412926
82 39 X 4737 x 223 0.737738
(63) 3x 11 x61%/223 0.933548
(a4) 3x5/2%x7 0.705946

1/Ngoy = 2.112
8 (42) (82) 36 x5x11/23x7 0.201626
(63) 35 x 57221 0.185724
(44) 3% 53215 % 7 0.724993

1/N,q, = 0.601
9 (90) (13,0) 3% % 7%/11 x 23 0.320055
a1 3 x TP x 2335 x 11 x 233 0.581959
92) 33x 7x 13x373/11 x 226 0.672415
(73) 33(313)%/5 x Tx 11 x 232 0.403167
(54) 397 x 236 —0.064480

1/Nyggy = 1.060
9 (82) ay 1 32 52x 72 x 13/11 x 236 0.138801
92) 3x5%2x 7*x13/11 x 227 0.396658
(73) Ix53x13x l7’/7x2" 0.690044
54 32 5% x 132/7 x 227 0.708525

1/N gz = 1.155
9 n (11, 1) Px7x13/5x11x228 0.241371
92 33x 57 x Tx13/11x 2% 0.363468
M) 33 x 4325 x 22° 0.171834
(&) 37222 —0.227465

1/Ngy, = 0272
10 (84) (10,2) 3x 52 x7x 11225 0.168712
(83) 36x 5% x Tx 11/230 0.464914
(64) 3Ix52x Tx11x233/230 0.685958

1/Ngqy = 0.715
10 ©2) a2, 1) 35x 73 x 13/11 x 235 0.263357
(10, 2) 3Ix5¥x72x 13228 0.485254
(83) 33x54x 72 x 13/11 x 23° 0.387962
(64) 3x 13x473/23° —0.115192

1/N5, = 0.469
12 (88) (84) (3% x 5% x 7/23%)2.33465 0.658502

1/N gy, = 0.434

*) Eigenvectors and norm factors for the non-redundant cluster states are given in terms of the

Cagug) DY €g8. (47) and (48).
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where P([. . .]J(4p)) is an abbreviated form for the cluster wave function of eq. (31),
and where the normalization coefficient is given by

1 5 1

N~ (AE.)C(M') (= N ) | “)
Table 4 gives the coefficients Cigue) along with the normalization ooefﬁcients, N, for
the states of greatest interest in “°Ne.

Under the assumption that the A-nucleon final state is approximated by an SU(3)
strong-coupled cluster state of the form of eq. (47), the spectroscopic amplitude for
the dissociation of A4 into a Be cluster and the residual (core) nucleus (4—8) in a
state (A.u,)[f.1x.L.S.J. can be denoted by

A((A—8),, +®Be[Ix L], — 4)),

where / is the angular momentum associated with r,,, / = 0, 2, 4 under the assump-

_ tion that the ®Be internal wave function is approximated by the pure SU(3) symmetry
(40); L, is the angular momentum associated with r_.4; and L, is the resultant in the
vector coupling [I x L,] = Ls. Under the above assumptions this amplitude has the
value (harmonic oscillator approximation)

A(coregtclicgolc + 8Be[l X Lr]La - As“lfs)l) = Z <(j'c”c)xch; (ABFS)KSLSH(iﬂ)KL)
(Agus)xs

x (40)1; (QO)L,|(Aspe)rcsLs>Ciaqupf — 1Y 7o * L~ U(S L I Lg; J LX1/N*=*(°Be)), (49)

where N%(®Be) is the normalization coefficient for the properly antisymmetrized
internal wave function for ®Be. It has been calculated for general g by Kato and
Band6 !7) and has the simple value [1/N]? = 2[1—2279], so that 1/N*(®Be) = [3]%.
[In the case where the coupling (4 .u.) % (Agug) — (Au) has a multiplicity > 1, a sum
over the multiplicity label, p, must be included along with the sum over (Agug)xg;
and c;,,,, and the first SU(3) o R(3) Wigner coefficient in (49) are then also dependent
onp.]

For the eight-nucleon transfer stripping reaction on 2C, ., the !2C,. + 5Be —» 2°Ne
spectroscopic amplitude is simply

A("2Cos +[Ix L,],- s = *°Nel)
=3 Y <040; (Aepe)xsJIiApKL = JH(A0); (QO)L,|I(AgH)Ksd DCiagusy: (50)

(Agps)xs

Even in this case there are a large number of amplitudes since all three /-values of
0, 2 and 4 will in general contribute to an amplitude for given L and given final state J.
Amplitudes for the bandheads of some of the most prominent rotational bands in
20Ne are listed in table 5 by way of illustration. In a rough qualitative way the
spectroscopic strength to the full rotational band structure of a given (4y) is given by
the strength factors 1/N listed in table 4.
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TABLE §
Spectroscopic amplitudes A(*2C,. +°®Be[/x L], -» 2°Nels) to bandheads in some rotational bands
in 2°Ne
Bandhead .
(Ap) ) 1 L, Amplitude
(80) 0* (x = 0) 0 0 0.3969
2 2 —0.1564
4 4 —0.0479
(82) 2 (i = 2) 2 1 —0.2957
4,97 MeV 2 3 —0.2951
4 3 —0.0096
4 5 0.1126
(90) 17 (k= 0) 0 1 0.1683
5.80 MeV 2 1 -0.1744
2 3 0.0251
4 3 0.0933
4 5 —0.1128
(42) 0* (x = 0) 0 0 0.2358
6.72 MeV 2 2 —0.1880
4 4 0.0568
(88) 0t (x =0) 0 0 0.3015
7.20 MeV 2 2 —0.2849
4 4 0.1762

Under the assumption that the reaction (4 —8Xa, b)A4 proceeds predominantly by
a direct eight-particle transfer process, the cross section for this reaction will
depend on both the {(4—8)+8 - A} and {b+8 — a} amplitudes through the
structure factor B [see e.g. eq. (5) of ref. 9)],
(2j.+1)

gist = T 1 B fua L Ly

x A*(A—8); +°Be[Ix L], — A)A(b;,+°Be[IxL];, > a;). (51)

For (a, b) = (*2C, a), for example, the amplitude A(b+8 — a), in the approximation
in which the internal wave functions for the ®Be and « clusters are assumed to have
pure SU(3) symmetry (40) and (00), has the simple value
8 12 12 2 3\/3

A(x+"Be [IX Lr]o = “Co+) = \/%((40)17(40)Lr = 1|(04)0> Y ?0(04), (52)
where a g, is the amplitude of the (Au) = (04) L = 0 component in the ground-state
wave function for '2C. The reduced SU(3) o> R(3) Wigner coefficients for / = 0,
2 and 4 have the values f;, —[4§]* and 3, respectively. With g, = 0.896 [ref. 6)],
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the amplitudes of eq. (52) are 1.11 ({ = 0), —1.24 (! = 2) and 1.25 (/ = 4) which
compare with the values of 1.0830 (I =0), —1.2257 (! =2) and 1.2758 (I = 4)
calculated by Kurath 5%) with more precise wave functions.

With approximations similar to the above, the (*4N, Li) amplitudes are given by

ACLIZO+*Be[Ix L], — *N,.)

2
- @00 09T, = LIGALX 0 OLI0AL) () 35500 69
where a,, a, are the coefficients of the !3S and !3D[4442] components of the !N
1* ground-state wave function. With a, = 0.950,a, = —0.247 [ref. !)],the L = 2
amplitudes are (in the above approximation): —0.221 (L, = 02), —0.549 (/L, = 22),
0.071 (IL, = 42 or 24), 0.636 (L, = 44); while the L = 0 amplitudes are —0.137
(IL, = 00), 0.153 (/L, = 22), —0.154 (IL, = 44).

Even for a direct eight-particle transfer process, the cross section for the
12C(14N, SLi)*°Ne reaction is a function of kinematical factors for several
L L (LgL;)Jg combinations, so that the cross section is determined through a
complicated interplay between the nuclear structure factors, B%-*L= and kinematical
factors carrying the physics of the reaction mechanism. In addition, interference with
sequential two-a-transfer processesand knock on processes may haveto be considered.
The former requires knowledge of a-spectroscopic amplitudes of the type calculated
in sects. 2 and 3. The strength of the latter is determined by cluster spectroscopic
amplitudes of the type A(**N+5Li — 2°Ne) and A(°Li+°Li — '*C) which can be
calculated by the techniques used for ®Be clusters in this section.

The simple SU(3), SU(4) recoupling techniques, illustrated by the calculation of
some o and ®Be cluster spectroscopic factors in this work, make it possible to
calculate clustering amplitudes for any nuclear system for which SU(3) and SU(4)
are meaningful symmetries. These techniques also make it possible to cope with
complicated core excitations in nuclei in the 4 = 12-40 region, since the properly
antisymmetrized cluster wave functions are free of the spurious c.m. excitations which
plague the more conventional shell model, weak coupling particle-hole model, or
quartet model descriptions of such states.

It is a pleasure to acknowledge valuable discussions with A. Arima, J. P. Draayer
and D. Braunschweig.

Appendix
Calculations for a-cluster spectroscopic amplitudes require only very simple SU(3)
recoupling coefficients of the form

U((AuXQ10XA"1"XQ,0); (A1XQ0)),
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with Q = Q, + Q,. An algebraic expression for these coefficients is available through
the work of Biedenharn et al. [see egs. (3.46) and (3.56) of ref. 63)]. Since the nota-
tion of ref. ©3) is very different from that used in nuclear physics applications, it may
be useful to transcribe their result into the Elliott notation. The SU(3) U-coefficient
with the “stretched” coupling (Q,0) x (Q,0) = (@ = O, +0,, 0) is given by

U(AuXQ0XA"1"XQ,0); (A'w'XQO0))
_Q,10,TATIATIATIA + 1)+ 1)A + ' +2)
- Q!4,14,14,14,145143!

. A+1+ADNA—A)H A+ 4, - AD (p+ 1+ AD(e—A3)(u+ 4, — A5)!
A+14+A4)A-ADA+1+A47—A)(p+1+4,) (u—A43)(u+1+ 45— 45)!
A+p+244ANA+p+1—-43) A+ pu+1+4, - 43! . Al)
A+pu+2+4)A+u+1-AD A+ p+2+47-43)1 )

In the phase convention of ref. 3!) these U-coefficients are always positive. The 4, are
the number of squares added to row i of the Young tableau for (Au) to make the Young
tableau for (4’y’) in the coupling (Ax) x (Q,0) —» (A'y’). With 4, +4,+4, = Q,,
l

N=A4+44,-4, y=p+a,—44 (A.2)
Similarly, 4; are the number of squares added to row i of the tableau for (4’u") to
make the tableau for (4"u”) in the coupling (A'u’)x(Q,0)— (A"u"); with
41+ 45+45 = Q,. Finally, 47 = 4,+4;, so that

M= N A=Ay = A+ A=A, @ =g+ A=Ay = pr M- A5 (A3)
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