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Abstract : SU(3) and SU(4) recoupling are used to develop technique° for the calculation of norm and
overlap matrix element° for properly antisymmetrized cluster wave function°. These techniques are
illustrated in detail by the calculation of a and °13e cluster amplitude° for °fate° of a few ~
excitation in s-d shell nuclei. These extend earlier SU(3) strong coupling results for states of highest
intrinsic deformation to all values of (~~ making it possible to wlailate a-amplitudes for SU(3)
weal: and intermediate coupling wave functions. The extreme SU(3) weak and strong coupling
limits for a-amplitudes are compared for states of 1~excitation in light s-d shill nuclei . A general
formulation is given for the calculation of spectroscopic amplitudes for the transfer of °He clusters
in ('=C, a) or ('4N, 6Li) reactions on nuclei for which SU(3) and SU(4) are meaningful symmetries.
The method is illustrated by predictions of °Be amplitudes to the prominent rotational band° inlONe .

1. Introduction

Recent multinucleon transfer reactions induced by 6Li or heavy ion projectiles
have furnished much new information on cluster structures in nuclei over a wide
mass range t). The relationship between cluster spectroscopic amplitudes and the
norm and overlap kernels of properly antisymmetrized resonating group wave
functions 2-a) is a very useful one since much progress has recently been made in the
treatment of nuclear systems by the resonating group method . The most elegant
techniques forthe calculation ofresonating group kernels make use ofvarious integral
trttttsforms s _9). Although many challenging nuclear problems havebeen investigated
by this technique to- t 3), applications have been limited mainly to very light nuclei
(A 5 12). Closely related techniques making use of harmonic oscillator generating
functions have been developed by agroup ofJapanese workers ta- t a), Their method
is particularly simple if the internal and relative motion wave functions of the
resonating groups are constructed from harmonic oscillator wave functions with the
same oscillator size parameter . Much of the powerof the technique comes from the
recognition te) that the eigenfunctions of the overlap operator, K, are SU(3) strong-
coupled cluster wave functions. For this reason, however, many of the applications
with this technique, particularly in the approximation of the so-called orthogonality

T Supported by the US National Science Foundation.
223



224

	

K. T. HECHT

condition model ' 9), have been limited to nuclei near the doubly magic system160, with SU(3) symmetry (gyp) _ (00). Specific applications include for example,
a+ 1zC [ref, zo)], a+ 160 [refs. 21-za)]~ 3a [refs. 1~.zs)] and 2a+ 160 [ref. 1 ')].
Supenmultiplet symmetry and harmonic oscillator properties have been elegantly
exploited by ICramer and collaborators 16-ze) in their studies of nucleon clustering
in light nuclei . Both SU(3) and SU(4) symmetry properties have also been exploited
by Smirnov et al. z9 ' 3~ in terms of a translationally invariant shell-model descrip-
tion, but applications again have been restricted mainly to very light nuclei .

It is the purpose of the present work to show that the calculation of cluster
spectroscopic amplitudes can be extended, for states up to a few fire of oscillator
excitation, to any nuclear system for which SU(3) is a meaningful symmetry, hence
for nuclei through much of the s-d shell and certain core-excited states of nuclei
reaching up into the Ca region. By using harmonic oscillator SU(3) strong-coupled
resonating group wave functions the calculation of cluster spéctroscopic amplitudes
is reduced to an exercise in SU(3) and SU(4) reooupling and is made feasible by the
simplicity and ready availability of the needed SU(3) and SU(4) recoupling
~~~~~31-33, ~ ß,e11 as the needed shell-model parentage coefficients in the
SU(3}SU(4) schemme 3a). The complications of embedding the angular momentum
in the SU(3) symmetry are saved till the last step in any calculation . This step is again
made feasible through the ready availability of a computer code for the Wigner
coefficients in the SU(3) ~ R(3) basis 32).
Although the techniques presented here can be used to calculate spectroscopic

amplitudes for any few-nucleon cluster, the applications in this work will be limited
to a~lusters and sBe (or double a) clusters . Since the internal wave functions for
these clusters can be approximated by SU(4) scalar functions, the SU(4) reooupling
for these systems is essentially trivial . Alpha spectroscopic amplitudes for s-d shell
nuclei and states of Ofiu~ excitation have been calculated by Draayer 3s) using the
c.f.p . of ref. 3a) . Predictions based on the simplest SU(3) approximations seem to be
in remarkably good agreement with experiment 36-39) and differ but little from
those calculated with much more complicated shell-model wave functions a~. Some
a-spectroscopic amplitudes for states of lfico and 2fic° excitation in s-d shell nuclei
have been given in ref. 3a); but these results are limited to cluster states which can
be approximâted by SU(3) strong-coupled wave functions, with SU(3) quantum
numbers which in general are high enough so that the states are automatically 1rce
of spurious c.m . excitation. There is some evidence z° " a1-az) that a weak coupling
approximation may be better for states of a few fim excitation in s-d shell nuclei .
Alpha spectroscopic amplitudes in the weak coupling approximation can be cal-
culated once the strong coupling amplitudes for translationally invariant cluster
states have been calculated for states of all possible SU(3) couplings of the internal
and relative motion functions by the technique to be presented here.

Sect . 2 establishes the notation and outlines the general method of calculation .
Calculations of a-cluster amplitudes are illustrated in sect. 3. Detailed results are
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given for states of liru~ excitation in nuclei in the beginning of the s~ shell. Results
of the extreme weak and strong SU(3) coupling approximations are compared, and
tabulations are given of the SU(3) norm factors needed to calculate a-spectroscopic
amplitudes for any intermediate coupling wave function . Siace the extraction of
a-spectroscopic amplitudes from direct reaction cross sections or decay widths must
make use of realistic a-residual nucleus relative motion wave functions, harmonic
oscillator a-spectroscopic amplitudes maybe neededup to many units oft~ oscillator
excitation. As a further example of the present technique SU(3) norm factors are
therefore given for the ~4Mg = a+ 2°Ne system for all states based on a (~,p) _ (80)
2°Ne core up to oscillator excitations of4irw. Sect. 4 illustrates the technique with a
more complicated cluster, the eBe (or double a) cluster. Calculations of 813e
spectroscopic amplitudes for s-d shell nuclei have so far been limited to the nucleus
ZaMg . This has been treated by Katô and Bandô 1') who have calculated ti .e eigen-
values of the overlap operator, K, for the 160+a+a system by an elegant
generating functiontechnique which, however, is tailored to a coreofSU(3) symmetry
(Zp) _ (00). Interesting rotational bands are known in 2°Neand ~°Ca which can be
reached only by eight-nucleon transfer but not by four-nucleon transfer reactions
[reÎS . 43-48)] Spectroscopic amplitudes for core+&particle systems with a core
ofarbitrary SU(3) symmetry are therefore ofinterest. Specific applications are even
of 813e spectroscopic amplitudes to certain core-excited rotational bands in Z°Ne.

2. Method of calculation

The general method of calculation will be illustrated with the simplest example,
a single a-cluster coupled to a core residual nucleus. The cluster wave function for
an a+core-system can be specified in SU(3) strong-coupled form by

where the intenaal wave functions, ~(~), are functions of intrinsic coordinates ~,
and hence free of spurious c.m . excitation . It is assumed that the internal functions
~,, _a and ~a are constructed from single particle harmonic oscillator wave funo-
tions ds(r~ with rr = [mcol%]~r� while the wave function for the relative motion of
the cluster, di(r'~), is also a harmonic oscillator wave function. The prime on the
variable r again indicates a dimensionless coordinate, which is now the relative
coordinate r~~ _ [4(A-4~/Att]~r~. The harmonic oscillator frequency w is
assumed to be the same in all size parameters. It is also assumed that the core cluster
function has good SU(3) and supermultiplet symmetry. TheSU(3) quantum numbers
are given by the Elliott labels (~R), the SU(4) quantum numbers by [,~] derived from
U(4) partition numbers conjugate to the space symmetry labels [f]. [The notation
follows that of refs. 31 " 33, 3~) ] The a-particle internal function is built from Os
oscillator functions and transforms according to scalar representations of SU(3)
and SU(4). ['The quantum numbers (~.~~ _ (00), [.~`a] _ [0] are omitted but are
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be quietly understood

.]

In this strong-coupled form the square bracket of eq

.

(1)

designates

SU(3) and SU(4) coupling (the latter being trivial with [3a] _ [0])

.

The

SU(3)

strong-coupled cluster function can thus be expanded in angular momentum

coupled

functions

~L~A-4(~C)¢I,LoSHTe'

X W4( al~Lr ~ra-a/]/SJAl~TII(rv	

(Za)
where

the square bracket now designates ordinary angular momentum coupling

in

the separate orbital, spin, and isospin spaces (the latter being trivial with

Sa

= 0, Ta = 0)

.

The SU(3) strong-coupled functions are related to these angular

momentum

coupled functions by

~L~A-~(~c)(Zd~cl~a1

X ~4(~a)~~~~C-a)~K~LS~ITA(T

_

	

~

~(~h~)x~~

;

(~)L~II(Z~)xLi

:~[~A-a(~~)Kâ`L"os~r°1

X ~a(~a)~~~(r~-a)~LSJer~TerT,

KcLcLr
(3)

where

the double-barred coefficients are reduced SU(3) ~ R(3) Wigner coeffcients

in

the notation of Draayer and Akiyama a'~ [Subgroup labels and phase conventions

are

those ofref

.

s')

.]

In the special case S~ = 0 the cluster function (2a) corresponds

to

an SU(3) weak-coupled wave function in which only the internal cluster wave

functions

andthe relativemotion wave functions have good SU(3) quantum numbers

.
With

S~ ~0, a cluster wave function in the SU(3) weak coupling approximation

must

correspond to a definite state of the core cluster

.

It should have good J~,

and

xJ~ if it is the band head of a rotational band of good xJ~ [refs

.

3 i

.

ss)] (rather

than

the x~ associated with the orbital angular momentum L~)

.

In this case an SU(3)

weak-coupled

cluster function has the form

Y

	

z

lZcaal[Îol ,~, x,,~iz0

_

~L~A-4(bc)S,ToYoJo X Y'4(Sa)~L~ ~~c-a)~JAl~ToMT

X .Söi[~A-4(~C)R~LCS~

c, X Y'4(bal~~~~e-al]LSoJAI,,TcMT~'

(2b)

In

this SU(3) weak-coupled function the angular momentum coupling is that of

J~

with Lr to total J

.

The U-coefficient is an angular momentum recoupling

(Racah)

coefficient in unitary form which relates this function to the function

defined

in eq

.

(2a)

.

The cX~~ are expansion ooetlicients of states with good xJ~J~

in

terms of states of the x~L~ basis

.

The antisymmetrizer

.srd

of eqs

.

(1) and (2)

exchanges

only nucleons between different clusters

.

It is normalized according to

where

the Pk are permutation operators which exchange at least one pair ofnucleons

from

the a and (A-4) particle clusters

.
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The overlap between two cluster wave functions of the type (1) can be expressed
in terms of a Feshbach overlap operator °9), K,

where I~h = .nllu) and u stands for the full set of quantum numbers, (Z~J
CÎ~7(QOX~~)KL . . ., of wave function (1) . The diagonal matrix elements of the
operator, 1-K, serve to normalize the antisymmetrized cluster functions . 1?auli-
forbidden or redundant states are eigenstetes of 1-K with eigenvalue zero . The
simplicity of the harmonic oscillator SU(3) strong-coupling basis was exploited by
Horiuchi ' e) through the recognition that the K-operator is an SU(3) scalar. The
K-operator is thus diagonal in (~ .~~ and its matrix elements are independent of the
subgroup labels xL . . . ofeq . (1). The overlaps of functions of type (1) are diagonal
in (~,~) and independent of KL . . . . In the single channel approximation of the
SU(3) strong-coupling scheme (based on a core state with a single (~,~~[~~]) the
operator 1-K is thus a simple number which gives the nonmalization of the cluster
function (1). In this case 1-K= 1/NZ, where the normalized cluster function is
N~~, andN is dependent on (~°I~+J, [~~], Q, (Zp) but independent of xL . . ., and is
abbreviated by N~aK~. The normalization constant of the corresponding weak-
coupling wave function (2) is abbreviated by~~ With S~ = 0 it is related to the
~xp~ bY

With S~ ~ 0, the normalization constant of the SU(3) weak-coupled function (2b)
is given by

x ~, U(`S~L cJLr, JcL)U(`S °L'eJLr ; J~L)

X ~, ~(~o14°)KcL° ; (~)Lrll(.~h)xL><(~oF~c)~oLc ; (1G")Lrll(.~h)xL>.
K

(6b)

If the state of nucleus A is approximated by the weak-coupling wave function,
(2a) or (2b), the spectroscopic amplitude, Ate, fogthe dissociation of nucleus A into
an a-particle and a residual nucleus in the state specified by ¢(~~ is given by

[See eq . (3.2~ ofref. a).] Although extensions to more complicated relative motion
wave functions are in principle straightforward, it should be emphasized that eqs. (6)
and (~ give the a-spectroscopic amplitude in harmonic oscillator approximation,
since the relative motion function with quantum numbers Q (= 2Nr +Lr) and Lr



228

	

K. T. HECHT

has been approximated by a harmonic oscillator function of definite SU(3)
sY~etrY(~)~

a~

Fig . 1 . Relative and cluster c.m. coordinates.

Themethod to be used to calçulate elements of the operator 1-K makes use of a
"cluster-like" wave function ~" introduced by Ichimura et al. a) in which the
relative motion function ~~Q°~(~-~ of eq . (1) is replaced by a function ~1Q°1(R~)
of the coordinate R~ _ [4mco/fi]~Ra, and in which the internal cluster function is
multiplied by awave function ofOs excitation for theam. motion ofthe core nucleus,
~lool(R7 ;see fig . la.

~" - ~~Y~A-4(~c)11oMo1tÎo1~100~~ X Y~4(~al~~ l"`a)~K~~~TAfT

For these cluster-like (barred) functions overlaps are easy to calculate by projecting
them.onto totally antisymmetric shell-model states :

For states of a few itco of oscillator excitation the sum over shell-model states y is
restricted to a small number of terms since the overlaps are diagonal in the SU(3)
quantum numbers (~) and in the total number of oscillator quanta ; and the shell-
model slates are restricted to those with the same core configurations found in the
cluster state . Note, however, that functions ~, SY°based on di�~erent (~~) are not
orthogonal to each other.
The final step in the calculation of matrix elements of 1-K then makes use of a

transformation from the cluster center of mass coordinates Ra, R~, to relative
coordinates r°~, and R~.m ., the coordinate of the c.m . of the whole system (fig. 1 a),
by which the cluster-like ~ for states of oscillator excitation ktsco are expanded
in terms of true cluster states ~~~ of oscillator excitation kfiuv, (k-1)fiic~, . . ., Oitc~.
This is a technique introduced by Ichimura et al. a) and also used by Aljadir so),
which however is greatly simplified by the use ofSU(3) strong-coupledwave functions
and SU(3) recoupling techniques . [It is interesting to note that integral transform



techniques for the calculation of resonating group norm kernels have made use of a
similar intermediate step . Here also a transformation from cluster center of mass
coordinates to relative cluster coordinates is accomplished in the last step of the
calculation s).]

Both of the basic steps of the calculation, the transformation from ~~) to
~ SP's, and the calculation of the overlaps <~~~~~, make use of an expansion of
harmonic oscillator wave functions ~(p') in a variable p' in terms of harmonic oscil-
lator functions ~(r~, or ~(R~, where the variables p' and ri, or Rk, are related by
unitary transformations,

where, e.g ., for some indexj,

-
CAA

-4) ~~

	

_ ,P

	

A

	

~

	

r~ = r~-a

Or, with another choice of p',

Alternately
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pj = ~ riu,~,

	

(10)

- [ 4A4~(r"
-3+rÂ_Z+r~_1+r~,)-

CA(A 4)J
(ri+r2+ . . . +r;,_4).

RQ = ~r,,_3~+r,,_Z+rA_1+r,,) .

Ra
- CAA

4~ro-a
+

CAJ~R~-

_ ~AA

4

	

(~ A
4)

~)~r~-~+ ~~ CA~)~R~m~

(12)

(13)

It will be convenient to express single particle harmonic oscillator wave functions in
terms of polynomials in harmonic creation operators, ~,, for the ith particle, acting
on the oscillator ground state ~0~

with similar expressions for oscillator functions in the variables p. In place of the
principal quantum numbers n, SU(3) representation labels (q0) will always be used,
where the number ofoscillator quanta q = 2n +1. The basic expansion ofaharmonic
oscillator function ~(p~ in terms of functions ~(r~ has its simplest form in an SU(3)
coupled representation . For example,

Qt
~r~i~Pj ° ~riurl) °

	

~

	

~ A

	

~ ~(urJr'
4~9: 4wc~r~=Q)

	

~(4r ~)

	

`-1
t= 1

X [. . . [[p(4~Ok~Î1) X p(9:0~~2)](9~+9a .0) X ~9~O~M3)](9~+9:+9s .0) X

X p(9w0~~A)]~~)~~~~

(14)

(15)
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a result given by Kramer ") which makes use of the transformation properties of
the A-particle harmonic oscillator function under the direct product group
U(A) x U(3), where Kramer's result has been transcribed here into SU(3) coupled
language. The square brackets [ ] indicate SU(3) coupling . For example,

_ ~<(4i~)h ;(4z~)rz~~(4i+4r0)li ~ Uimilzmzl~i~°,'"°i~h)~2:)(~Iz)~

	

(16)
i~~z

Since all SU(3) couplings are "stretched" couplings of commuting operators, the
order ofthe couplings in eq . (16) can be rearranged at will (without change ofphase).
Note also that much of the simplicity of eq. (16) disappears in the analogous
expression in an angular momentum coupled representation.

Similar expansions making use ofthe unitary transformations ofeqs. (12) and (13)
in four and two dimensions, respectively, can be used to expand harmonic oscillator
functions ~(~ in terms of harmonic oscillator functions in the variables r,, _ 3,
r~ _z, rA _ 1 and r,,, or the variables r~~ and R~.m.. For example, the transformation

together with the trivial transformation

Q ~

	

}

	

A_4~1~~ C~~1~¢3

Qz=o

	

CQi !Qz !~ C AA

~cool(~) _ ~coo~rc-") x ~(oo1~~e
.m.)

x ~ ~`~C~A-4\Sc)~~c"on.lo) x d~a(~J~cQ~o~,~-a)]~z~ "")[h x ~(Q2O~~.m.)]K~)JA(JTAfT
(.Z ./ t .

)

(17)

(18)

can be used to express the cluster-like function ~P" in terms of translationally
invariant true cluster functions ~Y" in SU(3) strong-coupled form

x u((~~~xQ~ox~.~xQao); (~~~xQo)),	(l9)

where the U-coefficient is an SU(3) lzacah coefficient in unitary form . ['The
notation is a generalization ofthat for angular momentum coupling, see refs . s' , aa).]
These SU(3) recoupling coefficients involving the simple stretched coupling of
(Q,0) x (Qz0) have a particularly simple form (see the appendix). The SU(3) re-
coupling transformation, illustrated in fig . 2, is needed to expand the right hand
side of (19) in terms of true cluster functions coupled to SU(3) representations
(~'~). The oscillator functions ~(R~.",.) carrying the excitations of the c.m . motion
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Fig. 2. The SU(3) rxoupling transformation for eq. (19). The triangles represent SU(3) coupling.

are totally symmetric so that .s+d acts only on the true cluster_functions. The c.m .
excitations range from Qs = 0 (the nonspurious component of ~~ to Qz = k, where
k is the total number of harmonic oscillator excitations in the cluster-like function .
Since c.m . excitation functions with different values of Q2 are orthogonal to each
otherand since the overlaps ofboth cluster-like and true cluster functions are diagonal
in the SU(3) quantum numbers, (~u), the overlaps <~"~~ are simply related to the
corresponding <~" ~~`~

~ep[c 'N~x lx~~~~c~~xQo»tavl~ =
CA

- 4IQ<~ckN~xtzo>x~l~yplc~~xQolx~>~
A

+

	

~

	

Q!

	

C

A-4\Q~ C4 ~Q~ ~ ~tpa~~xtz~olxx .~'1~~~~N~xQ~o~xx'r~'1~

x u((z~~~xQ~ox~~xQ2o) ; (~~rax~))U((~~~xQtoX~uxQ2o) ; (~~~~(~)).

	

(20)

[It has been assumed for simplicity that the core states (~,~~ and (~,~~) carry the same
number of oscillator quanta.]

In the SU(3) strong-coupled single channel approximation [based on a single
core state (~.~~], the above relates the normalization coefficients of the cluster-
like states, ~.tKr to the normalization coefficients of the true cluster states, Nßx"~
(the normalized functions are 1~P" and N~`", respectively). In this case eq. (20)
becomes

1

	

__

	

1 ] 1A-41Q

	

r

[NQ~11 2	[~a,~~
s

	

AA

Q!

	

A-4 Q' 4 Q~

	

1
+

	

Q~t

	

Qt!QZ! ~ A ~

	

CA) c~'1
[NQI~,~]z ~2((~~~xQtax~~xQZor,(z~~~x~o» .

4~+Q,=4
(21)

Hence N4xa1 is determined from the norm ofthe cluster-like state ifthe normalization
constants for states Qt < Q are known. Ifthe core state is that ofan s-d shell nucleus
in its ground-state configuration, e.g., the cluster function with Q = 8+k
corresponds to a shell-model function of k-units of oscillator excitation. Its norm
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is thus known if norms for cluster states corresponding to oscillator excitations
(k- loco, " - ~, Oiao have previously been calculated Since any application will
usually require knowledge of norm and overlap kernels up to a certain value of k,
the chain nature ofthis calculational technique will not be a disadvantage .

3. Alpha darters and core excitations in s~ shell nodes
Since there is considerable experimental information for a-transfer reactions to

negative parity and other core-excited states in s-d shell nuclei, states of a few iuo
excitation in these nuclei are ofspecial interest, particularly since deformed, low-lying
core-excited states may have large overlaps with a-cluster states based on cores of
good SU(3) and supermultiplet symmetry . In order to be able to make predictions
for both the weak and strong SU(3) coupling limits or specific intermediate coupling
wave functions, overlap and norm factors are needed for all possible (~lu) in the
coupling of (~,~~) x (QO) .

3.1 . AN EXAMPLE: STATES OF lAm EXCITATION IN 2`Ne
Alpha cluster wave functions for Z'Ne are particularly simple since the "O core

in its ground-state configuration is limited to the single SU(3) representation (20).
The calculations for 21 Ne nevertheless fully illustrate the method of calculation . The
cluster-like state is now

~ _ ~C~bi,(~(l'0))~ZOxil~coo~(~1,) x ~a(~a)~14o~(~)J~~+xll . (22)
States with Q < 8 are Pauli-forbidden. The normalisation factors for states with
Q = 8 (i .e. states in the ground-state configuration of Z1Ne: sapl ~sds) follow from
refs . a" 3a), and in the notation of these references are

4

NB,,�~ - (17) G(sda)<(~~`)II Ilxcâo~ll II(20)),

	

(23)

with (~.~) _ (81), (62) . The state with (~.~,) _ (10, 0) is Pauli-forbidden . For states of
lüco excitation (Q = 9) the possible (~.~) of (11, 0), (91), (72) are all allowed. The
states ~" will project onto shell-model states

SP'~ _ ,p(sap' 2(sd)a(~,a~a)CÎaJ x (Pf)1(~)C1J)~~xll,
with [.~aJ = [0] (space symmetry [4]), (~u) _ (80), (42) . . ., and with [,3aJ = [211]
(space symmetry [31]), (Zlc) _ (61), (42) . . . . The sum over y in the projection onto
shell-model states (eq. (9)) thus involves a small number of terms.

For (z~) _ (11,0), y :

	

C.~aJ(~a~a) _ [UJ(80) .
For (~u) _ (91),

	

y:

	

C.~aJ(~aha) = COJ(~), [211](61) .
For (~u) _ (72),

	

Y:

	

[ÎaJ(~aua) = CoJ(~) and (a2), [211](61) ana (a2) .



It will be convenient to express the t'O wave function ink as

sl'[ tY(ri, . . ., ri e)(oo](o]~pr(ri ~)tzoxt~~
and let the antisymmetrizers sal and .s+l' ad to the left in the overlap < ~a,l~). In the
expansion of ~~9°)(R~ _ ~(rie+ri 9+rZO+r2 t)) according to e4 . (15) only four
terms can contribute to the overlap with the shell-model states, the terms with
glgzq3qa = 2223, 2232, 2322, 3222 . From the total symmetry of 4S(R~, and the
antisymmetry of ¢(~J and ~s~,, it follows that these four terms contribute to the
overlap with the same sign, so that
<~~I~C~t,(~t'O)lzoxtl~coo>(~t~) x~a(~a)~(Q°l~~t~uxtl~

- [(17~16)~ C2!2
9
2!3!~ C2)94~tpst~ltp(saptz~ ri . . . rie)looxol

x ~(sdt, ri7)lzoxtlC~p(sd)a, rie , . . rio)teoxt ;l x y`((Pnt, rzi)t3oxi>](9oxo>]ç~!xll~,

	

(24)

where the binomial coefficients come from the action of .s~, sal', and the last factor
offour follows from the combination ofterms for the four possible q]gzg3qa . To take
the overlap it will now be convenient to decompose the shell-model wave function
according to configurations

Sf~ _ .nl" ,Y(saptz, ri . . . rie)(oox°1[ip((~)ari~ , . . rio)tz"N,xi,l

x ~(Pf)trzt)ts°xt]]c~x]1
where the antisymmetrizer sal" antisymmetrizes between the three groups of
particles, (saps z), (sd)a and (pf)t. However, only the identity operator within ,sad" can
contribute to the overlap with the right hand ket of eq. (24) . The normalization co-
efficient of .rd" contributes a factor [21 !/16!4!1 !]-~ to the overlap. Finally, the
SU(3}SU(4) reooupling transformation illustrated by fig . 3 is needed to relate the
overlap of eq . (24) to a simple sd shell c.f.p . :

~~(ri~ ~ . . rio)sz'w,xT.llC,p(ri~)tzoxt] x ~trie . . . rZO)tsoxi~l]cx,wxi,l~

'~~bo)n~

	

,~~(scot~]
(30)I11
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_ [~)]} <(~aua)Cla~ll Ilx +(~)II II(2o)Cl ]),

	

(25)

(~)cn

(

L
(r~a ~ ~ s

Fig. 3 . The SU(3), SU(4) t+ecoupling transformation needed for the overlap (24). The triangles sspresent
both SU(3) and SU(4) coupling .
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which is here expressed in terms ofthe quadruple-barred matrix elements tabulated
in ref. sa) . Thus

_

	

(~~x~6) }

	

9!

	

~ 4

	

l

x U((2ox6oxz,~x3o) ; (~,~~x9o))U([1][137[1][17 ; [.~4][0])~

	

(26)

The factor in curly brackets is [(9!/2!2!2!3!]x/29, the G-factor of Ichimura et al . 4),
G((sd)3(pf)') . The first U-coefficient is an SU(3) Racah coefficient, which in more
general cases is readily available through the code of Akiyama and Draayer sz) .
Note that for most calculations with single a-clusters, such coefficients generally
involve a simple stretched coupling such as (60) x (30) -. (90) . For such coefficients
a simple algebraic expression is available (appendix) . .In this particular example, in
addition, all representations of U(3) are two-rowed so that this particular SU(3)
U-coefficient can be read from tables of SU(2) Racah coefficients. The last U-
coefficient is an SU(4) Racah coefficient of a particularly simple form thanks to the
SU(4)-irreducible character [o] of the a-particle. Its magnitude is given by simple
SU(4) dimension ratios 33). A consistent set of phases is obtained if all unitary
group reooupling ooetïicients are interpreted as permutation group recoupling
coeffcients s2, s3), and if the permutation group phase conventions of Kramer ss)
aré adopted. The ordinary SU(2) phase conventions and the SU(3) phase conventions
of Ihaayer and Akiyama 31) are consistent with these . However, the SU(4) phase
conventions of refs . 3a, sa) must be modified . In the Kramer phase convention, a
multinucleon p-shell c.f.p. for the SU(3}SU(4) coupled functions is given by simple
permutation group (S,~ dimension ratios

!pr

	

i ~~

	

Ii

	

(xiK~NÎiI x 1p

	

~ Î

	

r ' (xsvsNÎz

	

0lfÎ1

dims"~ [h] dims",[.fz

	

"] with (-1)~ _

	

~

	

E,~ .

	

(27)_ (-1) dims"[f] ~~

	

1=a<,=",+1

where [f] describes the full three-rowed Young tableaux which give the space
symmetry of the p-shell wave functions, from which the SU(3) and SU(4) quantum
numbers can be read . The phase factor ¢ follows from the signs (E�) of the axial
distances of the particles numbered s, t. [See eqs. (3.2}{3.4) of ref. s3).] Here s
ranges from 1 to n- I with s < t, while t ranges from nl +1 to n. The particle indices
nl +1 to n, whose removal from [f] leaves the tableau [fl], must be placed in the
tableau for [f] such that a shift up and/or to the left through an emptied tableau
for [fl] ofthe labels nl + 1, nl + 2, . . ., in order, leads to a tableau of shape [fi] . The
analogous phase and dimension factors for the s-d shell mulfinucleon c.f.p. are
buried within the definition of the quadruple-barred reduced matrix elements of



ref. sa), eqs. (23) and (25) . It is noteworthy that the norm factors for single a-clusters
in the single channel approximation [based on a single core state (~.~~)] are
completely free of phase difficulties, since all steps of the calculation involve only
the squares of overlaps, sce eqs. (9) and (21). In more complicated cases the
requirement that the eigenvalues of 1-K must be zero for redundant or spurious
states often serves as a valuable check on phases . .
Thenorm factors 1Vfor the cluster-like states in 21Ne with Q = 9 follow from eqs.

(26) and (9). The norm factorsNfor the true cluster states follow from eq . (21). The
state with (Zp) _ (11, 0) has no spurious c.m . component. Terms with Q2 = 1 in
eq . (21) are missing, and [1/N91 ,, 0~2 = (~)9[1/~,1, 0~

2
. For the state with

(~h) _ (91), a term with Q2 = 1 and (~.'p,') _ (81) makes a contribution to N(91),
since the cluster-like state (91) contains a spurious component with 1~ of c.m .
excitation based on the 0~[co state with (~'u~ _ (81) . Similarly, for the state with
(gyp) _ (72) a term with Q2 = 1 and (~,'~~ _ (62) in eq . (21) makes a contribution

9t0 Nc72) .

3 .2. APPLICATIONS
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Thenorm factors needed for states of 1 iua excitation (Q = 9) in light s-d shell nuclei
are shown in table 1 . In most of these nuclei a core state built from a single (~~~
is a good approximation . The one exception may be the core ' 80 since both
(~~~) _ (40) and (02) are significant components in the [44442] space symmetry
piece ofthe '80ground state. Norm andoverlap factors for both representations are
therefore shown in table 1 . Of the SU(3) strong-coupled cluster states in 22Ne,
however, only the state with (~u) _ (82) for Q = 8 and (92) for Q = 9 can be built
from a linear combination of (~~) _ (40) and (02) core states . For Q = 8 there is
only a single Pauli-allowed state with (~,~) _ (82) . Theoperator 1-K has one eigen-
value of zero. The eigenvector associated with the other nonzero, eigenvalue gives
the single (normalized) nonspurious state

_18~4

	

27

	

{~IpII40) x (80)I(82)- ~~rl(02) x (80))(82)i
22 69~

	

'

1814_

	

27

	

~p[cao) x ceo)xa2)
22 5~

(28)

where ~plc~w) x cQ°)xx") is shorthand notation for the cluster state ofeq. (1). The single
allowed state can be described in this "coupled channel" fonm or, equally well, as
the simple (normalized) cluster state

(29)

The a-spectroscopic amplitude for ( 1S0)o . +a -" (22Ne)ca2u+ is of course inde-
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T~a1.e 1
The a~:luster norm fadoro in light s-d shell nuclei

') Overlap between (~J = (40) and (02) : -3 x 5[770]'/3/`'4
b) Overlap between (~~ - (40) and (02) : -34 x S x 7l2's[33]'n .

pendent of the description of this single (82) cluster state, and from either eqs. (28)
or (29) leads to

where ac~,l are the amplitudes ofthe di8'erent components in the 0+ ground state of
180. Eq . (30) is the ordinary shell-model prediction for the a-spectroscopic amplitude
[ref. ")] for this state of O~tw oscillator excitation . Both states (29) and (28) have
unit overlap with the single shell-model state ~(34pt23d4) with (~.~) _ (82) . For

(~~ Q (~u) <~'I~~l(AIA-4i n/~,al
A = 21 : (20) 8 (81) 3= x 5= x 7n's 0.26061

(62) 3s x 5n's 0.20I04

(91) 3 x 5 x 59/2'4 0.36179
(72) 3 x S x 7 x 61n" 0.32730

A = 12 : (40) 8 (82) 3 x 5= x 11/2'4 ') 0.25075
(63) 33 x 5s~'4 0.20516
(~)i 0 0

(02) 8 (82) 3 x 5 x 7/2' 3 ') 0.06383
(71) 3' x 5' x 7/2's 0.23935
(60), 0 0
(60)~ 3~ x 5 x 13/2'4 0.17780

(40) 9 (11, 1) 3 x S x 7 x 13/2's 0.25353
(92) 3= x 5 x 7 x ] 1/2'6 b) 0.32179

(54) 3x5'x491/llx2' 6 0.31090
(02) 9 (92) 33 x 5 x T/11 x 2' 4 °) 0.22339

(81) 33 x S x 7/2' 4 0.35105
(70) 34 x5x7x13/2'bxll 0.31115

A = 23 : (60) 8 (83) 3~ x 5 x 11/2' 3 0.27862
(64) 33 x11/2' 3 0.16717
(45) 33 x S~/2'4 0.18997
(26) 34 x 7/2` 4 0.15957

(93) 3~ x 7 x 13 x 89/2'6 x 23 0.26992
(74) 3~ x 11 x 949/2' 6 x 23 0.34791
(55) 3 x S= x 11 x 101/2' 6 x 23 0.30856
(36) 33 x 5~ x 7 x 17/2'6 x 23 0.29745



Q z 9 andsymmetries (~,p) for which there exist states of spurious c.m . excitation, the
antisymmetrized cluster states pick out definite linear combinations of shell-model
states sa), frce of c.m. excitation. The single and coupled-channel cluster descriptions
will now in general leadto different final states . In Z2Ne, e.g., with Q = 9, (ZU) _ (92)
the overlap operator 1-K has two nonzero eigenvalues in a coupled-channel
representation based on core states with (~~ _ (40) and (02).

Since realistic a-residual nucleus relative motion wave functions may require
harmonic oscillator components including relatively high values of Q, norm factors
up to Q = 12 are shown, as an example, for zaMg based on a 2°Ne core ofpure (80)
symmetry (table 2). It is to be noted that the norm factors NQ~,1 for given Q baud
very similar magnitudes, a result important for the approximations made in the
orthogonality condition model t9)

. There are, however, significant variations in
Nç~xpl for states near the highest possible ~., which may be the most important com-
ponents in the wave function. Note also that NQxpl tend toward unity as Q increases.
For very large Q the separation between core and a-clusters becomes so great that
the effects of the antisymmetrizer become negligible .
Alpha spectroscopic amplitudes follow at once from the norm factors of tables 1

and 2. TheworkofDraayer etal. s s " se- s~ shows that predictions for a-spectroscopic
amplitudes based on the SU(3) strong coupling model [leading (AR)] are in remark-
ably good agreement with experiment for states of Oi~co excitation in light s-d shell
nuclei . For core excited states, with Q ? 9, the weak coupling modelmay be a better
approximation s°~ a' -a2 ) . It is thus ofinterst to compare the predictions of the two
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TABLE 2

Norm fadora for =4Mg based on a =°Ne core with (ZaNJ = (80)

Q (xk) C 1 1N°x.a2 Q ü~) Cll~,,,7'
8 (84) 0.38601 11 (17,1) 0.28273

(46) 0.33405 (15,2) 0.27550
(08) 0.29761 (13,3) 0.57580

(11,4) 0.50849
9 (11, 3) 0.46058 (95) 0.60%5

(94) 0.12282 (76) 0.57101
(75) 0.45839 (57) 0.573%
(56) 0.21156 (38) 0.55475
(37) 0.35075
(18) 0.25509 12 (20,0) 0.19642

(18, 1) 0.27826
10 (14,2) 0.38547 (16,2) 0.535.49

(12, 3) 0.22675 (14, 3) 0.55410
(lo, a) o.s6oa9 (lz, a) o.674a4
(85) 0.40147 (10, 5) 0.67203
(66) 0.49710 (86) 0.68661
(47) 0.42870 (67) 0.67272
(28) 0.43649 (48) 0.66059
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limiting cases. Spectroscopic amplitudes for the weak coupling limit are given by
eqs. (6) and (~ . When the sum over (~.~) is restricted to the single term with highest

TABLE 3

The a-spedroaeopic amplitudes for stripping to negative parity states of 1Aw excitation

[strong coupling assumes K = 1 band ofp

	

(xR) _ (11, 1)]

[strong coupling assumes xJ bands of pure (Zp) _ (11, 2)]

L~ J

[strong

d~

coupling assumes xJ

A~

= } band of pure

L,

(~) = 11,

J

0)]

A~ A~

1 } 0.308 0.055 5 } 0.324 0.027
1 ~ 0.335 0.004 5 ~ 0.337 0.008
1 } 0.303 0.059 5 ~ 0.325 0.015

5 u 0.320 0 .021
3 } 0.303 0.056 5 ~ 0.338 0.017
3 ~ 0.332 0.022 5 ~ 0.254 0.122
3 } 0.332 0 .015
3 } 0.313 0 .028 7 ~ 0.330 0.012
3 } 0.338 0 .011 7 u 0.334 0.003
3 ~ 0.280~ 0.090 7 ;~ . 0 .325 0.012

7 ~ 0.329 0.015
7 iz 0.337 0.024
7 ~ 0.225 0.156

L~ J d~
KJ = ~

A~

Kl = ~ xJ = ~

1 } 0.242 0.068
1 ~ 0.242 0.068 0
3 } 0.222 0.037 0.002 0.000, 4
3 ~ 0.222 0.037 0 .001 0.002
5 ~ 0.212 0.007 ~ 0 .009 0.006
5 ~ 0.212 0.007 0.007 0.009
7 ~ 0.234 0.001 0.023 0.023
7 ~ 0.234 0.001 0 .025 0 .021
9 u 0.262 0.014 0.030 0.046
9 ;4 0.262 0 .014 0.047 0.029

L, A,=,�t A~~

1 0.229 0.004
3 0.238 0.023
5 0.253 0.048
7 0.272 0.067
9 0.293 0.059



[strong coupling assumes x bands of pun (Zl~) _ (11, 3)]
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T~,e 3 (continued)

2

possible (~~), or when weighted with proper amplitudes for each (~~), these equations
can also be used for SU(3) strong coupling or intermediate coupling wave functions.
[For S ~ 0, the final states xL also have to be weighted with coefficients ~~ ; see
eqs. (3.1) and (3.6) of ref. 3s).] Results for the strong and weak coupling limits are
comparedin table 3 for states of 1 iu,° excitation in light s-d shell nuclei. Since the weak
coupling function corresponds most closely to an a-particle moving about the core,
spectroscopic factors for the weak coupling functions are in general an order of
magnitude larger than those forthe strong coupling limit. In the strong coupling limit
there are marked ~ and J-dependences related to the fact that the L~ and L~ must
"fit" into a state of definite (~,~). In the weak coupling limit on the ether hand there
is very little L~ and Jdependence. In the limit in which the NQ~,~ can be replaced by
an average value, the amplitudes are ~independent. For high values of Q, it is thus
sufficient to know an average value of NQz~i. For Q = 12 in 24Mg, for example,
(table 2) the average value ofNis 0.548 ; the values of A:~,,~ are 0.56, 0.56, 0.55, 0.55,
0.57, 0.5$, 0.60 for L~ values of 0, 2, . . . ., 12, respectively . For A = 20-28, relative
spectroscopic factors for ground-state to ground-state transitions (Q = 8) are in
surprisingly good agreement with the SU(3) strong coupling predictions se), with
the exception of A = 24 for which the experimental spectroscopic factor is too large
by a factor ofabout two. In this case the predicted 0+ -" 0+ weak to strong coupling
ratio is 2.46. The 0+ weak coupling wave function in 24Mg, based on a 0+ (80) 2°Ne
core, has (~.~) _ (84), (46) and (08) components of 40.6, 34.7 and 24.7 %. It is in-
teresting to note that the shell-model calculation of Akiyama et al. ss) predicts
significant (46) and (08) admixtures for the ground state of 24Mg. The predicted shell
model (80), (46) and (08) percentages are 72.8, 11 .0 and 4.8 ~, the missing per-
centage corresponding to states of lower space symmetry . The ground-state wave
function for 24Mg thus seems to be a superposition of strong and weak coupling
cluster limits . In the extreme weak coupling limit, however, all of the strength for
higher Irtransfers would be shifted into the x = 0band, whereas the experimentally
observed ratios are much closer to the SU(3) strong coupling limit ss) . For pure
(sd)" configurations in light s-d shell nuclei, therefore, the SU(3) strong coupling
model gives a very good approximation for a-spectroscopic amplitudes . The analysis

A...t
K 1

A,~�w
K=3

1 0.153 0.016
3 0.266 0.063 0.000,
5 0.203 0.059 0.005
7 0.200 0.006 0.029
9 0.230 0.028 0.089
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for negative parity core excited states is as yet not sufficiently complete to decide
between the weak and strong coupling limits .

4. The 'He clusters
The cluster system, core+2a, has been treated by Katô and Bandô ") who have

calculated the eigenvalues of the overlap operator 1-K for the ' 60+a+a cluster
system by an elegant generating function technique. For nuclei with a core with
(~cp~) ~ (00) the SU(3) recoupling techniques developed in sects. 2 and 3 may have
some advantage. Although these techniques can be used for any three luster system
for which SU(3) is a meaningful symmetry, recent experimental results for the
(1~C, a) and (laN, 6Li) reacü0I1S a3-~) make the core+ sl3e cluster of particular
interest . For these reactions it is sufficient to treat a cluster model in which the
2a cluster isapproximated by an eight-particle system correspondingto the 0+, 2+, 4+
states in s13e with wave functions belonging to the SU(3) representation (40). The
technique to be used is sufficiently general so that higher excitations of the relative
motion ofthea+asystem are easily included . In the numerical applications, however,
the excitation of the internal degrees of freedom of the 813e system will be restricted
to those which occur in the 1 ~C or laN ground-state wave functions.

In the notation of sect . 2 and fig . l b the cluster wave function for a core+a+a
system can be written in SU(3) strong-coupled form as

~a = `~[Y~A-B(Sc)(~°PaN,Îol X .5~~[W4(~a~)Y'4(baa)~(40 ,rro1)
(xsPS) (~a1P[Îo1 (31)

With both ~,~ ~ 0, R~ ~ 0 the multiplicity label p is needed for the SU(3) coupled
function whenever the coupling of (~,~~) x (~eus) yields the representation (gyp)
with a d-fold multiplicity with d > 1. ['The choice of p (p = 1, . . ., d) follows
refs. s i , 34).] The relative motion harmonic oscillator functions in eq . (31) are

The operator .s~l' antisymmetrizes between the two a-clusters. It annihilates states
with q < 4 since the eight-particle system must carry at least four oscillator quanta .
The number of oscillator quanta in the relative motion function is thus restricted

~(vo ~4 x 4mcol#
üR ~r'rol) = ~(aol

I~n (~~ -~:)
~ _ ~(qo~

Ini (~g~ai -~R'a=)+ (32)Ô~
where

l~s = [4aruo/~t]}~(r,,_a+rA_S+r,,_6+r,,_~), (33)

. . . . . .
~r.~r(Qo~ ~r~-e)

mcul~ lr,,+ +rA _~ rA _e+
_ ~crvQol \C(

A-8)8 - +rl~~ . (34)
A ~ 8 A -8
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to q ~ 4. The identity of the two a-particles further restricts q to even values,
q = 4, 6, 8, . . . . The spectroscopic amplitudes for (12C -" a+8-particle cluster) or
('4N -" 6Li+8-particle cluster), calculated with harmonic oscillator shell-model
wave functions, further restrict the internal eight-particle cluster function to the
SU(3) representation (40). For our purposes therefore cluster states of the form of
eq . (31), with q restricted to q = 4, will be sufficient . The formalism, however, will
be carried out for general q. Even values of q, with q > 4, correspond to the
dissociation of nucleus A into a residual nucleus (A -8) and two dissociated a-
particles not in the ground-state (40) band of aHe.
Themethod ofcalculation parallels that for single a~lusters. It again involves two

basic steps : (1) the transformation ofoverlaps of"cluster-like" functions to overlaps
of true cluster functions, and (2) the calculation of the overlaps of cluster-like
functions, which is carried out by projecting these onto properly antisymmetrized
shell-model functions . The cluster-like function ~ is obtained from the true cluster
function ~" of eq. (31) by replacing the relative motion oscillator function ~(rca)
in eq . (31) by an oscillator function ~(R'e = ~(l~,+l~,)) and by augmenting
the internal function ~(~~)by awave function ofOs excitation ofthe c.m . motion of
the core nucleus

~" - `~CY'A-8(Sc)(~oPcK~o7~(OON~c) x .~~LW4(Sa11W4(~aa)~(~ ~~rel)

X ~QO)(jra)~(z°Ka)~(tN)v[Î~1.

	

(35)

The transformation from ~" to ~"' is accomplished by the analogues of eqs. (15),
(17) and (18) applied to the 2 x 2 unitary transformation :

?his yields, e.g .

~s =
CAA

8
~r~-e + C~~~~.m,

R~ _ - C~~r~-s+
CAA

8]~R~.~ .~

i

	

}

	

,q _g

	

~~

	

8

	

.~,.
~r~~~s) =

	

Q

	

CQ- Q~~ ~~ C A ~

	

CAJ

	

[~(QIO~r`-s) x

~(Q.
.~~R~ .m .)~iéi ~ .

Q. +Q ..-Q

(36)

(37)

This transformation, together with two SU(3) Racah or 6-(~,~.) reooupling trans-
formations, make it possible to expand the cluster-like function ~ for given
(~c~c)e q, Q, (~e~a), couPled to final (~,~), in terms of true cluster functions with the
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same (~.~~, q, but different (~slza) and Q' S Q, coupled to resultant (~i'le') :

~/[(zcPo) x [(~) x (QO)H~T6N6)HzKM'

x u((~xQ~ox~B~exQ~~o) ; (za~ex~»u((~~~x~e~ex~~x~~o) ; (~~~~P- ; (~B~e)-p)
x ~~~~(z~~xlal(~~) x ,ss''~m(~a~)~~a~)~(~~,~r~))

x ~(Q.°~r~-e)](zeRs)]ü'~')n x ~Q'.°~~ .

	

)](~xÎo).m.

In the simple case when all cluster states are based on an (A - 8)-particle core with
a single (~~h~, and the eight-particle cluster has a single, fixed value of q (q = 4 in
our applications the overlap ofcluster-like functions ~ is thus related to the overlap
of the true cluster functions 'P by

Ij/[(zolk) x [(4°) x (Qo)nzer~)x~~ IIpI(zclb) x ttv°)x(4o)1(zsiv)Hzp)p~

=
CA
-g~~ ~r[(z~aa) x [(9°) x (Sto)1(~éK6)HZN)P I tp[(zol~c) x [(9°) x (Qo)1(~aPe)1(zP)p\/A

x u((~x~ox~B~exQ~~o) ; (~é~ex~»~((~~~~x~éu~xz~xQ~~o) ; (.hf~~)P~ ; (~8~8)-v~)
x u((~xQ~ox~e~exQ~~o) ; (~8~ßx~»~((~~~x~a~ex~~xQ~~o) ; (~~~~)P- ; (~e~e)-p)

(38)

x ~ ~p[(zoN~) x [(vo) x (Q'o)xziNi)xz'~')v'~ gr[(z~rw)x [(qo) x (Q'o)xz .Ke)xz "k')v~ .

	

(39)

The overlaps of two true cluster states 9~ with different (~sPs) and (Aéué) but the
same (~,~~), q, and hence Q, can thus be calculated if the overlaps for cluster states
with Q' < Q are known from an earlier step in a chain calculation . For Q' = Q-1,
the representations (~.'~) in the last term of eq . (39) are those for which a removal
of a single square from the Young tableau for (~u) leads to a permissible tableau
with a Pauli-allowed cluster function ; For Q' = Q-2, the representations (~.'~) are
those for which the removal of two symmetrically coupled squares from the
Young tableau for (~P) leads to a permissible cluster function ; etc. The derivation of
eq . (39) has made use of the orthogonality of c.m. excitation functions with different
Q" and of the orthogonality of cluster functions with different (~,'u').
In order to expand the cluster-like functions ~ in terms of shell-model functions

in step (2) ofthe calculation process, it will be useful to apply the transformation (15)



to the 2 x2 unitary transformation,

riel -

	

"a,-~~:~

	

~8 = Y za`ai +Y la`aae

to expand ~(9°)(r~a~ and ~Q°~R's) in terms of the a-cluster functions ~c¢'°~1~,),
45(Q~°)(R~=). Simple SU(3) recoupling leads to
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~p(9~°)(~Ii) x~Qi-4~.0)(~i)~(4t °)

The derivation of eq . (41) uses the fact that the coupling of two polynomials in the
same harmonic oscillator creation operators contributes a normalization factor sl)

(42)

The symbol in square brackets in eq. (41) is an SU(3) 9-(Zp) reooupling coefficient
in unitary form 3°). Since it involves only SU(3) representations corresponding
to one- or two-rowed tableaux, it is equivalent to an ordinary 9j transformation
coefficient (in unitary form) which is ofa particularly simple form since it contains
four "stretched" couplings. The transformation properties of the Moshinsky
brackets under the group U(2) x U(3), as elucidated by Brolly and Moshinsky ss)
and Kaufuran and Noack °') show that the transformation coefficient in eq . (41)
can also be expressed as a simple SU(2) D-function with Euler angles a, ß, y = 0,
-}n, 0 ; so that
r~(90kr~e1) xß(i2° l~9)~~zaKe) e

	

~

	

r~(Q~Okp~ l) x ~(4:°)(.`aa)~(Z°l~s)
4~

Q~+4x=Q+9

xd~Q~-42).~(9-Q)(~). (43)

The calculation of the overlaps of cluster-like functions < ~" ~ ~`) through projection
onto shell-model states, eq . (9), is thus reduced to the calculation of (~P~~SY~
where the double-barred Sf are double-a cluster-like functions

- ~~~i~kr,oHÎ~I(~e)~oo>(~e)

X .f~~~~(~a~)~~ea~)~
(4io~RQ~~(Qa°)(~=)~(zsks)~(3P)vlÎol

	

(44)

The cluster system 12C+ aBe has been chosen as the prime example. The nucleus

~~'°~rrc>) x ~cQ°)(K8)~(xeüs) ~~4i°)(~a)i x ~(Qx°>(~
s)~(zeps)

4~
Q~+Q2=4+9

(4a0) (40)
x ~ Xsu(a> (Qi -4i,0) (Qs-4z,0) ( ( -1)°~

9~
91+91=9 (Qi0) (Qz0) (haus)

x
C\~1/ \~2/ \Q1/ \L~1~41/~"

(41)
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2°Ne is of particular interest since it has been investigated both through the
(1ZC, a) reaction `a) and the (1`N, 6Li) reaction "~ `s) on' ZC. These reactions excite
anumber of bands that are not observed in four-nucleon stripping reactions on ' 60.
TheK= 0 + band with bandheadat 7.20MeVhas been tentatively assigned as aband
based on the 8p-4h configuration in Z°Ne, with SU(3) representations (84) and (04)
for the 8p and 4h pieces, respectively . The coupling of these representations leads
to a large number of resultant (~ .~). The SU(3) symmetry (~,~) _ (88), however,
corresponds to the most strongly deformed intrinsic state of 2°Ne. Since other low-
lying rotational bands based on core-excited states in ~°Ne seem to be approximated
well by SU(3) strong-coupled wave functions corresponding to large intrinsic
deformations, the BBe cluster calculations will be limited to the SU(3) strong-
coupled approximation, based on states corresponding to large intrinsic deforma-
tions. Besides theK = 0 + band at 7.20 MeV, theK = 2- band (bandhead 4.97 MeV)
with (~,p) _ (82), lfiuv excitation, and theK = 0+ band (bandhead 6.72 MeV), pre-
dominantly (~u) _ (42), Ofuv excitation, are of particular interest since they are ob-
served in eight-nucleon transfer reactions but have a-spectroscopic factors of zero
in the extreme SU(3) limit . The ground-state K = 0+ band, (~.~) _ (80), andthe 5.80
MeV K = 0- band, (Zh) _ (90), are populated strongly both in a and BBe transfer
stripping reactions . Additional states of 2tu,~ excitation might be expected ss . s9)
around 10 MeV. For states of 2fico excitation the SU(3) symmetries (84) and (92)
correspond to the largest intrinsic deformations . All ofthe ~°Ne bands listed can be
expected to have significant overlaps with ('ZC+eBe) cluster wave functions of the
form of eq. (31), based on a 12C core with (~~~ _ (04), with q = 4, and Q ranging
from Q = 8 (Ot~ca excitation) to Q = 12 (4~ excitation) .
The general complexity of the calculations can be illustrated by the special example

Q = 9 (excitations of ltuv in 2°Ne). With q = 4, Q = 9, the possible (~epe) are
(13, 0), (11, 1), (92), (73), (54) . All of these can couple with (.1~J = (04) to make
the single allowed nonspurious state with (~lp) _ (90) in Z°Ne. For (~u) _ (90)
the overlap matrix < ~P'"~~is thus a 5 x 5 matrix with four eigenvalues of zero and a
single nonzero eigenvalue . All of the possible (gape) except (13, 0) can couple with
(~~,~) _ (04) to make the 1?auli-allowed states with (~h) _ (82), (71) . For both of
these the overlap matrices are 4 x 4, again with a single nonzero eigenvalue . For
(~~) _ (63), (52) the overlap matrices are 3 x 3, etc. . . . . The double-a cluster-like
functions~Y, eq. (44), which survive the antisymmetrization process are restricted
to the Q1 Q2 (or QaQ,) values : 94, 85 and 76 . These can project onto only two types
ofshell-model states

with (Zshs) _ (81), (62~ (43), . . ., and
~r~ _ ~(S4p12r(~)3(~3~3)~13~(Pf)1(~)~1~~~4~x°1+

Wlth (~3p3) _ (~)+ (22) .

(45a)

(45b)
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Two examples will suffice to illustrate the complexity of the reooupling process
needed to calculate < 7P~~~. Thefunction SP with Q,Qz = 49 is the simplest example.
It has a nonzero overlap only with the second type of shell-model function, with
(~3~3) _ (~)~ Provided (~R) _ (90) . This overlap has the simple value

201 ~C4!12!3!1!~
4!8!4!4! 20! _1!1~1!1!~24[2!2 2!3!294}

x U((04x40x~,px90) ; (OOxZehs))~33~~.

The first factor comes from the actionof antisymmetrizerssal, sa!', . . . to the left .
The second factor is the normalization factor associated with the decomposition
of the antisymmetric shell-model wave function into the configuration s4plzsd3pf' .
The factor in curly brackets is the transformation coefficient of eq . (15) for the
decomposition of ~(4°>(~~) and 4S(9°~(R~z) into single particle functions, the final
factor of four coming from the four possible decompositions of Qz = 9 into
4î4z9344 = 2223, 2232, 2322, 3222 . The SU(3) reooupling U~oefficient is needed to
transform the SU(3) coupling from the order [ps[p4[sd3pfl]]] to [[pep4][sd 3pfl]].
With one representation of (00) it is given by simple SU(3) dimensional factors and
is zero unless (~.~) _ (90). The final factor is the p-shell 8+4 particle c.f p., given
by eq . (2~. The sd shell c.f.p. is trivially equal to unity.
The function SY with QiQz = 58 has nonzero overlap with shell-model functions

ofboth types, eqs. (45a) and (45b). Theoverlap with ~Ys,,,(s4plzsd3pfl) is given by
20!

	

r4!12!3!1!

	

Ir

	

5!

	

4r

	

8!

	

1~ 12
4!8!4!4!~I

	

20!

	

~ II 1!1!1!2!~2s1 1!2!2!3! 12s

X il'SU(4)

x U((20x40x~.px30) ; (~3P3x~0))
x v((o4x4oxa,ux~u) ;(ooxzeu8))[~J~{a(x3~~x6°,+~a(x,~3xZZ>x-1).

Additional recoupling transformations and coefficients arenowneeded to bring the
final single particle wave functions into the order s4p1zsd3pf' . The first of these,
given by the two X-coefficients, is a 9-(~.p), [~`] recoupling transformation used
to transform the SU(3), SU(4) coupling for particles 13, 14, . . ., 20 from the order
[[P3(~)1][Pl[(~)2(P~1]]] to [[P3P'][(~)'[(~)z(P~1]]]~ This is followed by
reooupling transformations from [(sd)1[(sd)z(pf)1]] to [[(sd)1(sd)z](pf)'], a Pure
SU(3) 6-(~,~) transformation since the resultant function must be an SU(4) scalar ;
and finally a reooupling transformation from [sa[p8[p4[(sd)3(pf)1]]]] to [s°[[papa]
[(sd)3(pf)1]]], another pure SU(3) 6-(~iP) transformation . The final factor of (-1)
is also associated with this reordering process : It is convenient to sandwich the

~13~ ~1~ ~0~ (3U) (20)
~1~ ~13~ ~~~ XSU(3, ( 10) (70)
Lo7 Lo7 ~0~ (~) (~~) (~a~e)
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identity operator --- P~ between ~`se, and ~ in <SPA19~, wherePis here the permuta-
tion operatorwhich exchanges particles 16 and 17 . This P-operator is nceded to bring
particle numbers 13, . . . 20 to cardinal order, acting to the right after the recoupling
process. It gives the factor (-1) when acting on 9Y~� to the left . The first recoupling
coe8icient in square brackets is the SU(4) recoupling coefficient's), needed for the
first recoupling transformation . It is given by SU(4) dimensional factors and has the
value â, (independent of phase conventions) . The second recoupling coefficient in
square brackets is the corresponding SU(3) 9-(~u) recoupling coefficient aa) .
Since it contains SU(3) representations with one and two-rowed tableaux it can be
read from tables of SU(2) 9j ooeflicients.
The overlap of ~Y(QiQz = 58) with the shell-model function 9~(sspi lads) is

given by
20 . 4111 .5 . 5 . 4 8 . 1

[41814141~ [

	

201 (~ {[11111121]~ 2s [21212121~ 28}

X u((3ox2oxa,euex~); (SOx~s~s»~((~x~oxz~x~s~s) ; (olx~e~e»
x ~~~}~ -z~(zepeKel)+~ aô~~aü3rsx62)l~

The overlaps (9'~~~ together with the transformation of eq . (41) lead to the
overlaps of the cluster-like states <~"I~`~.
The quantum numbers within u are identical to those within v with the exception

of (zeke) so that the rows and columns of the overlap matrices can be labeled
by (gape) . With (~~J = (04) multiplicity labels p are never needed . The final step
in the calculation involves the relation between <~~~°) and <9~~9~°) given by eq .
(39) . With q = 4, Q = 9, and (~,~) _ (82), for example, only the first term with
Q" = 0 survives in eq . (39), since the single s°Ne shell-model state with 1 fico excita-
tion and (~~) _ (82) is free of spurious c.m . excitation . In this case the true cluster
function and barred function overlaps differ only by the trivial factor (20/12)9.
With (~~) _ (90), however, eq. (39) involves contributions from the Q" = 1 term
with (~'h~ _ (80) . With (~~) _ (73), (~e~e) _ (54), e.g . the Q' = 8 overlaps
with (~~) _ (82), (63) and (zeF~s) _ (63), (44) contribute to the final value of the
overlap of the true cluster functions.
The states of interest in 2°Ne all lead to overlap matrices ('P"~~ with a single

nonzero eigenvalue, hence a single nonspurious eigenvector. These matrices have the
simple (factored) form

With (~.~~ _ (04), q = 4, fixed Q and (~.p), the states 9~" are characterized by
(~i,8~e). The eigenvector corresponding to the single nonzero eigenvalue has the simple
form
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Teei,e d

°He cluster states in 1°Ne

') Eigenvxtors and norm fedora for the non-redundant cluster °fate° are given in tense of the
c<x°~s) bY e9°~ (4~~(~) .

~(lwl ~)

8 (80) (12, 0) 3 x 7 1 x 13/2 11 0.164701
(10, 1) 3 x 7 x 11 x 13/21° 0.412926
(82) 3' x 471/7 x 213 0.737738
(63) 3 x 11 x 61 1 /2 13 0.933548
(44) 3 x 5/2° x 7 0.705946

1/%Vi°ol ~ 2.112

8 (42) (82) 36 x 5 x 11 nl3 x 7 0.201626
(63) 3' x 5/2 1 ' 0 .185724
(44) 34 x 5 1/2" x 7 0.724993

1 /N(all - U'601

9 (90) (13, 0) 3' x 7 1/11 x 23° 0.320055
(11, 1) 3' x 7 1 x 231 /5 x 11 x 2 3 ' 0.581959
(92) 33 x 7 x 13 x 37 1 /11 x216 0.672415
(73) 33(313) 1/5 x 7 x 11 x 211 0.403167
(54) 3 9/7 X 216 -0.064480

1/N(9u1
= 1 .060

9 (82) (11, 1) 3 1 x 5 1 x 71 x 13/11 x 216 0.138801
(92) 3 x 5 1 x 74x 13/11 x 2 1 ' 0.396658
(73) 3 x 5 1 x 13 x 171 /7 x 213 0.690044
(54) 3 1 x 5' x 13 1/7 x 21 ~ 0.708525

1/N(°31 = 1 .155

9 (71) (11, 1) 3' x 7 3 x 13/5 x I1 x 21 ' 0.241371
(92) 3 3 x 51 x 7x 13/11 x 211 0.363468
(73) 3 3 x 431 /5 x 2 1 ' 0.171834
(54) 3~/211 -0.227465

1/1V(., 11 = 0.272

10 (84) (10,2) 3 x 5 1 x 7 x 11/2 1 ' 0.168712
(83) 36 x 5 1 x7 x 11/23a 0.464914
(64) 3 x 5 1 x 7 x 11 x 23 1/23° 0.685958

1/N(°,1 a 0.715

10 (92) (12, 1) 3' x 7 1 x 13/11 x 21 ' 0.263357
(10, 2) 3 x 51 x 7 1 x 13/21 ' 0.485254
(83) 3 3 x 5' x 7 1 x 13/11 x 2 3 ° 0.387962
(64) 3 x 13 x 47 1 /2 3° -0.115192

1/N(911 = 0.469

12 (88) (84) (3' x 5 3 x 7 3/23 ')2 .33465 0.658502
1/N( ° °I = 0.434
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where 9~([ . . .](~h)) is an abbreviated form for the cluster wave function ofeq . (31),
and where the normalization coefficient is given by

z-

	

C(xaRS)

	

~= N9. ~ .

Table 4 gives the coefficients c(ze ) along with the normalization coefficients, N, for
the states of greatest interest in ~°Ne.
Under the assumption that the A-nucleon final state is approximated by an SU(3)

strong-coupled cluster state of the form ofeq . (47), the spectroscopic amplitude for
the dissociation of A into a eBe cluster and the residual (core) nucleus (A-8) in a
state (~~c~)[.~~]xcL~S~J~ can be denoted by

where 1 is the angular momentum associated with r«� ! = 0, 2, 4 under the assump-
tion that the 8Be internal wave function is approximated by the pure SU(3) symmetry
(40) ; L~ is the angular momentum associated with r~-e ; and LB is the resultant in the
vector coupling [! xL*] -~ Le . Under the above assumptions this amplitude has the
value (harmonic oscillator approximation)

A(coreK~°~°r° +eBe[1 x L~)Ls -" AK~)~) _

	

~

	

<(~~~)K~L~ ; (~epe)xaLall(~p.)KL)
(~Lkaks

x ~(~)~~ (~)L~II(~she)KeLe)~lxsPS)(-
lr-'°+c°-LU(S~L~JLe ; J~Lxl/N'=4(eBe)), (49)

where 1V9(BBe) is the normali~tion coefficient for the properly antisymmetrized
internal wave function for BBe. It has been calculated for general q by Katô and
Bandô ") andhas the simple value [1lNq]z - 2[1-2z-~], so that 1 /N4(8Be) _ [~]} .
[In the case where the coupling (.~~,~ x (peps) -+ (~u) has a multiplicity > 1, a sum
over the multiplicity label, p, must be included along with the sum over (~sps)Ke ;
and c(x�,e) and the first SU(3) ~ R(3) Wigner coefficient in (49) are then also dependent
on p.]
Forthe eight-nucleontransfer stripping reaction on 1 zC°+, the' zCo + +eBe -~ z°hle

spectroscopic amplitude is simply

_ ~

	

~,

	

~(~p~ (~ape)xeJII(~p)KL = J)~(~)~~ (5G")Lrll(~s~s)KeJ)C(xePer

	

(50)
(ZsRS)Ks

Even in this case there arç a large number of amplitudes since all three 1-values of
0, 2 and 4 will in general contribute to an amplitude for given L~ and given final stateJ.
Amplitudes for the bandheads of some of the most prominent rotational bands in
z°Ne are listed in table 5 by way of illustration . In a rough qualitative way the
spectroscopic strength to the full rotational band structure ofa given (Zp) is given by
the strength factors 1 /N listed in table 4.
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TABLE S
Spedrosoopic amplitudes A("Co~+°He[1xL,]~-+'°1`le~~ to bandheads in some rotational bands

in 2°Ne

Under the assumption that the reaction (A -8xa, b)A proceeds predominantly by
a direct eight-particle transfer process, the cross section for this reaction will
depend on both the {(A-8) +8 --~ A} and {b +8 -" a} amplitudes through the
structure factor B [see e.g . eq . (5) of ref. e~],

x A*((,q -8),~+BBe [I xLr]~ -+ A,)A(b,, b+ BBe [I x Lr]c, -. a~~.

	

(51)

For (a, b) _ (12C, â), for example, the amplitude A(b+8 -" a), in the approximation
in which the internal wave functions for the BBe and a clusters are assumed to have
pure SU(3) symmetry (40) and (00), has the simple value

s
A(a+BBe [I x Lr]o ~

izCo *) _ ~<(~)l; (q0~~ = l~~(~p) ~4) 32 a~oar

where aroa~ is the amplitude ofthe (~,~) _ (04) L = 0 component in the ground-state
wave function for ' ZC. The reduced SU(3) ~ R(3) Wigner ooef~icients for I = 0,
2 and 4 have the values ~, -[}~]~ and ~, respectively. With atom = 0.896 [ref. 61)],

(xu) i3andhead
.7 " (K)

L, Amplitude

(80) 0* (K = 0) 0 0 0.3969
2 2 -0.1564
4 4 -0.0479

(82) 2- (x = 2) 2 1 -0.2957
4.97 MeV 2 3 -0.2951

4 3 -0.0096
4 5 0.1126

(90) 1 - (x ~ 0) 0 1 0.1683
5.80 MeV 2 1 -0.1744

2 3 0.0251
4 3 0.0933
4 5 -0.1128

(42) 0* (rc = 0) 0 0 0.2358
6.72 MeV 2 2 -0.1880

4 4 0.0568

(88) 0* (K = 0) 0 0 0.3015
7.20 MeV 2 2 -0.2849

4 4 0.1762
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the amplitudes of eq . (52) are 1.11 (! = 0), -1 .24 (1 = 2) and 1 .25 (1 = 4) which
compare with the values of 1.0830 (! = 0~ -1.2257 (l = 2) and 1.2758 (l = 4)
calculated by Kurath e2) with more precise wave functions.
With approximations similar to the above, the ( laN, 6Li) amplitudes are given by

z
_ ,/~((~p ; (04)La = LII(o2)L><(~)l ; (~)L~II(o~)Li ~6~ 2s~ a~Bi,L (53)

where ao, az are the coefficients of the '3S and 13D[4442] components of the 'aN
1 + ground-state wave function . With aZ = 0.950, ao = -0.247 [ref. e')], the L = 2
amplitudes are (in the above approximation) : -0.221(IL~ = 02), -0.549 (ll~ = 22),
0.071 (lL~ = 42 or 24), 0.636 (lL~ = 44); while the L = 0 amplitudes are -0.137
(!L~ = 00), 0.153 (lLr = 22), -0.154 (IL~ = 44).
Even for a direct eight-particle transfer process, the cross section for the

'zC(laN, 6Li)Z°Ne reaction is a function of kinematical factors for several
LrL~(LeLa)JB combinations, so that the cross section is determined through a
complicated interplay between the nuclear structure factors, B~~a~, and kinematical
factors carrying the physics ofthe reaction mechanism . In addition, interference with
sequential two-a-transfer processes andknockon processes mayhaveto be considered.
The former requires knowledge of a-spectroscopic amplitudes ofthe type calculated
in sects. 2 and 3. The strength of the latter is determined by cluster spedrosoopic
amplitudes of the type A( 1°N+ 6Li -+ Z°Ne) and A( 6Li+ 6Li -" 1ZC) which can be
calculated by the techniques used for BBe clusters in this section.
The simple SU(3), SU(4) recoupling techniques, illustrated by the calculation of

some a and sBe cluster spectroscopic factors in this work, make it possible to
calculate clustering amplitudes for any nuclear system for which SU(3) and SU(4)
are meaningful symmetries . These techniques also make it possible to cope with
complicated core excitations in nuclei in the A = 120 region, since the properly
antisymmetrized cluster wave functions are freeofthe spurious c.m . excitations which
plague the more conventional shell model, weak coupling particle-hole model, or
quartet model desceiptions of such states.

It is a pleasure to acknowledge valuable discussions with A. Arima, J. P. Draayer
and D. Braunschweig .

Appendix
Calculations for a-cluster spectroscopic amplitudes require only very simple SU(3)

recoupling coefficients of the form

U((~~XQ~Ox~�~�XQzO); (z~ux~)),
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with Q = Qt+Qz. An algebraic expression for these coefficients is available through
the work of Biedenharn et al. [see eqs. (3.46) and (3.56) ofref. e3)] . Since the nota-
tion ofref. e3) is very different from that used in nuclear physics applications, it may
be useful to transcribe their result into the Elliott notation. The SU(3) U-coefficient
with the "stretched" coupling (Qr~)x (Q2U) -. (Q = Ql+Q2, U) is given by

~2((~~xQtox~�~�xQ2o); (~~~~x~»

Qt!Q2~di!dz!dä!(Z'+1)(tt'+lx~.'+~ +2)
= Q!dt!dZ!d3tdttdz!dat

(.l+l+dl)!( .~ -d2)!(~ +dl-dz)!(Et+l+d2)!(Et-d3)!(~+dZ-d3)!x (
~+1+dt)!(~.- ds)!(~+1+di-d2)!(h+1+d2)!(u-d3)!(u+1+di-ds)!

x (~.+~c+2+di)!(.1+p+1-ds)!(~,+~e+1+dt-d3)!

	

(A.1)
(a.+u+2+d,)!(z+u+1-d3)!(~,+~+z+ë~--d~!'

In the phase convention ofreL 3r) these U-coefficients are always positive. The d, are
the number ofsquares added to row i ofthe Young tableau for(~)to make the Young
tableau for (~'p~ in the coupling (~u) x (Qt0) -" (~'~') . With d l +dZ+d3 = Q1,

Similarly, d~ are the number of squares added to row i of the tableau for (~.'~') to
make the tableau for (~."p'~ in the coupling (Z'R~ x (Qs0) -" (~."p'.); with
di+d2+d3 = Q2. Finally, dr = d,+d~, so that

~." _ ~.'+d~-d2 = ~.+di-dZ,

	

~" = u'+d2-d3 = ~+dZ-d3.

	

(A.3)
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