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ABSTRACT 
The equa t ions  governing  s p h e r i c a l l y  symmetric v a p o r i z a t i o n  of l i q u i d  
drops in  an i n f i n i t e  hot  environment  a re  solved fo r  c o n d i t i o n s  t y p i -  
ca l  of  drop shr inkage  in  the asympto t ic  s t age  which i s  c o n t r o l l e d  by 
the t r a n s p o r t  of  hea t  and mass. The Jakob number fo r  drop evapora-  
t i o n  i s  de r ived .  The v a p o r i z a t i o n  c o n s t a n t  i s  de termined whose mag- 
n i t u d e  is confined within the upper and lower limits. The lower limit 
coincides with the previously reported quasi-steady approximation, while 
the upper limit is a constant multiple of the lower limiting value. 
The effects of radial convection resulting from unequal phase den- 
sities, high system pressure, and vapor diffusion in the environment 
are established and the regions of applicability of the quasi- 
steady approximation are determined. 

Introduction 

Liquid drops are commonly observed in nature and in human activities, 

particularly in many industrial and biological systems and processes. The 

diminution of liquid droplets by evaporation is important in various fields 

of technology, for example combustion, manufacturing, and spray cooling. 

Fuchs [1] has conducted a comprehensive survey of the literature on the kin- 

etics of droplet evaporation at quasi-steady state. Recent works on the 

quasi-steady phase of droplet evaporation are numerous [for example, 2 

through 7]. 

Spalding [2] has introduced a transfer number as the driving force for 

property transport between the drop surface and the surrounding gas medium. 

This dimensionless quantity has been found to be useful in droplet evapora- 
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t i o n  as well  as combustion.  Godsave [4] has proposed two d i s t i n c t  mechanisms 

for  de t e rmin ing  the  r a t e s  of decrease  in  s i ze  of  the drops dur ing  the p rocesses  

of evapora t ion  and combust ion:  the evapora t i on  r a t e  i s  determined by mass- 

d i f f u s i o n  processes  when the  tempera ture  of the su r round ing  gas i s  s u b s t a n -  

t i a l l y  the  same as t h a t  of  the i n d i v i d u a l  drops ( the tempera ture  concePned 

b e i n g  low i n  r e l a t i o n  to  the  b o i l i n g  p o i n t  of the d rops ) .  On the  o ther  hand, 

when the d i f f e r e n c e  i n  tempera tures  between the drops and the  su r round ing  

gas i s  c o n s i d e r a b l e ,  the shr inkage  r a t e  i s  determined by the r a t e  of hea t  

t r a n s f e r  to  the  drop.  The q u a s i - s t e a d y  model [3-6] p r e d i c t s  t h a t  the sh r inkage  

of l i q u i d  d r o p l e t s  evapora t i ng  in  a hot  environment  obeys the "square  law": 

a l i n e a r  v a r i a t i o n  i n  the square of drop d iameter  with t ime. The p r e d i c t e d  

evapo ra t i on  t imes agree we l l ,  i n  the asymptot ic  s tage  (a t  l a rge  t imes ) ,  with 

the r e s u l t s  of  l a b o r a t o r y - s c a l e  t e s t s  on s i n g l e  drops [3-7] .  However, the 

q u a s i - s t e a d y  model f a i l s  under  zero g r a v i t y  c o n d i t i o n  [8] or high gas p r e s -  

sure  [9].  References  8, 9 and 10 have proposed the t r a n s i e n t  d i f f u s i o n  model 

t a k i n g  i n t o  account  the  i n f l u e n c e  of the  t r a n s i e n t  p rocesses  ifi the gas. 

While both  r e f e r e n c e s  8 and 9 have ignored the  convec t ive  e f f e c t s  on drop 

evapo ra t i on ,  the  compl ica ted  f o r m u l a t i o n  in  r e f e r e n c e  10 p r o h i b i t s  the  p o s s i -  

b i l i t y  of f i n d i n g  the  exact  s o l u t i o n :  

The p r e s e n t  work so lves  the  equa t ions  governing  the asympto t ic  s tage  of 

s p h e r i c a l l y  symmetric drop evapora t ion  l i m i t e d  by hea t  and mass t r a n s f e r .  The 

s o l u t i o n s  are  exact  and p r o v i d e a d e q u a t e  d e s c r i p t i o n s  of  drop evapora t ion  

dur ing  a l l  bu t  the e a r l i e s t  s t ages  in  which f l u i d  i n e r t i a ,  v i s c o s i t y  and su r -  

face t e n s i o n  may be impor tan t .  Since the  d u r a t i o n  of the asympto t ic  phase 

dominates the d r o p l e t  l i f e t i m e ,  the e r r o r s  i n t roduced  by employing the so l u -  

t i o n s  to  p r e d i c t  the evapora t i on  t imes would be i n s i g n i f i c a n t .  

Analzsis 

Consider a spherical drop of initial radius R o being placed in an infinite 

hot environment at temperature T Let the origin of spherical coordinates 

be fixed at the drop center, which is at rest. r measures the radial distance. 

T(t,r) is the temperature of the surrounding gas near the drop, where t de- 

notes the time. 

The equation of continuity for spherical symmetry and an incompressible 

fluid can be integrated to give 

2 ur  = f ( t )  
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in  which u r e p r e s e n t s  the r a d i a l  v e l o c i t y  of  the  gas.  The q u a n t i t y  u r  2 can be 

eva lua t ed  in  terms of  i t s  va lue  a t  the drop r a d i u s  R(t)  as 

ur  2 = - E ~  2 (1) 

wherein E i s  de f i ned  as the  d e n s i t y  r a t i o  of  the l i q u i d  and gas phases minus 

u n i t y ,  i . e .  E = p£/pg-1 ,  and R i s  the v e l o c i t y  of  the  drop su r f ace  r e s u l t i n g  

from evapora t ion .  

The energy equa t i on  fo r  s p h e r i c a l  sy~a~etr/ reads  

@T + u ~T a 3 BT @-~ ~ = ~-~ ~-~ (r 2 ~ )  (2) 

a i s  the thermal  d i f f u s i v i t y  of the  gas phase.  The i n i t i a l  and boundary con-  

d i t i o n s  a re  

T ( 0 , r )  = T (3) 

T ( t ,  ®) = T ,  T( t ,R)  = T s (4) 

where T s s i g n i f i e s  the s a t u r a t i o n  tempera ture  of the l i q u i d .  The heat  ba lance  

equa t i on  fo r  the  drop i s  

k BT(t,R)@r = p~I~L (5) 

with k and L deno t ing  the gas thermal  c o n d u c t i v i t y  and the  l a t e n t  hea t  of  

v a p o r i z a t i o n ,  r e s p e c t i v e l y .  

Now, a s i m i l a r i t y  t r a n s f o r m a t i o n  accord ing  to  

T* (N) T~-T( t , r )  ; r (6) = N = • R = -2B(at)  1/2 
T~ 2 (at) I/2 ' 

is performed on Eqs. (2) through (5). It yields 

T* = 2(-N-EB3N-2-N-I)# * (7) 

s u b j e c t  to  

T * ( ~ )  = 0;  T * ( - B )  = To;  ' i ' * ( - B )  = 2BM ( 8 )  

Here, the superscript • indicates the derivatives with respect to N; B, vap- 

orization constant; T o = (Ts-T~)/T~; M = o£L/(PECpT®); and Cp, the constant- 

pressure specific heat of the gas phase. Integrating Eq. (7) twice, the solu- 

tion is found as 
co 

T* = ) -2 -2MB3exp(B2-2EB 2) x exp(-x2-2EB3x-l)dx (9) 

N 
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The cons tan t  B i s  determined from the second express ion  of  Eq. (8) to  be 

T* l ~ _oo = Ja  = ~(E,B) = -2BSexp(B2-2EB 2) x-2exp(-x2-2EB3x-1)dx (10) 
M 

-B 

Ja  i s  the Jakob number f o r  drop evapora t ion  def ined  as pgCpAT/(p£L), where AT 

is  the degree o f  superhea t ing  ( T  - Ts) .  

It is obvious that the radius-time history given in Eq. (6), R = -2B(at) I/2 

does not satisfy the initial condition R(0) = R o. This anomaly arises from 

the complete neglect of inertia, surface tension and viscous terms, namely 

the equation of motion in the formulation. As a remedy, one writes the radius 

time history as 

R = R o - 2B(at) I/2 (ll) 

which is mathematically inapplicable to the very beginning of the shrinkage. 

The d r o p l e t  l i f e t i m e  can then be expressed as 

= (12) 
tlife 4B2a 

When the ambient temperature T is substantially the same as the drop 

temperature, the evaporation rate is strongly influenced by mass diffusion of 

the vapor from the drop surface into the surrounding medium [4]. Let C he 

the mass concentration of the vapor in the surrounding gas medium; Co, the 

initial value and the value at large r; and Cs, at saturated state. Then, the 

mass balance equation for the vapor in the mixture in which chemical reaction 

effects are absent reads 

R 2 ~C E~ -- @T D ~ (r 2 ~C 
@t 2 aT : 2 @r ~ )  (13) 

r r 

wherein D is the mass diffusivity of the vapor. The initial and boundary 

conditions are 

C ( O , r )  = C o (14)  

• D @C(t'R) (15) C ( t , ~ )  = Co, p£R = ~)r 

The assumption of  thermodynamic equ i l ib r ium a t  the d rop l e t  su r face  al lows 

the use of  the Claus ius -Clapeyron  equat ion .  I t  y i e l d s  

C(t ,R) = exp{ML [1 - Ts 
C s ~ T(t ,R)  ]} (16) 
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in  which M i s  the  molecular  weight of the vapor and R denotes  the gas c o n s t a n t .  

Equat ion (16) can be approximated as 

C( t 'R) -Cs  ML 
Cs - ~Ts2 [T ( t 'R ) -Ts ]  

wherein CsML/(RTs 2) = (BC/BT)p,s. 

coupled through Eq. (17). 

(17) 

The thermal  and c o n c e n t r a t i o n  f i e l d s  a re  

With the a id  of Eq. (1),  Eqs. (2) through (5) and (13) through (15) are  

solved u s ing  the  method of s i m i l a r i t y  t r a n s f o r m a t i o n :  u t i l i z i n g  Eq. (6) and 

C(t ' r ) -Co r P£ 
C*(Nc) - Co ' Nc = 2(Dr) I /2 = NLe' Q = ~oo (18) 

one gets Eq. (9) and 

C*(Lel/2N) = 2Q(BLel/2)3exp[B2Le(I-2E)] fLel/2 N 

-2 x exp(-x2-2EBSLe3/2x-1)dx (19) 

wherein Le denotes  the Lewis number. The c o n s t a n t  B fo r  the combined hea t  and 

mass t r a n s f e r  mechanism i s  eva lua t ed  by means of Eq. (17), i . e .  

T* = M@(E,B) + Q[O(E,BLe I /2)  - Co]/m (20) 
o 

in which 

m = - ( ~ C / a T ) p , s ( T J C o ) ;  C O = (Cs-Co)/Co 

Results and Discussion 

The Jakob number i s  the product  of the g a s - l i q u i d  d e n s i t y  r a t i o  and the 

d imens ion l e s s  superhea t  CpAT/L. The f u n c t i o n  @ in  Eq. (10) has been numeric-  

a l l y  i n t e g r a t e d  with the a id  of a d i g i t a l  computing machine for  va lues  of E 

spanning  the  range  of p o t e n t i a l  a p p l i c a t i o n .  The r e s u l t s  are  p r e se n t e d  in  

Pig.  1. I t  i s  impor tan t  to no te  t h a t  

( i ) .  For a given va lue  of E, t he re  e x i s t s  an upper l i m i t  i n  the evapora-  

t i o n  Constant  B which can be expressed as (30 Ja) 1/2.  However, one must bear  

i n  mind t h a t  the  va lue  of E v a r i e s  as Ja changes.  

( i i ) .  The r e s u l t  ob ta ined  from the q u a s i - s t e a d y  model [ for  example 5] 

B = (Ja /2)  1/2 r e p r e s e n t s  a lower l i m i t i n g  va lue  in  the range of  B. 

( i i i ) .  The upper l i m i t  and the  q u a s i - s t e a d y  approximat ion  a re  d i f f e r e n t  

by the f a c t o r  of (60) 1/2 or 7.746 for  a g iven va lue  of Ja .  

( i v ) .  The q u a s i - s t e a d y  model g ives  an a c c u r a t e  approximat ion  only  when 

the d i m e n s i o n l e s s  superhea t  CpAT/L i s  s u f f i c i e n t l y  small  and Pg i s  much l e s s  

than P£. 
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(v) .  I f  t he re  i s  no change in  d e n s i t y  accompanying phase t r a n s i t i o n ,  

i . e . ,  pg/p£ = 1 and E = O, t he re  i s  no convec t ive  motion in  the system and 

the  s o l u t i o n  s i m p l i f i e s  to  

T* = 2MB3expB2~l/2[erfc N-N-lexp(-N2)/ (~)  1/2] 

@(O,E) = 2(~)l /2B3exp B2erfc B-2B 2 

The d e v i a t i o n  of the  zero E curve from the  q u a s i - s t e a d y  approximat ion  i s  a t t r i -  

buted  to  the c o n t r i b u t i o n  of t he  t r a n s i e n t  term. On the o the r  hand, the 

d i f f e r e n c e  between the non-zero  and zero E curves  i s  a measure of the e f f e c t  

of  convec t i ve  motion in  the  system. 

Spald ing  [9] has p o i n t e d  out  t h a t  the  v a l i d i t y  and u t i l i t y  of the q u a s i -  

s teady formulas  a re  d o u b t f u l  a t  the  high p r e s s u r e s  p r e v a i l i n g  in  c u r r e n t  en-  

g ines .  As the  system p r e s s u r e  approaches the  c r i t i c a l  p r e s su re  of the  drop-  

l e t ,  the liquid-gas density ratio approaches unity and the latent heat of vap- 

orization decreases to zero. As a result, the value of E approaches zero, 

while'Ja tends to infinity. Figure 1 shows that the deviation between the zero 

E curve and the quasi-steady approximation grows with an increase in Ja. 

Upon comparison of Eqs. (I0) and (20), it becomes evident that the effect 

of mass transfer on drop shrinkage is represented by the second term on RHS 

of equation (20), which can be separated into two factors 

¢(E, BLe I/2) - (Cs/Co-I) 

and 

m T®~ s M 

As expected,  the lower the mass d i f f u s i v i t y  of the  vapor or the h igher  the 

vapor c o n c e n t r a t i o n  i n  the ambient ,  the g r e a t e r  i s  the t empera tu re  d i f f e r e n c e  

T®- T s r e q u i r e d  to  o b t a i n  a g iven  drop shr inkage  c o n s t a n t  B. When the tem- 

p e r a t u r e  of the ambient  atmosphere i s  s u b s t a n t i a l l y  the  same as t h a t  of the  

i n d i v i d u a l  drops ,  (meaning t h a t  the  t empera ture  concerned be ing  low i n  r e l a -  

t i o n  to  the  b o i l i n g  p o i n t  of the  drop Ts, i . e .  T O = 0) ,  Eq. (20) reduces  to 

,(E, BLel/ -C  L2CsM 
¢ (E, B) pC-RT 2 (21) 

P s 
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Under these conditions, the evaporation rate is determined by mass diffusion 

processes. This process of drop evaporation is well known. On the other hand, 

when the difference in temperature between the drop and the environment is 

considerable, i.e. T >>Ts, Q/m approaches zero and the second term in Eq. (20) 

vanishes. The rate of decrease in size of the drops is then determined by 

heat transfer processes. Only when the ratio of T /T s is moderate, then both 

heat and mass transfer are of comparable importance in evaporation processes. 

Conclusions 

The exact solutions of the heat and mass transfer equations governing 

spherically symmetric drop evaporation in an infinite hot environment are 

found to be precisely the expression for the square law of droplet shrinkage: 

the position of the phase boundary is proportional to the square root of time. 

The drop-radius time history is amended to the form of Eq. (ii) in order to 

satisfy the initial condition on drop size. The result is inapplicable at the 

very beginning of the drop shinkage, however. The evaporation constant B is 

presented in graphical form for convenience inpractical uses. The effects 

of radial convection resulting from unequal phase densities, system pressure, 

diffusion of the evaporated mass are established. The earlier approximate 

formulas based on the quasi-steady model is in considerable error for large 

superheats and large vapor densities. 
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The Vaporization Constant B as a Function 
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