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Summary- - In  this paper a description of a certain class of 
multiloop systems,  called the Standard Multiloop Form, is 
introduced. This description is expressed explicitly in terms 
of certain scalar subsystems and can be shown to include 
many of the common descriptions of multiloop systems. The 
stability criteria presented in this paper involve the individual 
Nyquist  plots of the linear scalar subsystems and a certain 
positivity condition on the nonlinear subsystems.  The method 
allows for relatively convenient  computations.  The deriva- 
tion depends on the hyperstability concept  introduced by V. 
M. Popov.  

I. Introduction 
NONLINEAR stability theory has received the attention of 
researchers  for many years. In 1961 V. M. Popov introduced 
a method of stability analysis based on the use of the 
f requency domain[ l ] ,  which greatly simplified the analysis 
for systems having a particular structure, namely, systems 
having a linear time-invariant 'plant ' ,  one nonlinear element,  
and a single feedback loop. Since the introduction of Popov ' s  
method and the associated Circle Condition, many resear- 
chers have generalized the Popov method to include systems 
having multiple nonlinearities and multiple feedback loops, 
e.g. [ 1-6]. It is the purpose of this paper to introduce a method 
of analysis which leads to a convenient  graphical inter- 
pretation in the f requency domain. There have been a few 
recent  results[7-10] where an attempt has been made to 
preserve a graphical interpretation; in these works various 
system representat ions were considered but the difficulty of 
handling large-scale multiloop systems remains. 

2. System description 
Stability criteria will be derived for systems having a 

particular structure called the Standard Multiloop Form. 
2.1 Definition. A system of equations of the form 

~+(t) = A,x,(t) + b~( t )  

y,(t) = c',x,(t) 

.f,(t)= ~ ~,j[u~(t) - ~ ,  ~b,,(y,, t), t] 

for i = 1 . . . . .  n (2.1) 

is said to be in the Standard Multi loop Form. The function 
x,(t) is an n~-vector, and A(t) and y,(t) are scalar functions.  

The function udt)  is a scalar input function to the ith 
subsystem. The time varying and nonlinear functions ff,j and 
~btj are assumed to be continuous functions of their arguments 
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with ~b,j(0) = 0 and $,j(0) = 0. It shall be assumed throughout 
that n > 1. 

The transfer function for the ith linear subsystem is given by 
by 

Y,(s) _ c'j(sI - A,)-'b,, (2.2) 
~ , ( s )  = F - - ~  - 

and a block diagram of the system is shown in Fig. 1. It may 
be shown that a great many multiioop feedback systems may 
be placed in this form through suitable selection of the 
nonlinearities +,j and ~b0[ll, 12]. 

In this work the stability of the multiloop system is 
considered only for zero inputs. 

2.2 Definition. The system (2.1) is globally stable with 
degree "r if, for u+(t)-=0, i =  l . . . . .  n, and for any x,(0), 
i = I . . . . .  n, there exist numbers K+ > 0 such that 

IIx,(t)ll <- K, e -" ,  t -> 0, 

i =  1 . . . .  ,n.  

The definition implies global asymptotic stability in the sense of 
Liapunov if 3, > O. 

3. Stability criteria 
The stability criteria are based upon a variation of a 

lemma developed by V. M. Popov  for single-loop 
systems [1, 11]. 

3.1 Basic lemma. If the linear systems 

J~,(t) = A+x+(t) + b~( t )  

y+(t) = c'~x+(t) + d.~,(t), i = I . . . . .  n 

with transfer functions G,(s) c '~(s l -  A+)-'b+ + d+ are each 
irreducible, i.e. controllable and observable,  and the func- 
tions G,(s) have all poles in Re s < 0, and the Nyquist  plots 
of G,(s) lie in Re s ->0 ,  then there exist ~+ > 0  and v, > 0 ,  
i = 1 . . . . .  n such that 

~',.., ~,,llx+(t)lP <- ~,_, v+llx,(O)ll + + * ) y ,O)  d~" (3.1) 
i = l  i=li= i =  

holds for all t > 0. 
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I ~-*ij (Yj) i= I . . . . . .  

FIG. 1. Block diagram of the ith subsystem of the Standard 
Multiloop Form. 
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To illustrate the graphical stability criteria, consider  the 
following special case of (2.1) 

£,(t) = A , x , ( t )  + b ~ ( t )  

y,(t) = c;x~( t )  

f,(t) = - £ &,(y~(t), t) 

i = 1 . . . . .  n. (3.2) 

3.2 T h e o r e m .  The sys tem (3.2) with irreducible t ransfer  
func t ions  (2.2) is globally stable with degree 3' if the pair 
[A ,  + 3'L, b,] is controllable and the pair [A ,  + 3`1, c,] is ob- 
servable for i =  1 . . . . .  n, where  L is the n, x n~ identity 
matrix,  and: 

I [  G~(s) h a s  al l  p o l e s  in Re s < - 3`: One of the following 
holds: 

(a) The Nyquis t  locus of G , ( s -  3`) does not encircle nor 
enter  the closed disk D ,  where  0 < p~q~; p~ < q~; 

(b) The Nyquis t  locus of G~(s - 3") is inside the closed disk 
D,, where  p, < 0 < q, ; 

(c) The  Nyquis t  locus of G~(s - 3") lies in the closed half 
plane where  Re s -> - (l/q~), where  0 = p~ < q,; 

(d) The Nyquis t  locus of G d s -  3') lies in the closed half 
plane where  Re s-< - ( l /p~) ,  where p, < q, = 0 

If G~(s) h a s  N~ >- 0 p o l e s  in Re s > - 3': The  Nyquis t  locus 
of G ~ ( s - V )  encircles the disk D, exact ly  N, t imes in the 
counterc lockwise  direction and does not enter  the disk: 
where  0 < p~ < q,. 

F o r  t h e  n o n l i n e a r  [ u n c t i o n s  

4,.(y,) 
a.+p~--< --</3. +p~--<q. 

Y, 

i = 1  . . . . .  n 

- / 3 .  <- ~"(Y~) -< fl,, i#  ] (3.3) 
Ys 

and also for i #  ] 

n -  la" 1 - ~ / 3 , ,  -q~_p~ 

1 _ / 3 , ~ ]  

x 1 1 

(3.4) 

where  a . ->O for i = 1 . . . . .  n. 
P r o o [ .  Let  Y~(s )  and IT'~(s) denote  the Laplace t ransform 

of y~(t) and ~( t ) ,  etc.. and note that  Y~(s - y) is the Laplace 
t ransform of e~'y~(t). Define the following variables for 
i = l  . . . . .  n 

- ~ ( s )  a= F~(s - 3`) + p , Y , ( s  - 3") 

1 
? , ( s )  L Y,(s  - v )  + ~, (s) .  

q~ - p~ 

Then  

~ ( s )  O, (s  - 3`) 1 + - -  
~ ( s )  I + p , G , ( s  - 3`) q, - p, 

L C,(s). 

Now define 3(,(s)& X , ( s - 3 , ) ,  where  X,(s) is the Laplace 

t ransform of x,(t). Now 

X , ( s )  = ( s l  ,4 , )  'b~E(s) 

and 

Thus  

and 

f (~(s)  = ( s l  - A ,  -- yl)  'b ,F~(s  - y). 

(sI  - A , -  3` l )X~(s)  = b , ~ ( s ) -  p , b , c ' j ( ~ ( s )  

f (~(s )  = ( s l  -- A ,  + p,b,c' ,  - 3'1) 'b,F~(s) 

and Y~(s) = c'ff(~(s) + [( l /q ,  - p , ) l F , ( s ) ,  which has a realization 

x, = (A ,  - p~b~c', + yl),~, + bt~ 

1 - 
~, = c',~, + ~  L, (3.5) 

i = 1  . . . . .  n 

which is minimal by hypothesis .  The condit ions imposed on 
G~(s)  by the theorem ensure ,  by the Nyquis t  condition, that 
the poles of G~(s) are in Re s < 0 for i =  1 . . . . .  n. After  
some simplification 

~(1 + q , G , ( s  - 3')) (1 + p , G , ( s  f_ 3`))~ 
Re d,(s) : Re t (T----p,3]fZGv,(~(T931- J 

where  the bar denotes  complex conjugate.  In cases  Ca) and 
(b): 

Re (~,(s) P'q' 
(q, -p , ) J l  + p , G , ( s  - 3,)t 2 

x {  G . ( ; - T ) +  q , + p  2 [q'-P']~/ 
' " ~ 1  - t 2p~q~ d j 

The requi rements  on the Nyquis t  locus of G,(s) guarantee 
that Re G,(fio) > 0 for all to, making the s tandard al lowances 
for poles so such  that Re so = 1'. For case (c): 

Re (~(s)  = Re G , ( s  - 3`)+ 1 ,  
q, 

so that  Re C,,(joJ)-> 0 for all ~o; and for case (d): 

- 1  + 1  "e C ' ( s ) = ,  + 

so that again Re G~(l(o) _> 0 for all ~o by hypothesis .  There-  
fore, the funct ions  G~(s) ,  i = 1 . . . . .  n,  satisfy the condit ions 
of L e m m a  3.1. It follows that there exist  numbers  ~.~ > 0 and 
v~ > 0 such that  

~,ll~,(t)ll =<- ,,,11~,(o)11 = +  ~) .~ ,0 )  d~ 
i = l  i =  i s  

e ' "  ~,,llx,(t)ll" <- ~,,llx,(O)ll 2 + (.~)~,(~) d~ 
i -  i - I  

~,,llx,(t)ll~<-e =-'~ ,,,llx,(O)ll = +e T M  (-r)~,('r) d'r. 
i = l  i = 1  

for all t -> 0. 
Now 

" 1 2 

~ Q(y). 
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D e f i n e  

then 

t~,,(y,) = tb,,(y,) - P,Y, 

4~,,(Y~) = 4,,,(Y~), iS  j 

o ( y ) :  " 

Now 

t t + Yit~,} 
Q(Y)= ~ ~ {n-L--l- 1 Y,~,, +~-L-~_ 1 Y,~,, + y,~,, 

+ 2<L6,: + + ~6,,4>,. + "  + 26 ...... ,/;,.}. 

-, 1 - :  " 1 &&} 
1 ~ b i _ q  _p_ . .~ lgb ,_2k~lq  _p__~ . 

q~ - p~ 

Consider  the term 

If y, = O, then any terms involving y, vanish and cannot  
lessen the value of the expression;  therefore,  let y, ~ 0 for all 
i. By hypothesis ,  

~b. _</3,, + p~ --- q,; 
Y~ 

thus 

It follows that  

and 

~,, <_ ~ .  <-- q, -- p,. 
Y~ 

/ 

0 -< a,, -< ~ -</3, -< q, - p, 
y~ 

-><4. ' ,,,H - q~ - p-~-~ 

= a , , [ l -  ~ ] y , ~ - - >  0 

since /3, --< q, - p~. 

Now consider the term ~ , ( y , ) ~ ( y s ) .  If y~y~ > 0, then 

& &  

If y~yj < 0, then 

so in all cases 

Note  finally 

~ - 

~bu~b~ i --< - yiY,/3k,/3kj 

and 

6,~ -</3,~y/. 

It follows that  

1 
,., q~ - p,J~' 

+ ~ _ l a , , [ l _  /3,, 1 q, _ p ,J  y / -  [3,,ly, y,I - /3 , , ly ,  y,I 

q , - p i Y '  - q~--7~j y' - z ~ ,  q-7~-p~ lY'Y'I 

F l  r .  ~ , , 1  
y, I~-~-t,a"['-q,-p,] q,-p, [.,] ~-, j-~+z + 1 ~ /3k,/3~j 

o. - , . . /  
' ": / [y]] 

n - I  L q J - P i J  q ~ - P ~ J  

The 4- signs are taken due to the lY, YJ] terms. The inequalities 
(3.4) guarantee that  each matrix is non-negat ive definite. 
Q.E.D. 

The condit ions of Theorem 3.2 require that  the Nyquist  
locus for each G d s -  3') remain outside of a " fo rb idden"  
region in the complex plane. This forbidden region is either 
the inside or outside of a critical disk. In the special 
si tuation where p~ = 0 or q, = 0, the disk degenerates  into a 
half plane. This condit ion is in the familiar form of the 
Circle Criterion used in the analysis of single-loop nonlinear  
systems. 

In theorem 3.2 the inequalities (3.3) require that  the graph 
of each of the nonlinearit ies O~j lie in certain sectors  which 
are illustrated in Fig. 2. The inequalities require that 0-< 
a ,  </3~ for  i = 1 . . . . .  n but  the number  p~, taken from the 
Nyquist  plot of G , ( s -  3'), may be positive or negative and 
has the effect of " ro ta t ing"  the sector for ~b,. Consequent ly  
~bj~(y,) may lie in any of the four quadrants .  

A close examinat ion of Theorem 3.2 in this case reveals  
that  the uncoupled subsys tems (i.e., if ~b,~(v~)= 0, iS  j) are 

~ i i ~  + Pi 

a i i  + Pi 
Yi 

ydS, >- - ~SJnly~yi] FIG. 2. Sector condit ions for nonlinearities. 
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necessari ly globally stable. It can be s h o w n [ l l ]  that there 
always exist nontrivial gain sectors for the mterconnect ion 
nonlinearities &~J(YD, i # j ,  such that the interconnected 
sys tem is globally stable. In particular, under the stated 
assumpt ions ,  if n globally stable subsys t ems  are intercon- 
nected the multiloop sys tem will be globally stable for 
sufficiently small interconnect ions.  As one migb! expect ,  the 
stable sectors for the in terconnect ions  necessari ly become 
smaller as the number  of loops i nc r ea se s  

4. Conclusi ,m 
This paper has  focused on a multiloop sys tem as an 

interconnect ion of scalar subsys tems .  This  viewpoint has 
made it possible to obtain condit ions for global stability 
which involve the Nyquist  plot for each of the scalar linear 
subsys t ems  separately;  a certain inequality involving the 
nonlinearities mus t  also be satisfied. As a special case,  
condi t ions where the const ra ints  on the nonlinearities can be 
expressed  in terms of sector condit ions were also con- 
sidered. ' lhe  main advantage  of the method is that the 
results  are explicitly expressed  in terms of the properties of  
the scalar subsys t ems  which define the particular intercon- 
nection; most  methods ,  e.g. in[ l -6] ,  do not focus  on the 
scalar subsys t ems  explicitly. 

In addition, the following points might be noted: 
(I) The f requency response  criteria may be interpreted 

graphically. 
(2) The f requency condit ions can easily be satisfied first 

by proper choice of the  parameters  p, and q,, i = I . . . . .  n;  
the positivity inequality (3.4) then const i tu tes  the required 
condition for global" stability. 

(3) Condit ions involving controllability and observabil i ty 
apply individually to each linear subsys t em,  not to the 
interconnect ion.  

Extens ions  of the work described here should be men-  
tioned. Stability condit ions for more general  forms of (2.1) 
can be developed[ l  I, 12], and bounded- input  bounded-s ta te  
stability can be inferred from the same graphical 
criteria [I I ]. 
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