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Ab&mt--We have calculated the effect that convection electric fields have on the velocity distribution 
of auroral ions at the altitudes where the plasma is weakly-ionized and where the various ion-neutral 
collision frequencies are much smaller than the ion cyclotron frequencies, i.e. between about 130 and 
3OOkm. The appropriate Boltxmarm equation has been solved by expanding the ion velocity 
distribution function in a general&d orthogonal ~1~0~~ series about a bi-M~e~ weight 
factor. We have retained enough terms in the series expansion to enable us to obtain reliable 
quantitative results for electric field strengths as large as 90 mV m-r. Although we have considered a 
range of ion-neutral scattering mechanisms, our main emphasis has been devoted to the long-range 
polarization interaction. In general, we have found that to lowest order the ion velocity distribution is 
better represented by a two-temperature or bi-Maxwellian distribution than by a one-temperature 
Maxwellian, with there being different ion temperatures parallel and perpendi&lar to the geomagnetic 
field. However, the departures from this xeroth-order bi-Maxwellian distribution become significant 
when the ion drift velocity approaches (or exceeds) the neutral thermal speed. 

1. INlRODWCZXON 

Interest in the extent to which auroral ion velocity 
distributions depart from a Maxwellian was gener- 
ated when Cole (1971) calculated ion velocity dis- 
tributions for a collisionless plasma in crossed elec- 
tric and magnetic fields. Since collisions were neg- 
lected, the resulting ion velocity distribution was 
time dependent and oscillated with the ion gyrofre- 
quency. In order to apply his calculations to the 
aurora1 ionosphere, Cole extrapolated his results to 
a steady state, and then predicted large departures 
from the Maxwellian form for perpendicular elec- 
tric fields as small as 10 mV m-l. However, it was 
later shown that his results were valid only for 
small electric field strengths and for a small region 
of velocity space around the peak of the distribu- 
tion (St-Maurice and Schunk, 1973). 

Schunk and Walker (1972) calculated aurora1 
ion velocity distributions for the lower ionosphere 
including the effects of ion-neutral collisions. In this 
study, the ion-neutral collision process was de- 
scribed by the Boltzmann collision integral, and a 
solution to Boltzmann’s equation was obtained by 
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expanding the ion distribution function in an or- 
thogonal polynomial series about a Maxwellian 
weighting function. Since a Maxwellian weighting 
function was used and only a few terms in the series 
expansion were considered, &hunk and Walker 
were restricted to small departures of the distribu- 
tion function from a Maxwellian and, hence, small 
electric field strengths or large ion-neutral collision 
frequencies. Nevertheless, these authors were able 
to determine the conditions under which departures 
become significant and the nature of these depar- 
tures, and it was found that non-M~elli~ effects 
become appreciable for electric field strengths grea- 
ter than about 10mVm-l. 

In order to study situations where the ion dis- 
tribution function departs significantly from a Max- 
wellian, St-Maurice and Schtmk (1973,1974) re- 
placed the Boltzmann collision integral with a sim- 
ple relaxation collision model and thereby were 
able to obtain an exact solution to Boltzmann’s 
equation. In this way, it was found that the ion 
velocity distribution becomes highly non- 
Maxwellian when the ion drift velocity is compara- 
ble to or greater than the neutral thermal speed. 
For large electric fields and small collision to cyc- 
lotron frequency ratios, the ion distribution takes 
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the shape of a torus in velocity space, while for 
large electric fields and comparable collision and 
cyclotron frequencies the ion distribution is bean- 
shaped. 

Although the simple relaxation collision model 
may be realistic for resonant charge exchange colli- 
sions, the Boltzmann collision integral is more ap- 
propriate for non-resonant interactions between 
ions and neutrals, such as between NO’ and 0. 
This latter collision combination is particularly im- 
portant, since recent theoretical calculations by 
Schunk et al. (19751976) indicate that large elec- 
tric fields result in enhanced NO+ densities due to 
the energy dependence of the 0’ + N, + NO’ +N 
reaction rate. For the right conditions, NO’ can 
even become the dominant ion throughout the E- 
and F-regions. 

Recently, we have presented a method of solu- 
tion of Boltzmann’s equation that is valid for arbit- 
rarily large departures of the velocity distribution 
function from a Maxwellian and arbitrary collision 
models (St-Maurice and Schunk, 1976). The 
method of solution consists of expanding the ion 
velocity distribution function in a generalized or- 
thogonal polynomial series about an arbitrary 
weight factor. The exact form of the weight factor 
depends on the specific details of the problem. For 
a Maxwellian weight factor, the generalized or- 
thogonal polynomial series is equivalent to Grad’s 
expansion (Grad, 1958). 

In the present investigation, we apply the 
generalized orthogonal polynomial method to the 
calculation of aurora1 ion velocity distributions, 
with particular emphasis given to non-resonant or 
polarization ion-neutral interactions. With this 
method, we are able to present more accurate 
expressions for NO’ and 0’ velocity distribution 
functions than previously available. Although the 
method can be applied for arbitrary electric field 
strengths, large electric fields result in highly 
anisotropic velocity distribution functions, which 
are unstable (Ott and Farley, 1975). Consequently, 
we only consider electric field strengths for which 
the resulting ion velocity distributions are likely to 
be stable. The maximum electric field for which our 
results are valid depends on the properties of the 
ion-neutral scattering mechanism and, therefore, is 
different for different ion-neutral combinations. 

Evidence for the presence in the auroral regions 
of a non-Maxwellian ion velocity distribution has 
now been presented by Swift (1975) and St- 
Maurice et al. (1976). The detection of non- 
Maxwellian distributions qualitatively similar to 
those described by St-Maurice and Schunk 

(1973,1974) makes more pressing the need for 
accurate theoretical calculations in order to deter- 
mine the extent to which various high latitude 
processes are affected. Theoretical expressions are 
required, for example, for the determination of 
ion-molecule reaction rates and for the excitation 
rates of various aurora1 processes (cf. Cole, 1971). 
The non-Maxwellian character of the velocity dis- 
tribution along the magnetic field line is also impor- 
tant for the interpretation of ground-based meas- 
urements, such as the spectrum of radar waves 
incoherently scattered from the ionosphere. Furth- 
ermore, since the instability predicted by Ott and 
Farley (1975) depends very sensitively on the shape 
of the ion velocity distribution, more accurate 
theoretical expressions are needed to determine 
whether or not ion-neutral collisions can, in fact, 
produce the required anisotropy in the ion velocity 
distribution at a realistic value of the electric field. 

In Section 2 we obtain a generalized orthogonal 
polynomial solution of Boltzmann’s equation. In 
Section 3 we discuss ion-neutral scattering cross 
sections. Section 4 is devoted to a discussion of ion 
velocity distribution contours for various collision 
models with constant collision frequencies. Finally, 
in Section 5, we present a summary and conclu- 
sions. 

2. THEORETICAL FORMULATlON 

To model aurora1 conditions at E- and Fl-region 
altitudes, we consider a weakly-ionized plasma that 
has been subjected to crossed electric and magnetic 
fields. Since the plasma is weakly-ionized, we can 
solve Boltzmann’s equation for each ion species 
independently of the other charged species. For a 
steady state, spatially homogeneous plasma, the 
appropriate Boltzmann equation is 

(1) 

where 

(2) 

ci =vi -(vi> (4) 

and where fi(ci) is the distribution function of ion 
species i, vi is the velocity, ci is the random veloc- 
ity, (vi) is the average drift velocity, V, is the 
gradient operator in velocity space, mi is the ion 
mass, e, is the ion charge, E, is the perpendicular 
electric field, B is the geomagnetic field, c is the 
speed of light, and afJ& accounts for the rate of 
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change of fi due to ion-neutral collisions. In equa- 
tion (4), the bracket symbol denotes the average 

(A) =-$ j-de&A. 

For binary elastic collisions between ions and 
neutrals, the appropriate collision term is the 
Boltzmann collision integral 

$= jdvn d%,ui,ki,, e)[fX, -fifrtl> (6) 

where the subscript n denotes the neutral species, 
dv, is the volume element in velocity space, dCl is 
an element of solid angle in the center-of-mass 
reference frame, 0 is the center-of-mass scattering 
angle, g,, is the relative velocity of the colliding 
particles i and n, a,,,(&,,, 0) is the differential scat- 
tering cross section, and the bars denote quantities 
evaluated after a collision. In its present form, 
Boltzmann’s collision integral can be applied to 
arbitrary/ elastic scattering mechanisms. In our 
study, however, our main concern is for ion-neutral 
collision processes dominated by the long-range 
polarization interaction (Dalgarno et aZ., 1958). 
With this so-called Maxwell molecule interaction, 
the ion-neutral collision frequency, vi,,, is indepen- 
dent of velocity. In addition, we consider only one 
neutral species, but the generalization to several 
neutral species is straightforward. 

In the present investigation, we also confine our 
attention to the v,,,/Ja, -+ 0 limit. As u,,,/fI, + 0, the 
ion distribution in velocity space becomes symmet- 
ric about an axis that is parallel to the magnetic 
field direction and that passes through the E,XB 
drift point (Chapman and Cowling, 1970). The 
consideration of this limit restricts the application 
of our results to altitudes above about 150 km. 

Because of the cylindrical symmetry, it is conve- 
nient to introduce a cylindrical coordinate system 
with its axis along the magnetic field and its origin 
at the E,X B drift point. This coordinate system is 
shown in Fig. 1. In this figure, the ion velocity 
components in the E,X B, E,, and B directions are 
denoted by v,, v, and v,, respectively. The quantity 
D = E,_c/B is the magnitude of the ion drift velocity 
in the E,xB direction, and c, and Q. are the 
magnitude and phase, respectively, of the compo- 
nent of the ion velocity perpendicular to B but 
measured relative to the E, x B drift velocity. 

In cylindrical coordinates and for vi,&& << 1, 
Boltzmann’s equation (1) becomes 

-0, afi = sfi 
'aa st' 

FIG. 1. ION VELOCITY-SPACE COORDINATE SYSTEM 

The quantities (u,, uyr u,) are the ion velocity components 
in the E, X B, E, and B directions, resuectivelv. D is the 
magnitude of the E, X B drift velocity,‘and (cl,: CL, CY) are 
the ion velocity components for a cylindrical coordinate 

system with its origin ar the E, x B drift point. 

The collision term on the right-hand side of equa- 
tion (7) is of order v,,,/Q in comparison with the 
term on the left-hand side. This fact suggests that 
we seek a solution to equation (7) of the form 

Substituting this series into equation (7) and equat- 
ing like powers of v&Ii, we obtain, to lowest 
order, 

afIO) _ o 
acw- (9) 

which indicates that to lowest order the ion dis- 
tribution function is symmetric about an axis that 
passes through the E, x B drift point and is parallel 
to B. 

To next order, we obtain 

(10) 

Since fi must be a single valued function of cy, the 
integral of the left-hand side of equation (10) over 
cr from 0 to 27~ is zero. Therefore, equation (10) 
can also be written as 

J 
*lr &6fIO’=O 

D st ’ (11) 

where the collision term is given by equation (6). 
Our original Boltzmann equation (1) has now 

been replaced by equations (9) and (11). To solve 
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these equations, we use the generalized orthogonal 
polynomial technique described by St-Maurice and 
Schunk (1976). With this technique, the ion veloc- 
ity distribution function is expanded in a 
generalized orthogonal polynomial series about a 
given weight factor. In general, the form of the 
weight factor depends on the specific details of the 
problem. For the present case, it is easy to establish 
that the electric field causes a temperature anisot- 
ropy and, therefore, it is reasonable to assume that 
to lowest order the ion velocity distribution is bi- 
Maxwellian. Consequently, the weight factor of our 
generalized orthogonal polynomial series is taken 
as 

where 
w = exp [ - (ci2 + c,*‘)] (12) 

CII) = c,,l(2kTtlrnY (13) 

c, * = cJ(2kT,/tt#‘* (14) 

and where k is Boltzmann’s constant and Tr and TL 
are, as yet, unspecified temperatures parallel and 
perpendicular to the magnetic field. In equations 
(12) to (14) and all subsequent equations, the sub- 
script i is dropped from the ion random velocity 
components for simplicity. 

Since the weight factor is separable with respect 
to the ion velocity components cI) and c,*, the 
series expansion for the ion distribution function 
will contain a product of polynomials. For the 
velocity component along the magnetic field, the 
appropriate orthogonal polynomials are the Her- 
mite polynomials, H,,,(q’), while for the ion velocity 
component perpendicular to the magnetic field the 
appropriate orthogonal polynomials are the as- 
sociated Laguerre polynomials of degree zero, 
L,‘(c,**), (cf. St-Maurice and Schunk, 1976). The 
Hermite and associated Laguerre polynomials are 
defined in Appendix A. 

Using the bi-Mdxwellian weight factor (12) and 
the appropriate polynomials, the orthogonal 
polynomial series expansion for the ion distribution 
function becomes 

fi (~a’, c,*) = exp [ - @‘* + c,**)l 
m 

x i c ~,,&&‘K,“(c,*2), (15) m-o n-o 

where a,,,,, is an expansion coefficient. The expan- 
sion coe5cients can be expressed in terms of mo- 
ments of the distribution function by multiplying 
equation (15) with the appropriate combination of 
Hermite and associated Laguerre polynomials and 

by integrating over velocity space, 

9(1-m) I-’ 

amn = VI! &(n + 1)f __ I 
dcu’H,(c,;) 

x dc,*c,*&‘(c,**)fi(cl’, cl*), (16) 

where use has been made of the orthogonal@ 
relations of the Hermite (equation A7) and as- 
sociated Laguerre (equation A14) polynomials and 
where T(X) is the gamma function. 

Explicit expressions for the expansion coe5cients 
in terms of the velocity moments can be obtained 
from equation (16) by using the Hermite and as- 
sociated Laguerre polynomials given in Appendix 
A. Since the ion distribution function is symmetric 
about the velocity plane cl/ = 0, all odd velocity 
moments of cl1 are zero, and, consequently, many of 
the expansion coefficients are zero. The first few 
non-zero expansion coe5cient.s are given by 

ni 
a 00=3/2 

g4 
(174 

a 01 - - $5 11 -(c,*‘)l 

a -&[2-~(c,**)+(c,*~)] 02 - br3i2 

(17b) 

(17c) 

a -%[4(q’*)-2] 20 - gp3/2 (17d) 

all - -&[4(c~‘)+2(c~**)-4(c~*c~**)-2] (17e) 

a -L[12-48(~,,‘*)+16(cu’~)], 
40 - 384P312 

07f) 

where the bracket symbol is defined by equation 
(5), provided fi + fi (c,‘, cl*) and de{ + 
c~* dc,* dc,’ da. 

Up to this point, we have not defined TI and TL. 
The definition of these temperatures is arbitrary 
and, in general, it is useful to define these quan- 
tities in such a way as to obtain a more rapidly 
converging series. For our purpose, it is useful to 
define Ti and TA as the ion temperatures T,/ and T,, 
obtained by taking the parallel and perpendicular 
energy moments of Boltzmann’s equation. With 
this choice, 

(c,*2) = 1 (18) 

(c,;*) = 4 09) 

and, as a consequence, the expansion coefficients 
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(17) become 

hi 
a oo=p3/2 (204 

a - 5 [(c,*y- 21 07. - 4#Z (20b) 

a -L[l-2(cu”C,*‘>] 21 -4$/z (2Oc) 

a - -!L [4(cn”() - 31 4o - 9&“/z (20d) 

sol = a,, = 0. GOe) 

The velocity moments appearing in the expres- 
sions for the expansion coefficients can be expres- 
sed in terms of the electric field by taking moments 
of Boltzmann’s equation (equations 9 and 11, with 
the collision term given by equation 6). For the 
present case, the evaluation of the velocity mo- 
ments is complex from the algebraic point of view 
because it is necessary to consider fourth-order 
tensors. We therefore outline the procedure for 
calculating the velocity moments in Appendix B. 

When just the expansion coefficients given by 
equation (17 or 20) are considered, the orthogonal 
polynomial series expansion of the ion velocity 
distribution function becomes 

fi (cl/, c,*) = coo exp [ - (c#I’ + c, *q lfE(l-c,*2) 

+4”‘(2-4c,*2+c**4)+*(4c,(‘2-2) 
aoo aoo 

+z (4c~z-2)(1-cs*2) 

+~(12-48~,‘~+16~,;) , 
I 

(21) 

where we have used the expressions for the Her- 
mite and associated Laguerre polynomials given in 
Appendix A and where the non-dimensional ion 
velocity components (cl,‘, c,*) are defined by equa- 
tions (13) and (14). The series expansion (21) is the 
expression for the ion velocity distribution used in 
the present investigation. In this series, all velocity 
moments up to fourth-order are included. 

3. ION-NEUTRAL SCATIWUNG 
CROSS SECTIONS 

In order to calculate ion velocity distributions for 
arbitrary collision models, it is necessary to know 
the relevant ion-neutral scattering cross sections 
Qc (see Appendix B). For auroral ionospheric 

applications, the important E- and Fl-region ions 
are NO’, 02+, N2+ and 0’, while at the altitudes of 
interest in the present study (altitudes for which 
u,,,/Jn, CC 1) the dominant neutral species are atomic 
oxygen and molecular nitrogen. In the following 
subsections, we briefly discuss the calculation of the 
appropriate ion-neutral scattering cross sections. 
For completeness, we also consider certain limiting 
cases in order to cover a range of scattering 
mechanisms. 

Polarization attraction 

For collisions of NO’, 0,’ and Nz+ with neutral 
atomic oxygen, the scattering process probably con- 
sists of a long-range polarization attraction and a 
short-range repulsion (Mason, 1970). In the classi- 
cal limit, a pure polarization attraction yields scat- 
tering cross sections that vary as QC- l/g, for all 
values of 1, where g, is the non-neutral relative 
speed. With this so-called Maxwell molecule in- 
teraction, the ion-neutral collision frequency is in- 
dependent of velocity and, as a consequence, the 
calculation of ion velocity distributions is sigmfic- 
antly simplified. It is therefore useful to study the 
extent to which the ion-neutral interaction can be 
considered to be a Maxwell molecule interaction. 

Non-Maxwell molecule behaviour can arise from 
two processes. First, quantum effects introduce 
modifications. Quantum effects are important for 
grazing incidence collisions, but the factor (l- 
cos’ 0) in the expression for the scattering cross 
section (B18) makes the quantum contribution un- 
important near 0 = 0 (McDaniel and Mason, 1973; 
p. 128). Quantum effects also introduce resonances, 
which appear as short scale oscillations in Q$. 
These are particularly important when the relative 
ion-neutral energy is small compared to the depth 
of the potential of interaction, E. In general, how- 
ever, for Ti ~300 K the ,oscillations average out to 
the classical limit when Qi!,) is integrated over an 
energy range (McDaniel and Mason, 1973; p. 222). 

Non-Maxwell molecule behaviour can also arise 
from the presence of short-range repulsive forces in 
the ion-neutral interaction. The effect of short- 
range repulsion is shown in Fig. 2, where we pres- 
ent a:,!’ as a function of the relative kinetic energy, 
1 xbnginz, for various models of the polarization- 
short range interaction. In the expression for the 
relative kinetic energy, &,, = m,m,,/(m, + m,,) is the 
non-neutral reduced mass. In Fig. 2, the relative 
kinetic energy is normalized with respect to E and 
QC’ is normalized with respect to ~r,,,~, where r,,, is 
the interaction distance for which the potential of 
interaction is a minimum, i.e. -E. 
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FIG. 2. ENERGY DEPENDENCE OF THE MOMENTUM TRANS- 

FER CROSS SECTION, Q$f’, FOR VARIOUS MODELS OF THE 

POLARIZATION-HARD CORE INTERACTION. 

In this figure, Q$’ is non-dimensionalized with respect to 
7~r,,,~, where r,,, is the value of I for which the potential 
energy is a minimum. For the hard sphere, we selected a 
radius equal to r, for a 12-4 interaction. The parameter 
Fii,gi,‘/2e is the non-dimensionat energy, where E is the 

minimum value of the interaction potential. 

For the models shown in Fig. 2, the repulsive 
potential is assumed to be proportional to l/r”, 
where IE = 8, 12, or m (hard sphere). The attractive 
potential in most cases is just that due to polariza- 
tion attraction, which is proportional to l/r4. How- 
ever, in the 12-6-4 models, Mason and Schamp 
(1958) added an attractive component proportional 
to l/r6 in order to allow for dispersion forces. In 
these models, the constant y reflects relative 
strength of the l/r6 potential when the relative 
kinetic energy is asymptotically small. The hard- 
sphere-4 model was used by Langevin (1905), 
while the 8-4 model was used by Has& and Cook 
(1931). 

It is apparent from Fig. 2 that all the models 
contain a transition region in which the interaction 
changes from purely attractive to purely repulsive. 
The “softer” the repulsion, the larger the transition 
region and the greater the departure of QiA’ from a 

6- 

Id’ I IO 

crmc/ 26) 
t/2 

FIG. 3. ENERGY DEPENDENCE OF Qi$‘/Q$j’ FOR VARIOUS 

FOL~IZATtO~HARD CORE MODELS. 

FIG. 4. ENERGY DEPENDENCE OF Q~~‘/Q~~’ FOR VARIOUS 

POLARIZATION-HARD CORE MODELS. 

l/g,, dependence in the transition region. The 
reason for this behavior has been discussed in detail 
by Wannier (1970) and will not be repeated here. 
The important point to note is that the departure of 
Qi,!’ from a l/gi, dependence is not too significant 
(less than 40% for a 12-4 potential) for relative 
kinetic energies less than about 10~. As discussed 
below, this energy range covers typical relative 
kinetic energies found in the ambient hip-lati~de 
plasma, and, consequently, for most aurora1 appli- 
cations it is sufficient to assume that Qji’ varies as 
l/gin, with the constant of proportionality given by 
the mean of the actual velocity dependent quantity 
Qc’gi,. The calculation of the mean is discussed 
below. 

The behaviour of the scattering cross sections QE’, 
Qiz’ and Q!z’ as a function of relative kinetic 
energy is similar to that shown in Fig. 2 for Qi:‘. 
However, the departure of these cross sections 
from a l/gi, dependence in the transition region is 
smaller than that of Qj:‘. Also, the effect of the 
hard core is not felt in exactly the same way. For 
these reasons, the ratio Qifi/Qi:’ (I> 1) exhibits 
structure, with a peak value occurring in the transi- 
tion region. This behaviour is shown in Figs. 3-5 for 

FIG. 5. ENERGY DEPENDENCE OF Q~~)~Q~~’ FOR VARIOUS 

PO~RlZAnON-HAM CORE MODELS 
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the various interaction models that have been con- 
sidered to date. As with al:‘, the velocity depen- 
dent quantities Qifgi. (I > 1) can be replaced by 
their mean values. 

In order to determine mean values for Qi:g,,, we 
must know both the value of the potential 
minimum, -E, and the mean relative energy, &, 
for various temperature regimes. For non-resonant 
collisions between O+, NO’, 0,’ or N,+ and 
neutral atomic oxygen and molecular nitrogen E 
apparently falls in the range 0.05-0.1 eV (Mason, 
1970). To evaluate Bi, we use the formula given by 
McFarland er al. (1973), which relates the mean 
relative energy to the ion and neutral temperatures 
and the E, X B drift velocity. Since the ion tempera- 
ture, in turn, depends on the neutral temperature 
and the E,X B drift velocity, it is easy to show that 
Ei,, = 3 kTJ2. 

For a given ion-neutral collision pair, the mean 
values of Qifgi, are calculated by first selecting a 
value for E and then choosing an appropriate mean 
relative energy (or ion temperature) range. Typi- 
cally, the curves of QC vs energy can be divided 
into three distinct energy regimes and, conse- 
quently, there are three sets of Qffl/QlA’ ratios for 
each value of E. Since E itself is not precisely 
known for a given ion-neutral pair, variations of E 
within the allowable range of 0.0.5-0.1 eV should 
also be considered. In Table 1 we show three sets 
of Qifl/Qi,!’ ratios for our so-called “polarization” 
interaction (12-4 interaction potential). The sets 
shown tend to cover the range of possible values 
and, therefore, are indicative of the uncertainty 
associated with the determination of the scattering 
cross section ratios for a polarization interaction. 
Fortunately, our results are not very sensitive to 
changes in the Qi!,)/Qi:’ ratios within the limits 
shown in Table 1. In subsequent velocity distribu- 

TABLE 1. SCATTERING CROSS SECTION RATIOS 

FOR VARIOUS COLLISION MODELS 

Model 

R&XatbIl 0 1 0 

Resonant charge exchange 0.45 1 0.55 

(Model A) 

Resonant charge exchange 0.30 1 0.40 

(Model B) 

Polarization 0.80 1.2 1.1 

(Model A) 

PolaIization 0.95 1.3 1.3 

(Model B) 

Polarization 1.05 1.45 1.45 

(Model C) 

Forward scattering 2 3 4 

tion calculations, we adopt the Qi!,)lQif’ values 
labeled “polarization (model B)” for all non- 
resonant ion-neutral interactions. 

Resonant charge exchange 

For collisions between an ion and its parent 
neutral, both resonant charge exchange and elastic 
scattering are possible. For resonant charge ex- 
change, Dalgarno (1958) has shown that to leading 
order the momentum transfer cross section, al:‘, is 
twice the charge exchange cross section, Q,, 
defined by 

Q, = 27r “cr&,, 0) sin 0 de, (22) 

where aE(gin, 0) is the differential cross section for 
charge exchange. In the classical sense, this relation 
between QiA’ and Q, implies that 

oE(gin, e) = C,(g,) 603 - p), (23) 

where C,(g,,) is a slowly varying logarithmic 
function of gi, (cf. Banks, 1966; Banks and 
Kocharts, 1973) and 6 is the delta function. In our 
ion velocity distribution calculations, the logarith- 
mic dependence of C, on g, is replaced with a 
polarization dependence. This change, which sig- 
nificantly simplifies the algebra, does not introduce 
significant errors if vi,&& is small (cf. St-Maurice, 
1975), as is assumed here. 

Although the charge exchange cross section is 
much larger than the elastic scattering cross section 
for typical ionospheric ion and neutral tempera- 
tures, the e-dependence of uE indicates that the 
charge exchange contribution to Qjfl vanishes when 
1 is even (see equation B18). Consequently, for 
even values of 1, al!,) is calculated for an elastic 
scattering mechanism, while for odd 1 it is calcu- 
lated for a charge exchange mechanism (Mason et 
al., 1959). 

The calculation of Qiz for odd I follows directly 
from equations (23) and (B18) and the expression 
for aE given by Banks (1966). For even I, on the 
other hand, Q$z is calculated in the manner de- 
scribed in the previous subsection on polarization 
interactions. For O’-0 interactions, valence attrac- 
tion is probably the dominant elastic scattering 
mechanism and, therefore, the potential minimum, 
E, probably is of the order of 2-3 volts (cf. Mason, 
1970). In this case, Qi! for even 1 can be obtained 
from Figs. 2, 3 and 5 using the limit ($)pingin2<< E. 

As with our previous polarization models, more 
than one set of Q~!,)/Q~~’ ratios is possible for 0+-O 
interactions. In Table 1 we present two sets; reson- 
ant charge exchange models A and B. Model A is 
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for ‘& =G 2500 K, while model B is for z P 3000 K. 
Since the T range of model A is more appropriate 
for the electric field strengths considered in this 
investigation, we use resonant charge exchange 
model A for all ion velocity distribution calcula- 
tions dealing with 0+-O interactions. 

Relaxation model 

In order to compare our results with previous 
work, it is useful to evaluate the scattering cross 
sections for a relaxation collision model (St- 
Maurice and Schunk, 1973, 1974). It is easy to 
show that the relaxation collision model can be 
derived directly from the Boltxmann collision in- 
tegral by assuming equal ion and neutral masses 
and adopting a differential scattering cross section 
of the form 

oRM=CRMs(e-n)/gi,, (24) 

where C, is a constant. It follows directly from 
equations (24) and (B18) that 

Q’&= Q& 
(25) 

and 
Q&=Q&(). (26) 

Scattering cross section ratios for the relaxation 
model are summarized in Table 1. 

The relaxation model is a back-scattering colli- 
sion model with a constant collision frequency. It 
approximates a resonant charge exchange collision 
process in the limit of very high ion temperatures 
despite the fact that the resonant charge exchange 
collision frequency is velocity dependent. 

Forward scattering model 

For completeness we also consider a forward- 
scattering collision model with a constant collision 
frequency. The differential scattering cross section 
for such a model takes the form 

UFs = C, 8(6)/g,, (27) 

where C, is a constant. Substituting equation (27) 
into (B18), we obtain 

(28) 

The scattering cross section ratios given by equa- 
tion (28) correspond to the classical limit of for- 
ward scattering. If forward scattering was a domin- 
ant feature of an actual collision process, quantum 
effects would have to be considered. Consequently, 
our forward scattering model is not a physically 
realistic collision model. Nevertheless, this model is 
useful since its scattering property is opposite to 
that of the relaxation model and, therefore, with 

the two models we are able to bracket the complete 
range of classical scattering behavior. 

4. ION WLOCITY DISTRIBUTIONS 

4.1. Comparison with a Maxwellian 

Our new expression for the ion velocity distribu- 
tion function (equation 21) corresponds to an or- 
thogonal polynomial series expansion about a bi- 
Maxwellian weighting function. Since only a limited 
number of terms in the in&rite series are retained, 
it is important to establish that the resulting trun- 
cated series can properly describe distributions that 
difIer significantly from a Maxwellian. For this 
reason, it is useful to lirst consider the relaxation 
collision model (cf. St-Maurice and Schunk, 1973, 
1974). 

The relaxation model results will first be com- 
pared to a Maxwellian distribution which has the 
same density, drift velocity, and energy moments as 
the actual distribution. This Maxwellian has the 
form 

fM(cA = &+>,,, exp [ -$$, (2% 

where Ti is the ion temperature, 

Since the energy moments of fi and fM are the 
same, we have 

Ti = (Ti,,+2T&3. (31) 

The results obtained from our series expansion 
(21) for the relaxation collision model are shown in 
Fig. 6, where we present contours of fJfM in the 
principal c,--cl1 velocity plane. In this figure, D’= 
D/v, is the non-dimensional ion drift speed, D = 
E,c/B is the magnitude of the ion Elx B drift 
velocity, vTm = (2kT,,/m,,)“” is the neutral thermal 
speed, and vT, = (2kTJtn,)“Z is the ion thermal 
speed. The quantity D’ can be related to a specific 
value of E, if T,, is known; this relationship is 
shown in Table 2. Also shown in Table 2 are the 
associated ion temperatures. Since both fi and fM 
are symmetric about the cl,-axis, 3-dimensional con- 
tours of fJfM can be obtained from Fig. 6 by 
rotating these contours about the q-axis. In this 
way, it is easy to see that the ion velocity distribu- 
tion tends to take the shape of a torus in velocity 
space as the electric field strength is increased. This 
behaviour is in agreement with our previous relaxa- 
tion model results, which were obtained from an 
exact solution to Boltzmann’s equation (cf. St- 
Maurice and Schunk, 1973, 1974). A more detailed 
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TABLE 2. VALUES OF E,(mV m-') AND T,(K) AS A FwNC- 
TION OF D/u=, FOR ION INTERAcTIONS WITH NEUTRAL 

ATOMICOXYGEN 

T,= 800 1000 1200 1500 

0.5 22.7 933 25.4 1167 27.8 1400 31.1 1750 
1.0 45.4 1333 50.8 1667 55.6 2000 62.2 2500 
1.5 68.1 2000 76.2 2500 83.4 3000 93.3 3750 
2.0 90.8 2933 101.6 3667 111.3 4400 124.4 5500 

quantitative comparison indicates that our series 

expansion of fi (equation 21) provides a good ap- 
proximation to the actual velocity distribution fimc- 
tion over a fairly large region of velocity space. 

The precise area of velocity space in which our 
series converges depends on both the magnitude of 
the electric field and the ion-neutral collision 
model. For a given collision model, an increase in 
the electric field strength results in a greater depar- 
ture of fi from our assumed zeroth-order bi- 
Maxwellian and this, in turn, results in a smaller 
region of convergence. For a given E,, on the other 
hand, we show below that, in general, the relaxa- 
tion collision model produces the greatest depar- 
ture of fi from the zeroth-order bi-Maxwellian and, 
hence, yields the smallest region of convergence. 
Consequently, the fact that we are able to check 
the convergence of our series for the relaxation 
collision model gives us added confidence in the 
results we obtain for other collision models. 

4.2. Zeroth-order bi-Maxwellian 

Since the ion velocity distribution is bi- 
Maxwellian to lowest order, it is instructive to study 
the properties of this distribution. This zeroth- 
order bi-Maxwellian can be obtained from our 
series expansion (21) by setting all expansion coeffi- 

cients equal to zero except aOO. When expressed in 
terms of the random velocity, this distribution takes 
the familiar form 

(32) 

where the complete expressions for T,I and T,, are 
given by equations (B21) and (B22), respectively. 
For a given ion-neutral collision model and mass 
ratio, the expressions for Ti, and Til take a particu- 
larly simple form 

T,, = T,[l +&D”] (33) 

Tiu= T,[ l+ /310'2], (34) 

where /3,, and /3* are pure numbers depending upon 
ion-neutral collision model and mass ratio; values 
are given in Table 3. 

In effect, the values of ,9 determine the extent to 
which Till and Ti, differ. The greatest temperature 
difference occurs for the relaxation collision model, 
where pII= 0 and /3,. assumes its maximum value, 
i.e. /& = 1. For the relaxation model, the effect of a 
perpendicular electric field is concentrated in the 
perpendicular velocity plane, and Till= T,, for all 
electric field strengths. For other collision models, 
however, a perpendicular electric field affects both 
Til and TI. Assuming mJm, = 1, for example, 
Table 3 indicates that the difference between /3,, 
and /S1 and, hence, Till and Ti, decreases as one 
goes from the relaxation model to the resonant 
charge exchange model, to the polarization model. 

The progression from model to model in this 
order is essentially from back scattering toward 
forward scattering. For the, three models consi- 
dered, Till< T,. However, a continuation of the 
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'X'"Ti Cx'",, cX'vT, 
FIG. 6. CONTOURS OF f& IN THE PRINCIPAL c,-cl VELOCITY PLANE FOR THE RELAXATION COLLISION 

MODEL. 

In this figure, D’= D/uT., D = E,c/B, uT. = (2kT,,/m,,)“* and uT, = (2kTJmi)"*. 
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TABLE 3. VALUESOF @II AND /3k~~~~~m~~~~~~~~~~~~~ 
MODELS 

Model 

Relaxation 
Resonant charge exchange 
Polarization (mi/m, + 0) 
Polarization (m,/m, = 4) 
Polarization (m&t, = 1) 
Polarization (mi/m, = 2) 
Polarization (mdm, + m) 
Equal temperature 
Forward scattering (mi/m, = 1) 

PII BL 

0.3”364 0 Sk8 
213 ‘213 

0.5876 0.7062 
0.5547 0.7226 
0.5253 0.7313 
0.4750 0.7625 

213 213 
415 315 

progression toward forward scattering leads to the 
so-called “equal temperature” model, for which 
Till = r,. This equal temperature condition, which 
is obtained by setting Qfi’/QfA’ =$, holds for all 
electric field strengths and for arbitrary ion-neutral 
mass ratios. Finally, in the forward scattering limit, 

Till > TiL* 
A more quantitative comparison of parallel and 

perpendicular ion temperatures is given in Tables 4 
and 5. In Table 4, Till and Ti, are presented as a 
function of D’ for different collision models and a 
single ion-neutral mass ratio (m,/m,, = l), while in 
Table 5 the effect of different ion-neutral mass 
ratios is shown for the polarization collision model. 
As discussed above, the relaxation model produces 
the greatest temperature difference, with Ti,- Till = 
4000 K for D’ = 2. For resonant charge exchange, 
(Ti,- Till) varies from 125 K for D’= 0.5 to approx- 
imately 2000 K for D’= 2, while for the polariza- 
tion collision model (T?,- Till) varies from 42 to 
670 K for the same values of b’. For the forward 
scattering model, Till is greater than Ti, with the 
temperature difference varying from 50 to 800 K 
for the values of D’ shown. 

With regard to the effect of the ion-neutral mass 
ratio, Table 5 indicates that relative to the results 
shown in Table 4 for m,lm, = 1 smaller mass ratios 
produce smaller (T,- Till) differences, while the 
opposite is true for larger mass ratios. In the 
asymptotic limit of a light ion or massive neutral, 

the perpendicular-parallel temperature difference 
vanishes, while in the opposite limit of a heavy ion 
or light neutral perpendicular-parallel temperature 
differences of up to 1150 K are possible for the 
polarization collision model and D’ = 2. However, 
for the ion-neutral mass ratios typical of E and 
Fl-region altitudes, (T,, - Till) varies from 474 K 
for m,/m, =$ to 848 K for m,/m, = 2, again for 
D’=2. 

The shape in velocity space of the zeroth-order 
bi-Maxwellian can be readily established by study- 
ing contours of log fSM in the velocity planes paral- 
lel and perpendicular to B. In the principal velocity 
plane perpendicular to B, the contours form a 
family of concentric circles, since fSM exhibits 
cylindrical symmetry about the axis ci, = 0. How- 
ever, for any velocity plane that is parallel to B and 
passes through cU = 0, the contours form a family 
of ellipses, with the major and minor axes of the 
ellipses aligned parallel and perpendicular to B. For 
the physically realistic resonant charge exchange 
and polarization collision models, the major axes of 
the ellipses are perpendicular to B, since T, > Till 
for these collision models. 

4.3. Departures from a bi-Maxwellian 

The velocity-space contours of the actual ion 
velocity distribution will differ from the bi- 
Maxwellian contours to a degree which depends 
upon such parameters as the electric field strength 
and the ion-neutral scattering cross section and 
mass ratios. To study these departures, it is more 
convenient to plot contours of fJfBM rather than 
fdfM, as was done earlier for the relaxation model. 
Furthermore, a plot of fifaM is, in effect, a plot of 
the sum of the terms in our series expansion (21), 
and, therefore, the region of convergence of our 
series expansion can be simply determined by 
selecting that region of velocity space where the 
sum differs from the leading term (unity) by a 
specified amount. Typically, variations of fJfBM be- 
tween 0.8 and 1.2 are reliable. 

TABLE 4. PARALLEL AND PERPENDICULAR ION TEMPERATURES (K) AS A FUNCTION OF D’ FOR 
mi/m,=l, T,,= lOOOK, AND FOR DIFFERENT COLLISION MODELS (D’=D/v,; D=E,c/B, 

vTn = (2kT,,/m,)“‘) 

Resonant charge Equal Forward 
Relaxation exchange Polarization temperature scattering 

D’ T,II 7;, Till II;1 Till L Till Ti, Till T,, 

0.5 1000 1250 1084 1208 1139 1181 1167 1167 1200 1150 

1.0 1000 2000 1336 1832 1555 1723 1667 1667 1800 1600 

1.5 1000 3250 1757 2871 2248 2626 2500 2500 2800 2350 
2.0 1000 5000 2346 4327 3219 3890 3667 3667 4200 3400 
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TABLES. PARALLELANDPERPENDICULARIONTEMPERATURES(K)ASAFUN~I~NOFD'AND mi/m, FOR 
APOLARIZATIONCOLLISIONMODELWITH T,=lOOOK (D’=D/o,; D=E,c/B, ~~~=(2kT,/rn,)~‘~) 

mJm,~= 0 1 1 2 m 

D ’ Till TiL Till Ti* T~II Ti, Till T,, Till Ti, 

0.5 1167 1167 1147 1177 1139 1181 1131 1184 1119 1191 
1.0 1667 1667 1.588 1706 1.555 1723 1525 1737 1475 1763 
1.5 2500 2500 2322 2589 2248 2626 2182 2659 2069 2716 
2.0 3667 3667 3351 3825 3219 3890 3101 3949 2900 4050 

In order to better understand the contour pat- 
terns of fJfsM, it is useful to first present results for 
the relaxation collision model. For this collision 
model, contours of fJfBM in the principal c, -cl\ 
velocity plane are shown in Fig. 7 for the same set 
of parameters that led to the fi/fM contours shown 
in Fig. 6. A comparison of corresponding contour 
patterns reveals several important differences. First, 
the fJfBM contours are straight lines, while the fi/fM 
contours form closed loops. To understand this 
difference we note that for the relaxation model the 
effect of a perpendicular electric field is felt only in 
perpendicular velocity planes; the ion distribution 
parallel to B is Maxwellian at the temperature of 
the neutral gas. This Maxwellian behaviour in the cl, 
direction is completely contained within the bi- 
Maxwellian part (weighting function) of our series 
expansion. As a consequence, fJfBM is independent 
of cl1 and straight lines result when this ratio is 
plotted on a cl1 - c, velocity grid. 

A comparison of Figs. 6 and 7 also indicates that, 
in general, the ratio fJfBM is closer to one than 
filfie indicating that the ion velocity distribution is 
better approximated by a bi-Maxwellian than by an 
equivalent Maxwellian. However, the departures of 
fi from a bi-Maxwellian become significant for D’ 3 
1, and the tendency of $ to take a toroidal shape is 
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reflected (in Fig. 7) by the depletion (relative to 
fBM) of ions near the origin and by the enhance- 
ments near c, = *lSu,. 

With regard to the question of convergence, the 
values of f-JfBM shown in Fig. 7 indicate that our 
series converges for all parallel ion velocities and 
for a range of perpendicular ion velocities that 
depends on the strength of the electric field. The 
perpendicular velocity range is jc,l =S 2.75~~~ for 
D’ = 0.5, Ic,ls 2.5v, for D’= 1, and (c,lS2.25~, 
for D’ = 1.5. Consequently, for all three electric 
field strengths our series is capable of describing 
the bulk of the ions. 

In Fig. 8 we present contours of fJfBM in the 
principal c,-cl1 velocity plane for the resonant 
charge exchange collision model. Relative to the 
bi-Maxwellian, there is a depletion of ions near the 
origin and enhancements near c, = *1.5v,, which is 
similar to the result obtained for the relaxation 
model. However, the depletion and enhancements 
are not quite as large as those obtained for the 
relaxation model. In contrast to the relaxation 
model results, enhancements also occur along the 
c,,-axis for both large negative and large positive 
values of ~11. Furthermore, it is readily apparent that 
the contours of fJfBM for resonant charge exchange 
are not straight lines, as they are for the relaxation 
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FIG. I. CONTOURS OF fi/fBM IN THE PRINCIPAL C,-C,, VELOCITY PLANE FOR THE RELAXATION COLLISION 

MODEL. 

In this figure, D’= D/u=“, D = E,c/B, uTn = (2kT,,/m,)“’ and UT, = (2kTJm#“. 
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FIG. 8. CONTOURS OF fdfBM IN THE: PRINCIPAL cX-cl1 VELOCITY PLANE WR THE RESONANT CHARGE 

EXCHANGECOLLISIONMODEL. 

In this figure, D’= D/vi;, D = E,c/B, VT, = (2kT~~)“’ and u, = (2kT~mj)‘~. 

model. This difference results because the resonant 
charge exchange model, unlike the relaxation 
model, is not a pure back-scattering model, and 
therefore, the effects of a perpendicular electric 
field are not confined to perpendicular velocity 
planes, but are felt in parallel planes as well. 

Overall, the departures of fi from the bi- 
Maxwellian are smaller for resonant charge ex- 
change than for the relaxation model. Furthermore, 
the departures of fi from the equivalent Maxwellian 
are also smaller for resonant charge exchange, since 
the pe~n~c~~-p~~el temperature difference 
is smaller. This behavior is a direct consequence of 
the fact that resonant charge exchange collisions 
are more isotropic than relaxation model collisions. 

In Figs. !3-11 we present contours of fJfBM in the 
principal &-cl1 velocity plane for the polarization 
collision model and three ion-neutral mass ratios 
(4, 1,2). The polarization model results for r&m, = 
1 can be directly compared to both the resonant 
charge exchange and the relaxation model results, 

since a mass ratio of unity is implied in both of 
these models. A comparison of corresponding con- 
tours indicates that the polarization pattern is dis- 
tinctly different from either the resonant charge 
exchange or the relaxation model patterns, al- 
though certain features are similar. Relative to the 
bi-Maxwellian, fi is depressed near the origin and 
enhanced near c, = *l.5urj, which is in agreement 
with the behaviour obtained for both the resonant 
charge exchange and relaxation models. Also, there 
are enhancements in fi close to the c+xis for both 
large positive and large negative values of cr, in 
agreement with the resonant charge exchange 
model results. However, these enhancements are 
confined to a much smaller region of velocity space 
for the polarization model than for the resonant 
charge exchange model. 

In general, the departures of fi from both the 
bi-M~wellian and the equivalent Maxwellian are 
smaller for the polarization model than for either 
the resonant charge exchange or relaxation models, 

FIG. 9. CONTOURSOF fJfBM INTHEPRINCIFAL c,-cl1 VELOCITYPLANEFORTHEPOLAR~ZATIONCOLL~SI~N 

MODELAND~J~,=&. 

In this figure, D’ = D/v,,, D = EL&r, u?; = (2kT~m”)x’2 and 0% = (2kT~~)‘~. 
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FIG. 10. CONTOURSOF~&~INTHEPRINCIPAL c,-~~~VEL~~ITYPLANEFORTHEPOLARIZA~ONCOLLISION 
MODELAND ??$/&=I. 

In this figure, D’= D/u,“, D = E,c/B, uTm = (2kT,,/m,)“’ and uT, = (2kTdmJ”‘. 

which indicates that the polarization scattering 
mechanism is more isotropic than the other scatter- 
ing mechanisms. 

The effect on the ion velocity distribution of 
different ion-neutral mass ratios can be seen by 
comparing Figs. 9-11. For the three mass ratios 
considered & 1,2), the contour patterns for a given 
value of D’ are very siniilar. In general, as the 
ion-neutral mass ratio increases from 4 to 2, the 
departures of fi from the bi-Maxwellian increase. 
Likewise, the departures of fi from the equivalent 
Maxwellian increase as Mm,, is increased, since 
increases in m,/m,, lead to greater perpendicular- 
parallel temperature differences (see Table 5). 

In Fig. 12 we present contours of fJfBM in the 
principal c,-cl1 velocity plane for the forward scat- 
tering model. Although this collision model is not a 
physically realistic model, its scattering properties 
are opposite from that of the relaxation model, 
and, therefore, between the two models we are able 
to cover the complete range of classical scattering 

behaviour for elastic ion-neutral interactions. The 
most striking feature of the forward scattering 
model is that the ion velocity distribution is approx- 
imately bi-Maxwellian even for relatively large 
electric field strengths. In fact, in order to obtain 
values of fJfBM that are the same order of mag- 
nitude as those shown in our previous contour 
plots, it was necessary to set D’= 1.5, 2.5, and 3.5, 
instead of 0.5, 1, and 1.5. 

The forward scattering model di!Iers from the 
other scattering models in two important ways. 
First, as discussed earlier, T,i> T,, for the forward 
scattering model, while the reverse is true for the 
other scattering models. Also, relative to the bi- 
Maxwellian, f, is enhanced near the origin and 
depressed near c, = *l.Se, and near cII= rt2u, 
which is in contrast to the behaviour obtained for the 
other scattering models. 

Finally, we note that the ion velocity distribution 
takes simple forms in the asymptotic limits of very 
small and very large ion-neutral mass ratios. In the 
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FIG.~~. CONTOIJRSOF~,&~ INTHEPRINCIPAL c,-~VELOCITYPLANEFORTHEPOLARIZATIONCOLLISION 
MODELAND mi/nl,,= 2. 

In this figure, D’= D/v,~, D = E,cIB, uT_ = (2kT,,/m,,)1’z and oT, = (2kT,/m,)“‘. 
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FIG. 12. CONTOURSOF fi/fBM INTHEPRINCIPAL c,-cl, VELOCITYPLANEFORTHEFORWARDSCA~RING 

MODELAND ?$/m,,=l. 

In this figure, D’= D/u,“, D = E,c/B, uTn = (2kTJm,)“’ and uTi = (2kTJmi)“*. 

limit m,/m, + 0, the ion velocity distribution is 
Maxwellian for all collision models and arbitrary 
electric field strengths. In the opposite limit of 
mJm, -+ 00, the ion velocity distribution is a pure 
bi-Maxwellian, again for all collision models and 
arbitrary electric field strengths. In addition, for a 
given electric field strength, the difference between 
Till and Ti, is greater for mJm, + Q) than for any 
other value of mJm,. However, as shown ,above, 
for finite values of mJm, deviations from a bi- 
Maxwellian are appreciable and should be consi- 
dered in aurora1 studies involving ion velocity dis- 
tributions. 

5. SUMMARY AND CONCLUSIONS 

We have calculated ion velocity distributions for 
a weakly-ionized plasma that has been subjected to 
crossed electric and magnetic fields. The approp- 
riate Boltzmann equation has been solved by ex- 
panding the ion velocity distribution function in a 
generalized orthogonal polynomial series about a 
bi-Maxwellian weight factor. With this method of 
solution, we have been able to obtain reliable ex- 
pressions for the ion velocity distribution function 
for a range of ion-neutral scattering mechanisms 
and for convection electric field strengths as large 
as 90 mV m-r. 

As far as ion-neutral scattering mechanisms are 
concerned, our main emphasis has been devoted to 
a polarization-hard core (12-4) interaction poten- 
tial, which approximately yields a velocity indepen- 
dent ion-neutral collision frequency. For this colli- 
sion model, we have considered a range of ion- 
neutral mass ratios (m,/m, = 0, 4, 1, 2, m). The mass 
ratios of f, 1 and 2 cover the important ion-neutral 
collision combinations at E and F-region altitudes, 
while the asymptotic limits m,/m,, + 0 and m are 

useful since they provide information on the ion- 
neutral scattering behaviour in the limits of very 
light and very heavy ions, respectively. In addition 
to the polarization model, we have also considered 
a resonant charge exchange model as well as other 
collision models such as the relaxation model 
(back-scattering) and the forward scattering model. 
These latter collision models were useful, since with 
these models we have been able to cover the com- 
plete range of classical scattering behaviour for elas- 
tic ion-neutral interactions. 

For all collision models, we have found that to 
lowest order the ion velocity distribution is bi- 
Maxwellian, with different ion temperatures paral- 
lel and perpendicular to the geomagnetic field. In 
general, the perpendicular-parallel temperature 
difference depends on the ion-neutral collision 
model and mass ratio as well as on the magnitude 
of the convection electric field. For the physically 
realistic polarization and resonant charge exchange 
collision models, T,,> Till, indicating that for these 
models the ion velocity distribution decreases more 
slowly in the perpendicular velocity plane with 
increasing ion velocity than in the parallel velocity 
plane. Typical perpendicular and parallel tempera- 
tures as a function of convection electric field have 
been presented in Tables 4 and 5 for different 
ion-neutral collision models and mass ratios. 

Although the bi-Maxwellian form may be useful 
for certain aurora1 studies, we have found that 
departures of the ion velocity distribution from the 
zeroth-order bi-Maxwellian become significant 
when the ion convection velocity approaches (or 
exceeds) the neutral thermal speed. Furthermore, 
for a given convection electric field the departures 
generally increase as the ion-neutral scattering 
mechanism varies from forward scattering to back 
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I 1 1 

suggest an 0 + instability threshold as high as McDam%l, E. W. and Mison, E. A.‘(1973). The Mobility 

80 mV m-l or greater (St-Maurice et ul., 1976). We and Diffusion of Ions in Gases. Wiley, New York. 

also note that the instability threshold of the NO’ 
McFarland, M., Albritton, D. L., Fehsenfeld, F. C., Fer- 

velocity distribution is higher than for 0’ ions, 
guson, E. E. and Schmeltekopf, A. L. (1973). Flow- 
drift technique for ion mobility and ion-molecule reac- 

since polarization interactions lead to more isot- tion rate constant measurements. II. Positive ion reac- 

ropic velocity distributions than resonant charge tions of N+, O+, and Nz+ with O2 and O+ with Nz from 

exchange interactions. 
thermal to -2 eV. J. Chem. Phys. 59, 6620-6628. 

Finally, we note that Wannier (1953) has studied 
Ott, E. and Farley, D. T. (1975). Micro-instabilities and 

the production of short wavelength irregularities in the 
the motion of ions in a weaklv-ionized olasma aurora1 F region. .I. neoohvs. Res. 80. 4599-4602. 

d 1 

subjected to a uniform electric field and no magne- 
tic field. He obtained different ion temperatures 
parallel and perpendicular to the electric field, and 
his expressions for these temperatures are similar in 
form to our zeroth-order bi-Maxwellian tempera- 
tures (33) and (34). It therefore appears that our 
method of solution of Boltzmann’s equation may 
be useful for ion mobility studies. 
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APPENDIX A 

Hermite polynomials 

The Hermite polynomials, H,,,(X), are orthogonal with 
respect to the weight function e-= over the range --(o< 
X<m. The generating function for these polynomials is 

exp(-t2+2tX)= 2 tmH,(X). 
m_O m! 

(Al) 

In particular, the first few Hermite polynomials are 

H&)=1 (A2) 

H,(X) -2X (A3) 

H2(X) = 4X2 - 2 (A4) 

H&C) = 8X3 - 12X (A5) 

H&C) = 16X4 - 48x2 + 12 (A@ 

These polynomials are connected by the orthogonal&y 
relation 

I 

ca 

dXe-X’H,(X)H,(X)=8,,,,2mm!&. (A7) 
-_ 

Associated kaguerre polynomials 

The associated Laguerre polynomials, L’(X), are or- 
thogonal with respect to the weight function eex over the 
range OSX<-. The generating function for these 
polynomials is 

exp (-Xr/(l - t)) 

(1-r) 
=t n_O &)CVQ. (A8) 

In particular, the first few polynomials are 

LO(X) = 1 (A% 

LiO(X) = 1 - x (AlO) 

b”(X)=2-4X+X’ (All) 

~“(X)=6-18X+9X2-X3 (A12) 

L4’(X) = 24 - 96X+72X2 - 16X” +X4. (A13) 

These polynomials are connected by the orthogonality 
relation 

_ 

b 
dXe-xL,o(X)L,,o(X) = 8,,[T(n + l)f, (A14) 

where T(y) is the Gamma function (Hildebrand, 1964). 

APPENDIX B 

Moments of Boltzmann’s equation can be obtained by 
multiplying equations (9) and (10) by Qi = ati(ci) and then 
integrating over velocity space. From equation (9) we 
have 

031) 

or 

I dqfp z = 0, 032) 

where the second expression is obtained by integrating by 
parts and by using the fact that @‘J{” is periodic in a with 
a period of 27~ The same procedure applied to equation 
(10) yields 

= &i dVm dClgnub(gm, 6)f~“‘f~[Si -cPi]> (B4) 
J 

where, as before, the left-hand side of the second expres- 
sion follows from an integration by parts, while the right- 
hand side follows from the reversibilitv of elastic collisions 
(cf. Allis, 1956). 

The collision integral is evaluated by introducing both 
the center-of-mass velocity, V,, and the relative velocity, 
gi,, of the colliding particles i and n, 

VC =(4)+ 
mici + qc, 

mi+m, 
==v+(%) (B5) 

&n=Ci-C,, W) 
where 

ci =vi -(v,) (B7) 

c, =v, -(vi). (B8) 

and where the velocity V is introduced for convenience. 
From equations (B5) and (B6), we have 

q =v+--J&, 
mi+% 

zi =v+-- miy, gin, 

where the velocity V is not changed in a collision. 
The quantity (Qi --a,) can now be obtained from equa- 

tions (B9) and (BlO). In addition to the trivial value of 
Oi = 1, in the present study it is necessary to consider two 
values of Qi; a, =o,q and oi =c,c,cIci. For these values 
of ai, equations (B9) and (BlO) yield 

+(~g,-~&)v,v,+(~~-~~)v,v. 
+(gs&-gs&)v,v,+(&&-~,gb)v,vB} 
+M,{(~-&,)V,V,V,+(ge-ge)V.VvV. 

+(g,-~)v,vBv.+(g.-k)v,v,v,), 

where 
M, = m&u, + mn). 

0312) 

(B13) 
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In equations (Bll), (B12) and all subsequent equations, 
we drop the subscript “i” from ci and the subscripts “in” 
from g, for simplicity. Furthermore, we introduce index 
notation for the tensors through the use of Greek sub- 
scripts. 

When evaluating the collision integral, it is convenient 
to lirst integrate over the solid angle do = sin 0 d0 d$. 
This can best be done by adopting a spherical coordinate 
system in the center-of-mass reference frame with the 
relative velocity g taken along the 0 =0 axis. For the 
velocity terms appearing in equations (Bll) and (B12), 
we need the following integrals: 

I 
dnui,(g, ej(& -&j = -gceQ!,!’ (Bl4j 

+&Q?- Q::‘lg4[&, 67, + &, 8,. + 8,s &I, (B17) 

where we used the fact that for elastic collisions Id = lgl. 
In equations (B14) to (B17), 8-a is the Kronecker delta 
and Qtfl is the scattering cross section, 

Q!‘) = 277 m 
I, 

“(I- d eb,,(g, e) sin e de. 0318) 

The integral of equations (Bll) and (B12) over da can 
be readily obtained with the aid of equations (B14j to 
(B17j. The next step in evaluating the collision term in 
(B4) is to express g and V in terms of Ci and vn using 
equations (B5), (B7) and (B8). Since we can assume that 
gQ!f! is independent of velocity, the remaining integrals 
over dci and dv, can then be performed. With this 
procedure, the collision term in equation (B4) is expres- 
sed in terms of veloci moments of the zeroth-order ion 

73 distribution function fi . 
In the present investigation, we need moment equations 

for the following velocity moments: (cl?), (c, j, (c~I?, 

(cl“), and ( cll’c,~. Equations for these moments can’be 
obtained from eauations (B2j and (B4j by selecting the 
appropriate expression for‘Qi.and by separating the corn- 
ponents of these equations. For example, moment equa- 
tions for (cl?) and (c,*) can be obtained by setting ai = 
cc, with (6i -Qi) given by equation (Bll). With this Qi, 
eauation (B2) indicates that the tensor (ee) is diagonal and 
that the .twb perpendicular elements are equal. The 
diagonal elements (CM? and (c,‘) are then obtained by 
res$.ctively taking th”escalar product of qlq and (I-q& 
with equation (B4), where ql is a unit vector parallel to 
the magnetic field and I is the unit dyadic. With this 

procedure, we obtain 

(c,+~+~~(l+~)~ 

[ 

3 ,,,,, Q!*’ -1 

x I+;,_$ 1 Dz (B19) 

@,‘)=T+$ [l+;(2$-l)$j ‘” 

x l+;z$]-‘D? 
[ 

(B20) 
m 

Equations (B19) and (B20) can now be used to obtain the 
parallel and perpendicular ion temperatures by setting 
(cllz)= kTit/mi and (c,*)= 2kTil/mi; 

Ti~=T”+t(l+~)~[I+~~~~‘~ (B21) 

TiL=T~+;[1+;(2~-1)$] 

x 1+3 m,, a!.” 

[ 
-- 

4 m. Q!l) I m 1 -I m,D* -. (B22) 
k 

The procedure for obtaining moment equations for the 
fourth-order velocity moments (ci4), (c,*) and (cfZcL2) is 
similar to that described above for the s_econd-order vel- 
ocity moments. Setting ai = me, with (@, - (I+) given by 
equation (B12), three equations for the three velocity 
moments can be obtained by respectively taking the scalar 
product of qm, (I-qp$(I-qlql) and (I-q&h1 with 
equation (B4). These equations have the form 

dji(ct4j + d,s(cA4j+ djs(ctscL2j+ dj4(c~j;j(c~*) 

+ djs(c,$)(c{j+ dj&c,,*j(c,*)+ djr(L2j(ctrj 

+djs(c,{j+ djs(c.,4j+ d&cnllsc.L2j = 0, (B23j 

where 

kT, 
(cd*) = m, (~24) 

(c.,‘)=?+D* (~25) 

(c.,?=3(?) (B26j 

(c~~~)=~($)*+~(~)D*+D~ (B27) 

(c&,~*)=~ [?+D’] (B28j 

and where D is the magnitude of the ion E,xB drift 
velocity and the d-coefficients are given in Appendix C. 
In equation (B23), the subscript j = 1, 2, 3 is used to 
identify the three equations. 

For a given set of conditions, the three equations of the 
form (B23) can be inverted to obtain explicit values for 
(ct“), (c,*) and (CHICK’). These velocity moments can then 
be converted into cw) and cI* moments using equations 
(13) and (14) and the expressions for Till and Ti, given by 
equations (B21) and (B22), respectively. 
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APPENDIX C 

The dSt coetficients appearing in equation (B23) are given 
by: 

dII = -g[4M?M i n Q”‘+6M.aM aQf2) 

i4M;Ma3Q’3’+M,4Q’4’] (Cl) 

dlz =jM,4g[2Qc2’- Qc4’] (C2) 
d 13 = M,‘g[ -6M,MJQ”‘- Q”‘] 

+ 3(~L-~~*)Q’2’+311/1;*Q(4)] (C3f 

d14=3M,4g[2[Q(i)-Q(31]+Q(4)] (C4) 
drs=-6M,2g[2Mi(M,-Mi)Q”‘+(M~+M,2-4MiA4,) 

x Q(s)+ 2A4,(Mi - M,,)Q’3)+M,,2Q’4’I (CS) 

dt6 = 4d,2 (C6) 
d =dx3 

d:: = M,4g[4Q 
(C7) 

(1)_6Q”‘+4Q”‘_Q’4’] 
(C8) 

dig = dn WI 

ho = d14 (cm 

dz, = Mm4[2Q”‘- Qc4’] (Cl0 

drzz = -2M,M,{2M,2+M,,2)gQ”‘- M,,2[5M;+&2]gQ(2f 

- 2MiM~3gQ’3’-a~“4gQ’4’ (Cl21 
623 = M~2g[-8MiM”[Q”1- Q@‘] 

+(4M~-2M,2)Q’2’+3Mn2Q(4)] (C13) 

d24 = dz, W14) 

dzs = 6d2, (CW 
d26 = ~~2g[4(2M~-3~iM~ + M,,2)Qt’) 

-(2M~-16MjM~+3M~2)Q(2) 

+4M,,(M, - Mi)Q’3’-$fn2Q’4’] (C16) 

d2,= M,,4g[8[Q(1)-Q(3)]+2Q(2)+3Q(4)] 07) 

dzs=& (Cl@ 

dzg = Mn4g16Q (1)_LfiQ(2)+2Qf3)_~Q(4)] 
(Cl91 

d -d 2.10- 27 (C20) 

d31 = Mn2g[-2M&&,[Q”‘- Qc3’] 

+(M?-M 2)Q’2’+M 2Q’4)] 

ds2 = M,,2g[-MiMn[Q’f)- ;(3)] 

n n (C21) 

+(~M~~-_M~~)Q(~)+~~~~Q(~~] (~22) 

d33 = MiM,(-4M: i3M”‘)gQ”’ 

-$Mn2[3M,2-M,,2]gQ c2) - 7&4iM,3gQ’3’ 

- 3Mn4gQ’4’ (C23) 

d34= M,2g[(2M~-M,,2)Q(‘)+(-M;f6MiMn +2Mn2)Qc2’ 

+ M,(3M, -4Mi)Q’3’-3M,ZQ’4’] (C24) 

dSS= M~2g[(M~-4~i~” -5M~2)Q’2’ 

+6M,(M, - M,)[Q”‘- Qc3’] +6M,2Q’4’] (C25) 

ds6 = Mn2g[2Mn(M, -MJ[Q”‘- Q@‘] 

+$(M:-2MiMn-Mn2)Q(2)fjMn2Q(4)] (C26) 

ds7 = Mn2g[(2M,2- MjM, -2M,,‘)Qc1’ 

-~(M~-12MiM~-3M~)Q(‘) 
-M~(3Mi-4M=)Q(3)-3~=2Q’4’] fC27) 

ds8 = Mn4g[2[Q”‘- Qc3’]+ Qc4’] (C28) 
ds9 a jj~f,~~[Q”‘- Q’3’+iQ’2’+;Q’4)] 

mf4 

d3,10= M,,4g[Q”‘-5Q’2’+7Q’3’_3Q0], (C30) 

where for simplicity we have dropped the subscript “in” 
from the ion-neutral scattering cross sections and relative 
velocity. For pure polarization interactions, the quantity 
gQ(” is independent of velocity for all values of I 


