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Abstract-An approach to operating system modelling is described in which the simultaneous and synergistic 
application of tractable queueing theory models and their simulatable refinements is essential. Cross checking 
of these models against each other and against the real system results in a degree of confirmation not 
achievable by relying on either analytic or simulation models alone. 

1. INTRODUCTION 

Models of operating systems abound in the literature[3,7,8,11,21]. What distinguishes the 
model proposed by Boyd and Epley [2] is its analytical simplicity derived as a consequence of its 

authors’ attempt to capture, in abstract and general form, the main structural features of batch 
operating systems (OS). Because of its tractability, the Boyd-Epley model is able to establish 

certain simple queueing theoretical relationships among such essential quantities as flow rates, 
queue sizes and service times. Boyd and Epley propose six primary measurements to be made on 
a real OS, on the basis of which the model is able to predict all the remaining quantities. However, 

in practice, these primary measurements may not be directly measurable or even easily 
computable from available data collecting programs. In this case, a simulation model may be 

designed which is calibratable on the available data and whose output statistics include those 
required as input by the Boyd-Epley model. Of course, such a simulation may also produce 
estimates of the quantities predicted by the Boyd-Epley model, thus seeming to nullify its utility. 

However, in the first place, the Boyd-Epley predictions serve as a check on the correctness of 
the simulation results (simulation credibility being a constant concern in complex models). In the 
second place, agreement between the predicted and simulation results serves to confirm the 
appropriateness of the Boyd-Epley abstraction and encourages the design of observer programs 
which can collect the data required for its direct application. 

This paper reports on an investigation into the validity of the Boyd-Epley model with respect 
to a class of real-life OS’s (exemplified by the MVT system of the IBM 3701165 under HASP [lo]). 
The approach is to construct a more refined model which preserves the basic structure of 
Boyd-Epley but in addition includes more realistic features such as allocation and scheduling on 
a priority basis, job class designation, and OS initiators. The more refined model is called a base 
model relative to the original Boyd-Epley, the latter now being referred to a lumped model 
(following the general modelling concepts introduced by Zeigler [ 151). The formalism employed to 
characterize the models is that of discrete event specified systems[22], which enables concise 
theoretic specification of many systems and in particular of OS models. 

A three-way comparison of the behaviours of the base, lumped and real system was 
undertaken. The base model was simulated in GPSS and calibrated against statistics gathered 
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from the operation of the Technion Computing Center (Haifa, Israel, 1972). By adjusting two 
parameters (CPU overhead expressed as a percentage of service time, and mean I/O service 
time) it was found that a good fit could be obtained for overall CPU and I/O utilization rates and 
moreover the qualitative model behaviour was in agreement with the system operator experience. 

Statistics gathered by GPSS simulation of the calibrated base model at equilibrium were 
analyzed and excellent agreement was obtained in comparison with those predicted by the 
lumped model. It was found, however, that the notion of equilibrium stated by Boyd and Epley 
had to be modified in order to make their predictions applicable. It is to be noted that this 
essential assumption of Boyd-Epley can not be tested within the model itself but can be 
examined with the help of the more refined simulation model. 

The main point of the paper is not that we claim to provide yet another simulation model of an 
OS, but that we provide a methodology for OS modelling based upon the simultaneous and 
synergistic application of (1) simple analytic relationships (Boyd-Epley); (2) more refined 
simulatable models; (3) the cross checking of the lumped and base models against each other and 
against the real system. The results of such a methodology is a measure of validation and credible 
application of both models, not achievable by each one separately. An essential feature of the 
proposed methodology is use of the discrete event formalism for precise model description. 

2. THE BOYD-EPLEY MODEL 

We shall briefly describe the Boyd and Epley model and its assumptions. Then, we shall 
describe a more refined model suitable for simulation testing against a real OS. 

Boyd and Epley divide the system resources into two categories: permanent resources and 
demand resources. The permanent resources are those resources required by a job step before its 
execution can begin. Among these are the memory space, the I/O devices which cannot be shared 
by several job steps and the data files owned exclusively by the job step. The permanent 
resources are retained by a job step throughout its whole execution whereas demand resources 
such as CPU units and I/O channels are requested only when needed and released after the 
service has been completed. 

The “unit of program” is the step. No difference is made between the different steps of a job 
and the steps of other jobs. The names “step” and “job” will be used interchangeably in the 
following sections. 

The main hypothesis made by Boyd and Epley is that a fixed number of jobs is always in the 
system (this will be discussed later). Thus, any time a step departs from the system, a step from 
the job queue enters the system and queues for permanent resources. Once these resources have 
been allocated, the step oscillates between CPU and I/O request and execution. When the last 
CPU task has been completed, the step releases the resources it details and exits from the 
system. 

The job flow through the system is represented in Fig. 1. An I/O service is limited to I/O’s 
from/to secondary storage. Therefore the system includes neither the input of jobs from card 
decks nor the output of the results through line printers or card punches. 

At a given time a step might either be waiting for permanent resources, waiting for a CPU or 
executing a CPU task, waiting for an I/O channel to be free or receiving an I/O service. This led 
Boyd and Epley to decompose the system into 3 stages: 

-the Permanent Resources Subsystem (PRS) where permanent resources are allocated. 
-the CPU stage, organized as one queue and multiple servers in the case of multiprocessing. 

JOB = JOB 
PERMANENT 

ARRIVALS - QUEUE 
RESOURCE 
ALLOCATION 

Y 

JOB 
RELEASE EXECUTION 

DEPARTURE - PERMANENT RESOURCES 
gJ&I/O 

Fig. 1. Job flow through a batch processing multiprogramming system. 
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-the I/O stage, also organized as one queue and multiple servers, each server being a 
channel. 

The CPU stage and the I/O stage compose the Demand Resource Subsystem (DRS). 
The three-stage model is depicted in Fig. 2. Notice that the job queue is not included in the 

model. Boyd and Epley considered this queue as an infinite source of steps, letting a step go into 
the system each time another step came out. The system proper includes only the three stages 
defined above: the permanent resource stage and the CPU and I/O stages. In a spooling system 
like an OS under HASP, this means that we do not take into account the input of programs 
through the card reader nor their output through card punches or line printers. Jobs are 
considered waiting in a job queue in secondary storage before they enter the system, and the 
output they left on secondary storage for HASP to deal with is neglected. Furthermore no 
overlapping between CPU and I/O service is allowed for a given step. 

The fundamental assumption made by Boyd and Epley is that at equilibrium the number of 
steps in the system is always constant. This implies that there will always be enough jobs in the 
job queue. 

In OS/370 MVT a number of “initiators-terminators” are each assigned a certain group of 
jobs according to their characteristics known through Job Control Language cards. To each 
initiator there corresponds an input queue, and whenever an initiator terminates a job, it initiates 
another one from its queue. In a HASP environment, this is complicated by the fact that these 
queues are always almost empty, because HASP sends jobs whenever needed or rather, slightly 
before. 

The saturation for such a system is reached when all the initiators are busy, and the system 
remains at its saturation point only if there always remain jobs waiting for initiation in each of the 
initiation queues. For this it is sufficient that the following two conditions be simultaneously met: 

1. Incoming jobs must have sufficiently varied characteristics so that they are distributed 
among all the initiators. 

2. In each group the arrival rate must be sufficiently great in order to keep all the initiators 
busy. 

These two conditions are very restrictive, and determining if they are satisfied in reality is 
very difficult. 

We shall define as equilibrium the state where the mean number of jobs in the system is 
constant. We shall see through simulation that this condition is easily met, and more realistic than 
the equilibrium definition of Boyd and Epley. Furthermore we shall include the job queue, made 
up of the initiation subqueues, into our system. The distribution of incoming jobs will then be 
considered, since they are expected to have a direct influence upon the system behavior. 

In the Boyd-Epley model, steps have no priorities whatever. However, in OS/370 MVT, the 
priority requested by a user on his JOB card together with other parameters is transformed by 
HASP into an internal priority according to an algorithm taking into account all parameters. This 
internal priority is the job or step priority in the PRS and in the I/O stage, but by no means in the 
CPU stage[lO]. 

Each time a job requests a CPU service, the time slicing feature of the IBM 370 is used, in 
order to compute a new CPU stage priority for the job. The priorities of user tasks within a given 
priority group are thus dynamically changed in order to give a higher priority to those tasks, 
within the group, which use the least amount of CPU time. At the Technion there is only one 
priority group including ail the steps, thus allowing I/O bound steps to remain the smallest 
possible time in the CPU stage. 

Furthermore in a given initiator queue, we may have steps from different HASP classes. 

JOB EXIT ! 

Fig. 2. Three-stage multiple-resource model. 
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Classes are given different priorities. When an initiator has to select a step for initiation, it scans 
the queue for the highest priority step within the highest priority class. 

3. A MORE REFINED MODEL AND ITS FORMALIZATION 

We introduce three new notions into the Boyd and Epley model, namely HASP classes, 
initiators and step priority. The resulting model, which we call the “base model”, is then 
formalized as a DEVS (Discrete Event Specified System)[22]. The Boyd Epley model is then 
referred to as the ‘lumped model’. The DEVS formalism is a way of concisely describing a 
simulation model. It has the advantage of being independent of any particular programming 
language and of not being limited by the ambiguities inherant in an informal natural language 
description. For more familiarization with this approach to model description the reader is 
referred to [25]. 

At the Technion computing center, users have to specify to which class their job belongs. 
Each class has different maximum requirements, which implies that jobs from different classes 
have different characteristics. We, therefore, consider it important to differentiate jobs or steps 
according to the class to which they belong. 

The priority of a step and the possibility that a step has to preempt another step to get CPU 
service are also thought to be important determiners of the system behaviour (simulation results 
will show that as far as only flow times and throughput are concerned this is not true). 

We shall not fix the number of steps in the system as constant. It will only be less than or equal 
to the number of initiators. We shall provide for the possibility of empty initiation queues. 

An input step is defined by an identification number, a priority, a memory requirement, a class 
number and a number of CPU tasks to perform. We adopt Boyd’s and Epley’s realistic 
hypothesis that a step always requests a CPU service before it leaves the system. 

A step keeps its own priority throughout its transit through the system, except for the 
allocation of an initiator which is done on a class first-priority after basis. There is therefore no 
dynamic change of priorities for the scheduling of CPU tasks as would be permitted by the time 
slicing feature just mentioned. 

The job queue is now composed of as many queues as there are initiators. We intend to model 
only the core memory allocation; thus the Permanent Resource Subsystem (PRS) contains only 
one queue for the memory allocation which is fed by the initiated steps. 

In order to have a general model, we shall formally describe a multiprocessor system which 
means that the monolithic Boyd and Epley’s CPU stage will be split into components, the CPU’s. 
However, since we shall validate simulation results against a real OS running on a monoprocessor 
system, only one processor has been taken into account in the simulation program. 

The CPU state is organized as one queue and as many servers as there are CPU’s. Since we 
deal with a multiprocessor system, we have to chose a scheduling algorithm. Our choice is the 
following: If a new step enters the CPU stage and no CPU is idle, the incoming step preempts the 
CPU servicing the smallest priority step among the step currently processed on the condition that 
the new step has a greater priority. The preempted step is put at the top of the queue of “ready” 
steps (those steps ready to receive a CPU service). 

The I/O stage has a similar organization, i.e. one queue and multiple servers, the servers being 
the I/O channels, except that no channel preemption is allowed. The channels are identical. We 
intend to model only disk accesses. Figure 3 depicts the base model structure. (Tape accesses are 
not modelled because tape mounting represents a human factor which would be hard to evaluate. 
Furthermore tape statistics were not available at the time of the study). 

The formal presentation of the base model is given in the Appendix. 

4. SIMULATION OF THE BASE MODEL AND COMPARISON WITH THE REAL SYSTEM 

The base model was encoded as a GPSS program* and various simulation experiments were 
performed. It was found that an equilibrium, as we have defined it, is always reached by the 
model. Calibration runs were aimed at adjusting the mean duration of the I/O tasks and the CPU 
overhead (due to the operating system itself and other unknown factors) in order to get a valid 

*The DEVS description of the base model obviates the need for a listing of the GPSS program (this is available however 
in (261). 
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Fig. 3. The step flow through the base model. For symbol references please see the appendix. 

mean time elapsed between the beginning and the end of the execution (in the CPU sense) of a 
step. 

It was found however that the variance in this quantity is too large for validation purposes. 
Instead, it was found possible to match the I/O and CPU utilization of the OS/370 MVT at the 
Technion. 

4.1 The sources of the data 
There are two sources to the actual data used in the simulation runs: the System Management 

Facilities files (SMF) [ 191 and very few runs of AMAP.t 
The data are available in the form of tables. We used only the mean CPU times, elapsed times 

and number of tapes and disks channel programs per step according to HASP classes, the 
distribution of the core used by the steps and the step priority according to classes. 

The AMAP runs have given an idea of the mean duration of a disk access. The actual time to 
execute a tape channel program seems to vary so greatly that it was decided to simulate only disk 
accesses. 

4.2 The data used for simulation 
The data were collected from the SMF file of a typical period with total uptime 8.42 hours. We 

shall only deal with the HASP jobs and steps. During this period 1505 identified HASP jobs were 
registered which summed up to 12,431 steps. The mean CPU utilizationS due to these jobs is 
0.505. 

A table was constructed, giving for each class the number of steps, the relative frequency, the 
average elapsed CPU time per step and the average number of disk accesses per step. Other 
tables were constructed, giving for each class the relative frequencies of user step priorities, 
since statistics about HASP internal priorities could not be obtained. 

In addition, a table of the relative frequency of memory size requests was obtained, 
unfortunately not partitioned by class. 

From these tables, distributions were constructed for the arrival of steps, the step class, the 
allocation of initiators and the allocation of the number of I/O requests.5 

Since we had only the total CPU time per step and per class, it was decided to compute for 
each step of a given class a fixed duration for CPU tasks by dividing the mean total CPU time per 
step for this class by the mean number of disk accesses for this class plus one.” 

tNo references: “for IBM internal use only”. 
?‘utilization” refers to ulilization ratio-the ratio of the time the CPU is engaged in processing jobs to the total length of 

the period. 
5The number of I/O requests could only be found as a mean related to the job class. Since we had no information about its 

distribution around the mean, we assumed identical values for different jobs of a same class. This applies to the CPU service 
duration. 

YThe last service given to a job before it leaves the system is a CPU service. Therefore the number of CPU services of a 
given job is equal to the number of I/O services plus one. 
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The I/O duration has been chosen as a class-independant constant EXCPL. Since we have 
neglected all the I/O activity due to the input and output of the jobs as well as the tape accesses, 
we made runs with varying EXCPL in order to calibrate the system. 

Another calibration parameter is CPOVH, the CPU overhead due to all unknown factors 
such as the operating system itself, the time-sharing system (TSO), the operators, etc.. . The 
duration of each CPU task is multiplied by the factor 1 + CPOVH/lOO. 

EXCPL and CPOVH are constant within each simulation run. Seventy-six runs were 
performed with different values of these two calibration variables. Since EXCPL and CPOVH 
have unknown values in the real system, no physical meaning should be attached to these two 
parameters. 

4.3 Simulation results 
The time unit was the hundredth of a second. A series of runs has been performed with 

different values of EXCPL and CPOVH. Each run simulated a real duration of 200,000 time 
units, i.e. 2000 seconds. A first run of 100,000 t.u. allowed the system to reach its equilibrium in 
the sense of a constant mean number of executing steps. After resetting the accumulated 
statistics, a second run of the same simulated length allowed the collection of statistics. 

Between 250 and 450 steps flowed through the system depending upon the calibration 
parameters. The class distribution was found statistically compatible with the class distribution 
given as input to the program. 

The statistics of the queues of the system (including both PRS and DRS) were output each 
10,000 time units, i.e. each simulated 100 seconds. It appears that the menn number of steps in the 
system stabilized itself rapidly to a constant dependent on both EXCPL and CPOVL (Fig. 4). In 
contrast, the number of steps in the system was not constant as assumed originally by Boyd and 
Epley. This was to be expected because of the input queues addition to the model. 

A study was made of the effect of CPOVH and EXCPL on CPU utilization in the model. 
Since the actual CPU utilization was available (as 0.505) it was possible to conclude that the 
appropriate parameters settings lay in the region of CPOVH = 50% and EXCPL = 40 (400 ms). 
Confirmation of this calibration was obtained from the following: At this parameter setting, the 
mean number of engaged initiators in the model (4 out of 15) agrees with the systems operators’ 
experience. Also when the available memory is increased in the model, it shifts from memory 
boundedness to non-boundedness. This is also in line with management expectations for the real 
system. 

4.4 Comparison between base model results and the predictions made by Boyd and Epley 
We analysed a particular case in which the mean elapsed time obtained by simulation is close 

to the real characteristics (about 1430 t.u.). 
The notations will be those adopted by Boyd and Epley in their article, except for the mean 

number of CPU tasks which we shall denote by 2. MEMoQ, REDYQ, WAITQ are the queues 

Mean number of 

steps in the system 
t 

6 -200 
OKQ 

o\ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ a * 
20 40 60 00 loo CPOVH 

W) 

Fig. 4. Mean number of steps in the system vs CPOVH for fixed values of EXCPL. 
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depicted in Fig. 3. We shall call “flow-time*’ in a stage or in a queue, the time a step spent in this 
stage or queue. 

All the data gathered during the simulation run appear in the left column of the following 
table, as well as characteristics easily computed from the former. Boyd and Epley proposed a 
minima1 set of measurements. These appear numbered from 1 to 6. We have added a 
seventh measurement (2’) to account for CPU preemption. On the right column are 
corresponding values predicted by Boyd and Epley. It can be seen that the agreement is well 
within 5% (relative error). The simulation results are averages of 4 seeded runs. Student 
t-statistics computed fell well within the 5% confidence limits. 

EXCP L = 45 
CPOVH = 30 

SC = 1 (one CPU) 
S, = 2 (two channels connected to disks). 

mean number of steps in the system 
(1) mean time in the system 

mean time between step exits 

Simulation Boyd’s and Epley’s 
Results Model prediction 

N = 4.25 4.25 
F = 1428 

341 336 

PRS 
mean number of steps in MEMOQ N. = 0.04 
mean time in MEMOQ 12.05 13.4 

DRS 
(5) mean total flow time in DRS per step Fs = 1433 1415 

-CPU stage 
mean number of steps in REDYQ 
mean ready time 
mean number of active or preempted steps 
mean task duration 
mean task + preemption duration 
mean number of CPU tasks 
CPU utilization 

(2) mean total CPU service time per step 
(2’) mean total CPU service + preemption 

time per step 
mean flow time in CPU stage per step 

-I/O stage 
mean number of active steps 
mean number of steps in WAITQ 
mean wait time in WAITQ 

(4) mean number of I/O requests 
mean I/O task time 
channel utilization 

(3) mean total I/O service time per step 
mean flow time in I/O stage per task 

(6) mean total flow time in I/O stage per step 

I., = 0.20 0.20 
w, = 4.31 4.3 

0.49 
z = 9.93 

E’ = 10 6 
f = IS:6 

10.6 

/& = 0.46 
e = 155 

2’ = 165.5 
233 

1.93 
L, = 1.60 1.62 
W, = 37.2 31.2 

14.6 
i= 45.0 45.0 

p, = 0.98 
i = 656.0 

F, = 82.2 82.2 
1200 

5. CONCLUSIONS 

A base model, constructed by refining a model suggested by Boyd and Epley was confirmed as 
a valid mode1 of a real operating system. The queueing statistics obtained by simulation of the 
base model at equilibrium agreed well with those predicted by the Boyd-Epley lumped model, 
even though the latter does not take into account the initiators, classes or priorities of the base 
model. The concept of equilibrium however had to be modified to enable the use of the lumped 
model predictions. The potential use of both the lumped and base models for general application 
is thus confirmed. 

Note should be taken however of our use of the word “confirmed”. We mean that as far as the 
tests we were able to carry out, no discrepancy was observed in the predictions of the simulated 
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base model, the Boyd-Epley lumped model and the observed real system behavior. In the 
comparison of simulation results with operating system data, we explored the (EXCPL, 
CPOVH) parameter space and noting its regularities, we were able to pin down the acceptable 
points in this space to a small region. The criterion for acceptability was the matching of CPU 
and I/O utilization. The calibration was then qualitatively confirmed by comparing initiator 
utilization and the effect of memory size changes with the reports of facility operators. 

Clearly validation of the base model, as opposed to confirmation, would require a much more 
extensive series of tests. Unfortunately, the acquisition of live operating system data is not a 
trivial matter and pertinent data are not available to us. Fortunately however, the essential 
measurements required to validate the models are known (namely the seven characteristics 
shown numbered in the foregoing table) and it is thus possible to guide the development of 
software observer systems toward incorporating capabilities for acquiring the necessary primary 
data. In the present circumstances, the proposed methodology of simultaneously working with 
both the analytically simple Boyd Epley and the more complex simulation model is necessary to 
achieve results not possible with either alone. We may expect the general principle of multilevel 
combined analytic-simulation modelling to become even more important in the future. 

Our experience has also suggested further refinements which should improve the chances of 
validation. We now feel that the single I/O queue of the present base model should be split into 
several queues, each one corresponding to one channel. The data required as input should include 
tape accesses statistics such as tape mounting dely, access duration distribution, number of 
accesses per mounted tape distribution, etc. Time-sharing and APL sessions should be treated as 
normal HASP jobs. The calibration parameter CPOVH would thus really represent the CPU 
overhead due to the operating system itself. Such an enhanced model could be used to determine 
the influence of adding I/O channels, main memory, disk or tape units on computing system 
performance. We note that the foregoing modifications are refinements of the base model and so 
would not go beyond the essential framework of this paper. 
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APPENDIX. FORMAL DESCRIPTION OF BASE MODEL 

We present the formal description of the base model. The following mnemonics are employed: 
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step class 
demand resource subsystem 
free memory 
number of HASP classes 
greatest priority 
step identification number 
initiator ordinal number 
set of all positive integers 
step memory requirement 
memory available to users 
number of initiators 
step priority 
permanent resource subsystem 
number of CPU.tasks of a step 
number of CPU’s 
number of I/O channels 
step 
empty queue 

Presentation of the formal base model 
The model we propose here is a Discrete Event Specified System[ZZ] 

M = (X, S, Y, 8, *, I) 

where X is the input set, S is the state set and Y the output set. 
t: S + Re where Re = R’ U (0) U {m) and R’ = {rlr z 0). t(s) is the maximum time the system is allowed to stay in its 

present state s. We define the set Q as 

Q = ((s, e)ls E S, 0 5 e 5 t(s)) 

where e is the time elapsed since the last state change. We shall call it the “elapsed time”. 
Then the transition specifying function is the mapping 

V: QxX+S 

where, if we call 6 E X the “non-event”, and X -{b} the set of external events, there is an autonomous transition function 
8, such that 

6(s, e, 4) = S+(s) where 8, : S + S 

*: Q + Y is the output function. 

Such a structure M specifies a system in the same way that differential equations or sequential machines do (see [22] and [25] for 
explications). 

The input set X 

X=l’xAxExCxDxE 

I’ set of identification numbers. It is assumed that at a given time there cannot be two steps with the same identifica- 
tion number. 

A set of priorities A = { 1,2,. . , gp} where gp is the greatest step priority. 
B set of memory requirements B = {I, 2,. . , matu} where matu is the memory available to users, that is the amount 

of core memory which is not occupied by resident programs. 
C set of classes C = {I, 2, . , gc) where gc is the number of step classes. The class of a given step remains constant. 

D = I* number of CPU tasks. A step enters the system with a number r E I+ of CPU tasks to perform during its life in the 
system. Since we assume that the last task of a step is always a CPU task, the number of I/O requests is r - I. 

E set of initiator numbers. We assume that steps have already been allocated an initiator number in when they enter 
the system, E = {I, 2,. , n} 

Let x be an input job step. 
XEX-{b? x = (i, p, m, c, r, in) 
i = step identification number 

p = priority 
m = memory requirement 
c = class 
r = number of CPU tasks 

in = initiator number. 

We shall denote by x, a step the first component of which is i and by p, its priority. m, its memory requirement, c, its 
HASP class. r, the number of CPU tasks it will perform during its life in the system, and in, the particular initiator it is 
assigned to. Since at a given time there is at most one step associated with a given identification number, the notation x, will not 
lead lo confusion. 



10 BERNARD P. ZEIGLER and DANIEL EWENCZYK 

We shall also denote by p(x) the priority of the step x; m(x), c(x), r(x) and in(x) have the same straightforward meaning. 

The state set S 
We shall define a set of components D = (a, p, c, 11). 
Each component, say a, will be made up of a component state X. and a scheduling time g_ E Re. A component activation 

may be interpreted as a set of actions performed on the state that modified the latter. This may include the modification of the 
scheduling time of the same or other components and the possible “immediate reactivation” of the current component. 

According to Zeigler[9], we shall define as “imminent event”a member of the set of events such that their scheduling time 
be equal to f(s). A particular case is obtained if I(S) = 0. A selection rule has to be defined if there are several imminent 
events, i.e. several events scheduled to occur at the same time. 

The components of the base model will be 
d: the step queue 
,9: the permanent resource subsystem 
e: the CPU stage 
7: the I/O stage. 
A state of M will then be (x., IJ~, x D x (I x o ). Then t(s) = min (o_, cr#, o., u”) and the imminent events will be 8, 8, ., ., ,I, * 

defined by the following mapping: IMM: S + 2D, IMM(s) = (old ED/u, = f(s)}. 

Component a: the initiation queues 
Let n be the number of initiator-terminators. 
We shall have n queues, one per initiator. By convention, the top entry of a given queue is the step currently seizing the 

corresponding initiator. If the queue is empty (symbol A) the initiator is idle. The state set of (I is (X* x (X U {A}) x Re)“, 
where X* is the set of all finite length sequences of elements of x, A being the sequence of length 0; n the number of 
initiators. 

n is made up of n subcomponents Q /I) one per initiator. A typical state of ain is 

(ink., j.,, G.) 

init,. is the inth queue of the component a. 
In the model, one of the parameters of incoming steps is an initiator number. We, therefore, do not consider allocation of 

initiators internal to the model. This feature appears in the specification of input sequences where steps of a given class are 
given equal probabilities to join any of the initiation queues assigned to this class. 

j_ is a saving place where an incoming step is stored as a result of an external event. 
0.. is the scheduling time of the subcomponent a,“. 
An incoming step is immediately inserted into the corresponding queue, and if the latter is empty, directly passes to the 

PRS. (I,,, may also be activated when a step exits the system. If init,. = A, i.e. no step is waiting for initiation, then din 
deactivates itself without further action. 

Component 8: the PRS (Permanent Resource Subsystem) 
The state set is is (B U {0}) x X* X Re. 
A typical state is (f, memoq, u6) where f is the free memory, memoq is the memory queue where steps queue in after 

having seized an initiator. It is organized on a priority basis. Whenever fl is activated it reactivates itself unless no memory 
can be allocated to the top entry of memoq. This is to provide for the case of the release of a large amount of memory by a 
step. This memory may possibly be allocated by fragments to several smaller steps on the condition that they are at the top of 
memoq. 

/3 may either 
-allocate memory to the top entry of memoq, send this step to the CPU stage and immediately reschedule itself and E, 

the CPU stage. 
-or do nothing if no memory can be allocated. 

Component z: the CPU stage 
The state set is 

(Xx (R’U (O}))* x (X U {A}) x [O. I]” x Re. 

A typical state is (cpuq, j., y’, 0;). 
We assume the CPU stage contains SC CPU’s which are either busy or idle. We shall have one step queue the SC top 

entries of which (if they exist) are the steps currently receiving CPU service. Since we allow preemption the steps which are 
not being processed by one of the CPU’s are either preempted steps or have recently entered the stage and are waiting for the 
beginning of the execution of the task. We shall call the queue of all the steps in the stage cpuq, the subqueue of all waiting 
steps readyq, and actq the subqueue of active steps, i.e. those currently receiving CPU service. 

Formally actq can be defined by 

I 
cpuq = actq readyq 
length (actq) = min [length (cpuq), SC] 

where SC is the number of CPU’s and length the mapping 

length: (XX R+)* + I’ U {O} 

length (cpuq) is the length of the queue cpuq. 
Each time a step enters the CPU stage, it is given a processing time tc from a class dependent distribution R(v<‘) where 

c E C is the class of the step, and y=’ is a uniformly distributed random number in the range (0, Il. The step is then inserted 
into cpuq possibly causing a preemption. 
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j. is the value stored in a save cell which may contain a step coming either from the PRS or from the I/O stage, or be 

empty (A). 
Let k, denote the number of steps currently in the CPU stage. Let x,, x2,. , xk, E X be steps and IC,, tc2,, , tck, E R’ 

be positive real numbers. rc, is the processing time there remained to the ith step of the queue after the completion of the last 
event. Notice that here x, does not mean the step the identification number of which is i, but the ith step of the queue. A 
typical cpuq where all CPU’s are busy will have the following aspect. 

(Xl, fC,) 

t I actq 

cpuq, (xs,. b<) ‘, 
(xsc+,, ksc+, 

I : i readyq 

(x*,. ICI,) 

As mentioned earlier CPU’s are preemptible. Our scheduling and preemption algorithm is the following: an incoming step 
(the value of j#) will either seize an idle CPU, either preempt another step if no CPU is idle and its priority is high enough, or 
be inserted into readyq if its priority is too low. This will be formally described further down. 

c may also transfer a step which has completed its current CPU task to the I/O stage or purge the system from this step if 
the completed CPU task was its last one. In this last case the permanent resources retained by the step are given back to the 
PRS and p is activated. 

Componenf 7): the I/O stage 
The state set is 

(X x (R’ U {O)))* x [O, 11” x Re. 

A typical state is (ioq, y2, u_,) where ioq is a queue with an organization similar to cpuq. The S, top entries of ioq are the steps 
currently receiving channel service. We shall call ioactq the subqueue of these steps. If the S, channels are not all seized the 
length of ioactq is smaller than S,. More precisely, if waitq is the subqueue of all the steps waiting for a free channel, then 

I 

ioq, ioactq, waitq E X* 
ioq = ioactq waitq 

length (ioactq) = min [length (ioq), S,]. 

A fundamental difference between the CPU and the I/O stages is that channels may not be preempted, and steps have to 
wait for a channel to be free to begin and execute their I/O task. 

When a new step enters this stage it is allocated a service time ti from a class dependent distribution Wc(yc2) where yc2 is a 
uniformly distributed random number in the range [0, I]. 

A typical ioq is given here. k, will denote the total number of steps in the stage. 

I (x,, ri,, 

ioactq 

I waitq 

Notice that k, 5 S, 3 waitq = A. n may be scheduled by c. When activated, 9 sends the step which caused the activation to 
the CPU stage. c is then activated. 

Selection rule 
We might have several imminent events (recall previous page). To avoid information loss, we adopt the following rules: 

rules: 
-whenever E and j3 are both imminent, c will be executed before 8. 
-whenever l and n are both imminent, e will also be executed first. 
The reason for these two rules is that we do not want to overwrite the contents of j_. This would happen if the allocation of 

permanent resources (/3) or the exit from the I/O stage (n) were done before the insertion into cpuq (e). 
Based on the above description. the transition function % is formalized as a set of tables, accessed under control of the time 

advance and selection rules. 

The transition function 8 

The transition function is represented as a double entry table where the actions of each component are represented. To help 
simplify this table let us define a few operators. 

rop: x*+x 
top (qn) is the top entry of the queue qn E X*. 
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rest: X*+X 
rest (qn) is the queue qn without its top entry qn = top (qn) rest (qn). 

insert: Xx X* X I’-+ X* 
Insert (x, qn, p) is the queue obtained by inserting the step x given a priority p into the queue qn. The insertion is made on 

a priority basis. There is no redundancy in the fact that one of the parameters of x is its priority, and the definition of insert. 
The reason for including a priority parameter in insert is that the insertion of steps into the initiation queues is done on a class 
first-priority after basis. A step x = (i, p. m, c, r, in) is not inserted according to its own priority p but according to a different 
priority b(c,p) which also takes the HASP class into account. b is the following mapping 

b:CxA-rA. 

As an example, the insertion of a step xi into the initiation queue in yields the new queue 

-xi if init, = A (empty queue) 
-insert [xi, rest(init,.), b(ci, p,)] if init,. # A. 

pop: Xx(X x R+)* -, (Xx R+)* 
pop (x, qn) is the queue obtained when the step x pops off the queue qn. An important assumption is that there never be 

holes in queues. These must be thought of as linear linked lists or chains. This and our assumption that the S, top entries of 
the h elements of ioq are receiving channel service gives to pop (xi, ioq) the following meaning. It is the queue resulting from 
the two actions 

-the step xi (the identification number of which is i) pops off ioq 
-top(waitq), if any, becomes the S,th entry of ioq and therefore begins to receive channel service. 

preempt,: X x (X x R’)* -+(X x R’)* 
preempt, (x, cpuq) is the new cpuq resulting from the arrival of a step x into the CPU stage when each CPU is siezed 

(k, t SC), t units of time after the last transition. 
Let x, be the jth step in actq with minimum j such that 

p,=rmn(p,,pz,..., Psc,). 

Here again p, mean the priority of the jth step of actq. 
(1) if p > p, then readyq becomes [x, ~Y,,,,(y~,.,)][x~. Ic, - t] readyq and actq becomes pop (x,. actq) where c(x) is the 

class of the step x. This is called preemption. 
(2) if p s p, then readyq becomes insert*([x, H&y&,)], readyq, p(x)} where insert* is an extension of the mapping 

insert: and, insert*: (Xx R’) x (X x R+)* x A + (XX R+)* where insert* has the same effect than insert except that 
it operates on queues of the set (XX R+)* instead of X*. 

;: (Xx R’)* + (X x R+)* 
actq’, is the queue actq the entries of which have had t subtracted from their second projection. For example 

(x1, tcI,x2, Ic,): = (x,, tc, - e,x,, G-e) 

The transition function CI (tables) 
We shall first describe the transition caused by an external event, i.e. the input of a step. This step x = (i, p. m, c, r, in) is 

stored into the saving cell j., of the subcomponent ain (the initiator number in). ain is then activated by giving o., the value 
0. 

The entries of the Table Al give 8(s, e, x). Blank entries mean unmodified parameters. 
Tables A2 and A3 give the transition function S,(s), that is the law governing the system when the latter is working like an 

autonomous machine.* 

Table Al. Transition function 6 

The following components External event x 
are possibly modified x = (i, p, m, c, r, in) 

InIt,. 

j.,. 
ga.,. 

f 
memoq 

06 
cpuq 

1. 
Y’ 
0; 
ioq 
YL 
0, 

0” 

o@ - e 
actq: readyq 

v_ - e 
ioactq: waitq 

g* - e 

*Due to space limitations we present the tables only for the n,. and p components of the sequential state. For the same 
reasons the descriptions of the output set and function of the model are omitted. For a complete description, please see 
reference 26. 
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Table A2. a,.-subcomponent number in of the component (I 

o,, If j,_,. # A and i& # A the step If j_,. # A and init,. = A If j., = A a step has terminated 

contained in the cell j_, Initiator A new step is 

is enqueued in init,. initiation of the step j., is free initiated 

uut,. insert [j.., rest(init,.), b(c, p)] 1.8. 
J.,. A A 

o-4, m m cc m 

7 
memoq insert L,, memoq, p&J insert [top(init,), 

memoq, p[top(initJl 

06 o@ - t(s) 0 6 -t(s) 0 

c and n The only changed parameters are cpuq, cr., ioq and o, which respectively become actq:,.Feadyq, u. - t(s), 
ioactq:,,,waitq and o,, - t(s) 

Table A3. p-the permanent resource subsystem 

oin init, 

1.4” 

o.x. o-.,-t(s) inE[l,n] 

B if m[top(memoq)] 5 f else 

f f - mbdmemoq)l 
memoq rest(memoq) 

ozs 0 m 

c cpuq actq:,.$eadyq 

1. top(memoq) 

Y’ 
o. 0 fl. -G) 

1 ioq ioactq:,,,waitq 

Y2 

o.l o, -t(s) 

The use of these tables is straightforward. Given the present state s, t(s) gives the transition time. The mapping IMM (see 

above) gives all the imminent events, one of which is selected with the selection rule. The imminent event thus selected leads 

to one of the tables, the entries of which yield the new state. For instance, if the selected imminent event is fi, we look at Table 
A3: the new value of memoq is rest (memoq); the top entry of the previous memoq is entered into j., etc. 

A principle in the reading of all the tables is that the components assume their new value within a null time and only when 
all the changes have been performed. This implies that the variables appearing as entries are always those pertaining to the 
state s. 


