
FORMALIZATION AND CONFIRMATION OF THE
BOYD-EPLEY OPERATING SYSTEM MODEL

BERNARD P. ZEIGLER*

Department of Applied Mathematics, The Weizmann Institute of Science, Rehovot, Israel and Logic of
Computers Group, Dept. of Computer and Communication Sciences, University of Michigan, Ann Arbor,

Mich. 48104, U.S.A.

and

DANIEL EWENCZYK

Honeywell-Ball, 94, avenue Gambetta, 75020-Paris, France

Communicated by E. Y. Rodin

(Received December 1975, and in revised form Oclober 1976)

Abstract-An approach to operating system modelling is described in which the simultaneous and synergistic
application of tractable queueing theory models and their simulatable refinements is essential. Cross checking
of these models against each other and against the real system results in a degree of confirmation not
achievable by relying on either analytic or simulation models alone.

1. INTRODUCTION

Models of operating systems abound in the literature[3,7,8,11,21]. What distinguishes the
model proposed by Boyd and Epley [2] is its analytical simplicity derived as a consequence of its

authors’ attempt to capture, in abstract and general form, the main structural features of batch
operating systems (OS). Because of its tractability, the Boyd-Epley model is able to establish

certain simple queueing theoretical relationships among such essential quantities as flow rates,
queue sizes and service times. Boyd and Epley propose six primary measurements to be made on
a real OS, on the basis of which the model is able to predict all the remaining quantities. However,

in practice, these primary measurements may not be directly measurable or even easily
computable from available data collecting programs. In this case, a simulation model may be

designed which is calibratable on the available data and whose output statistics include those
required as input by the Boyd-Epley model. Of course, such a simulation may also produce
estimates of the quantities predicted by the Boyd-Epley model, thus seeming to nullify its utility.

However, in the first place, the Boyd-Epley predictions serve as a check on the correctness of
the simulation results (simulation credibility being a constant concern in complex models). In the
second place, agreement between the predicted and simulation results serves to confirm the
appropriateness of the Boyd-Epley abstraction and encourages the design of observer programs
which can collect the data required for its direct application.

This paper reports on an investigation into the validity of the Boyd-Epley model with respect
to a class of real-life OS’s (exemplified by the MVT system of the IBM 3701165 under HASP [lo]).
The approach is to construct a more refined model which preserves the basic structure of
Boyd-Epley but in addition includes more realistic features such as allocation and scheduling on
a priority basis, job class designation, and OS initiators. The more refined model is called a base
model relative to the original Boyd-Epley, the latter now being referred to a lumped model
(following the general modelling concepts introduced by Zeigler [151). The formalism employed to
characterize the models is that of discrete event specified systems[22], which enables concise
theoretic specification of many systems and in particular of OS models.

A three-way comparison of the behaviours of the base, lumped and real system was
undertaken. The base model was simulated in GPSS and calibrated against statistics gathered

*Part of this work was supported by NSF Grant No. DCR71-01997 while the first author was with the Department of
Computer and Communication Sciences, The University of Michigan. Ann Arbor.

2 BERNARD P. ZEIGLER and DANIEL EWENCZYK

from the operation of the Technion Computing Center (Haifa, Israel, 1972). By adjusting two
parameters (CPU overhead expressed as a percentage of service time, and mean I/O service
time) it was found that a good fit could be obtained for overall CPU and I/O utilization rates and
moreover the qualitative model behaviour was in agreement with the system operator experience.

Statistics gathered by GPSS simulation of the calibrated base model at equilibrium were
analyzed and excellent agreement was obtained in comparison with those predicted by the
lumped model. It was found, however, that the notion of equilibrium stated by Boyd and Epley
had to be modified in order to make their predictions applicable. It is to be noted that this
essential assumption of Boyd-Epley can not be tested within the model itself but can be
examined with the help of the more refined simulation model.

The main point of the paper is not that we claim to provide yet another simulation model of an
OS, but that we provide a methodology for OS modelling based upon the simultaneous and
synergistic application of (1) simple analytic relationships (Boyd-Epley); (2) more refined
simulatable models; (3) the cross checking of the lumped and base models against each other and
against the real system. The results of such a methodology is a measure of validation and credible
application of both models, not achievable by each one separately. An essential feature of the
proposed methodology is use of the discrete event formalism for precise model description.

2. THE BOYD-EPLEY MODEL

We shall briefly describe the Boyd and Epley model and its assumptions. Then, we shall
describe a more refined model suitable for simulation testing against a real OS.

Boyd and Epley divide the system resources into two categories: permanent resources and
demand resources. The permanent resources are those resources required by a job step before its
execution can begin. Among these are the memory space, the I/O devices which cannot be shared
by several job steps and the data files owned exclusively by the job step. The permanent
resources are retained by a job step throughout its whole execution whereas demand resources
such as CPU units and I/O channels are requested only when needed and released after the
service has been completed.

The “unit of program” is the step. No difference is made between the different steps of a job
and the steps of other jobs. The names “step” and “job” will be used interchangeably in the
following sections.

The main hypothesis made by Boyd and Epley is that a fixed number of jobs is always in the
system (this will be discussed later). Thus, any time a step departs from the system, a step from
the job queue enters the system and queues for permanent resources. Once these resources have
been allocated, the step oscillates between CPU and I/O request and execution. When the last
CPU task has been completed, the step releases the resources it details and exits from the
system.

The job flow through the system is represented in Fig. 1. An I/O service is limited to I/O’s
from/to secondary storage. Therefore the system includes neither the input of jobs from card
decks nor the output of the results through line printers or card punches.

At a given time a step might either be waiting for permanent resources, waiting for a CPU or
executing a CPU task, waiting for an I/O channel to be free or receiving an I/O service. This led
Boyd and Epley to decompose the system into 3 stages:

-the Permanent Resources Subsystem (PRS) where permanent resources are allocated.
-the CPU stage, organized as one queue and multiple servers in the case of multiprocessing.

JOB = JOB
PERMANENT

ARRIVALS - QUEUE
RESOURCE
ALLOCATION

Y

JOB
RELEASE EXECUTION

DEPARTURE - PERMANENT RESOURCES
gJ&I/O

Fig. 1. Job flow through a batch processing multiprogramming system.

Formalization and confirmation of the Boyd-Epley operating system model 3

-the I/O stage, also organized as one queue and multiple servers, each server being a
channel.

The CPU stage and the I/O stage compose the Demand Resource Subsystem (DRS).
The three-stage model is depicted in Fig. 2. Notice that the job queue is not included in the

model. Boyd and Epley considered this queue as an infinite source of steps, letting a step go into
the system each time another step came out. The system proper includes only the three stages
defined above: the permanent resource stage and the CPU and I/O stages. In a spooling system
like an OS under HASP, this means that we do not take into account the input of programs
through the card reader nor their output through card punches or line printers. Jobs are
considered waiting in a job queue in secondary storage before they enter the system, and the
output they left on secondary storage for HASP to deal with is neglected. Furthermore no
overlapping between CPU and I/O service is allowed for a given step.

The fundamental assumption made by Boyd and Epley is that at equilibrium the number of
steps in the system is always constant. This implies that there will always be enough jobs in the
job queue.

In OS/370 MVT a number of “initiators-terminators” are each assigned a certain group of
jobs according to their characteristics known through Job Control Language cards. To each
initiator there corresponds an input queue, and whenever an initiator terminates a job, it initiates
another one from its queue. In a HASP environment, this is complicated by the fact that these
queues are always almost empty, because HASP sends jobs whenever needed or rather, slightly
before.

The saturation for such a system is reached when all the initiators are busy, and the system
remains at its saturation point only if there always remain jobs waiting for initiation in each of the
initiation queues. For this it is sufficient that the following two conditions be simultaneously met:

1. Incoming jobs must have sufficiently varied characteristics so that they are distributed
among all the initiators.

2. In each group the arrival rate must be sufficiently great in order to keep all the initiators
busy.

These two conditions are very restrictive, and determining if they are satisfied in reality is
very difficult.

We shall define as equilibrium the state where the mean number of jobs in the system is
constant. We shall see through simulation that this condition is easily met, and more realistic than
the equilibrium definition of Boyd and Epley. Furthermore we shall include the job queue, made
up of the initiation subqueues, into our system. The distribution of incoming jobs will then be
considered, since they are expected to have a direct influence upon the system behavior.

In the Boyd-Epley model, steps have no priorities whatever. However, in OS/370 MVT, the
priority requested by a user on his JOB card together with other parameters is transformed by
HASP into an internal priority according to an algorithm taking into account all parameters. This
internal priority is the job or step priority in the PRS and in the I/O stage, but by no means in the
CPU stage[lO].

Each time a job requests a CPU service, the time slicing feature of the IBM 370 is used, in
order to compute a new CPU stage priority for the job. The priorities of user tasks within a given
priority group are thus dynamically changed in order to give a higher priority to those tasks,
within the group, which use the least amount of CPU time. At the Technion there is only one
priority group including ail the steps, thus allowing I/O bound steps to remain the smallest
possible time in the CPU stage.

Furthermore in a given initiator queue, we may have steps from different HASP classes.

JOB EXIT !

Fig. 2. Three-stage multiple-resource model.

4 BERNARD P. ZEIGLER and DANIEL EWENCZYK

Classes are given different priorities. When an initiator has to select a step for initiation, it scans
the queue for the highest priority step within the highest priority class.

3. A MORE REFINED MODEL AND ITS FORMALIZATION

We introduce three new notions into the Boyd and Epley model, namely HASP classes,
initiators and step priority. The resulting model, which we call the “base model”, is then
formalized as a DEVS (Discrete Event Specified System)[22]. The Boyd Epley model is then
referred to as the ‘lumped model’. The DEVS formalism is a way of concisely describing a
simulation model. It has the advantage of being independent of any particular programming
language and of not being limited by the ambiguities inherant in an informal natural language
description. For more familiarization with this approach to model description the reader is
referred to [25].

At the Technion computing center, users have to specify to which class their job belongs.
Each class has different maximum requirements, which implies that jobs from different classes
have different characteristics. We, therefore, consider it important to differentiate jobs or steps
according to the class to which they belong.

The priority of a step and the possibility that a step has to preempt another step to get CPU
service are also thought to be important determiners of the system behaviour (simulation results
will show that as far as only flow times and throughput are concerned this is not true).

We shall not fix the number of steps in the system as constant. It will only be less than or equal
to the number of initiators. We shall provide for the possibility of empty initiation queues.

An input step is defined by an identification number, a priority, a memory requirement, a class
number and a number of CPU tasks to perform. We adopt Boyd’s and Epley’s realistic
hypothesis that a step always requests a CPU service before it leaves the system.

A step keeps its own priority throughout its transit through the system, except for the
allocation of an initiator which is done on a class first-priority after basis. There is therefore no
dynamic change of priorities for the scheduling of CPU tasks as would be permitted by the time
slicing feature just mentioned.

The job queue is now composed of as many queues as there are initiators. We intend to model
only the core memory allocation; thus the Permanent Resource Subsystem (PRS) contains only
one queue for the memory allocation which is fed by the initiated steps.

In order to have a general model, we shall formally describe a multiprocessor system which
means that the monolithic Boyd and Epley’s CPU stage will be split into components, the CPU’s.
However, since we shall validate simulation results against a real OS running on a monoprocessor
system, only one processor has been taken into account in the simulation program.

The CPU state is organized as one queue and as many servers as there are CPU’s. Since we
deal with a multiprocessor system, we have to chose a scheduling algorithm. Our choice is the
following: If a new step enters the CPU stage and no CPU is idle, the incoming step preempts the
CPU servicing the smallest priority step among the step currently processed on the condition that
the new step has a greater priority. The preempted step is put at the top of the queue of “ready”
steps (those steps ready to receive a CPU service).

The I/O stage has a similar organization, i.e. one queue and multiple servers, the servers being
the I/O channels, except that no channel preemption is allowed. The channels are identical. We
intend to model only disk accesses. Figure 3 depicts the base model structure. (Tape accesses are
not modelled because tape mounting represents a human factor which would be hard to evaluate.
Furthermore tape statistics were not available at the time of the study).

The formal presentation of the base model is given in the Appendix.

4. SIMULATION OF THE BASE MODEL AND COMPARISON WITH THE REAL SYSTEM

The base model was encoded as a GPSS program* and various simulation experiments were
performed. It was found that an equilibrium, as we have defined it, is always reached by the
model. Calibration runs were aimed at adjusting the mean duration of the I/O tasks and the CPU
overhead (due to the operating system itself and other unknown factors) in order to get a valid

*The DEVS description of the base model obviates the need for a listing of the GPSS program (this is available however
in (261).

Formalization and confirmation of the Boyd-Epley operating system model

a B c 9

Fig. 3. The step flow through the base model. For symbol references please see the appendix.

mean time elapsed between the beginning and the end of the execution (in the CPU sense) of a
step.

It was found however that the variance in this quantity is too large for validation purposes.
Instead, it was found possible to match the I/O and CPU utilization of the OS/370 MVT at the
Technion.

4.1 The sources of the data
There are two sources to the actual data used in the simulation runs: the System Management

Facilities files (SMF) [191 and very few runs of AMAP.t
The data are available in the form of tables. We used only the mean CPU times, elapsed times

and number of tapes and disks channel programs per step according to HASP classes, the
distribution of the core used by the steps and the step priority according to classes.

The AMAP runs have given an idea of the mean duration of a disk access. The actual time to
execute a tape channel program seems to vary so greatly that it was decided to simulate only disk
accesses.

4.2 The data used for simulation
The data were collected from the SMF file of a typical period with total uptime 8.42 hours. We

shall only deal with the HASP jobs and steps. During this period 1505 identified HASP jobs were
registered which summed up to 12,431 steps. The mean CPU utilizationS due to these jobs is
0.505.

A table was constructed, giving for each class the number of steps, the relative frequency, the
average elapsed CPU time per step and the average number of disk accesses per step. Other
tables were constructed, giving for each class the relative frequencies of user step priorities,
since statistics about HASP internal priorities could not be obtained.

In addition, a table of the relative frequency of memory size requests was obtained,
unfortunately not partitioned by class.

From these tables, distributions were constructed for the arrival of steps, the step class, the
allocation of initiators and the allocation of the number of I/O requests.5

Since we had only the total CPU time per step and per class, it was decided to compute for
each step of a given class a fixed duration for CPU tasks by dividing the mean total CPU time per
step for this class by the mean number of disk accesses for this class plus one.”

tNo references: “for IBM internal use only”.
?‘utilization” refers to ulilization ratio-the ratio of the time the CPU is engaged in processing jobs to the total length of

the period.
5The number of I/O requests could only be found as a mean related to the job class. Since we had no information about its

distribution around the mean, we assumed identical values for different jobs of a same class. This applies to the CPU service
duration.

YThe last service given to a job before it leaves the system is a CPU service. Therefore the number of CPU services of a
given job is equal to the number of I/O services plus one.

6 BERNARLI P. ZEIGLER and DANIEL EWENCZYK

The I/O duration has been chosen as a class-independant constant EXCPL. Since we have
neglected all the I/O activity due to the input and output of the jobs as well as the tape accesses,
we made runs with varying EXCPL in order to calibrate the system.

Another calibration parameter is CPOVH, the CPU overhead due to all unknown factors
such as the operating system itself, the time-sharing system (TSO), the operators, etc.. . The
duration of each CPU task is multiplied by the factor 1 + CPOVH/lOO.

EXCPL and CPOVH are constant within each simulation run. Seventy-six runs were
performed with different values of these two calibration variables. Since EXCPL and CPOVH
have unknown values in the real system, no physical meaning should be attached to these two
parameters.

4.3 Simulation results
The time unit was the hundredth of a second. A series of runs has been performed with

different values of EXCPL and CPOVH. Each run simulated a real duration of 200,000 time
units, i.e. 2000 seconds. A first run of 100,000 t.u. allowed the system to reach its equilibrium in
the sense of a constant mean number of executing steps. After resetting the accumulated
statistics, a second run of the same simulated length allowed the collection of statistics.

Between 250 and 450 steps flowed through the system depending upon the calibration
parameters. The class distribution was found statistically compatible with the class distribution
given as input to the program.

The statistics of the queues of the system (including both PRS and DRS) were output each
10,000 time units, i.e. each simulated 100 seconds. It appears that the menn number of steps in the
system stabilized itself rapidly to a constant dependent on both EXCPL and CPOVL (Fig. 4). In
contrast, the number of steps in the system was not constant as assumed originally by Boyd and
Epley. This was to be expected because of the input queues addition to the model.

A study was made of the effect of CPOVH and EXCPL on CPU utilization in the model.
Since the actual CPU utilization was available (as 0.505) it was possible to conclude that the
appropriate parameters settings lay in the region of CPOVH = 50% and EXCPL = 40 (400 ms).
Confirmation of this calibration was obtained from the following: At this parameter setting, the
mean number of engaged initiators in the model (4 out of 15) agrees with the systems operators’
experience. Also when the available memory is increased in the model, it shifts from memory
boundedness to non-boundedness. This is also in line with management expectations for the real
system.

4.4 Comparison between base model results and the predictions made by Boyd and Epley
We analysed a particular case in which the mean elapsed time obtained by simulation is close

to the real characteristics (about 1430 t.u.).
The notations will be those adopted by Boyd and Epley in their article, except for the mean

number of CPU tasks which we shall denote by 2. MEMoQ, REDYQ, WAITQ are the queues

Mean number of

steps in the system
t

6 -200
OKQ

o\ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ a *
20 40 60 00 loo CPOVH

W)

Fig. 4. Mean number of steps in the system vs CPOVH for fixed values of EXCPL.

Formalization and confirmation of the Boyd-Epley operating system model 7

depicted in Fig. 3. We shall call “flow-time*’ in a stage or in a queue, the time a step spent in this
stage or queue.

All the data gathered during the simulation run appear in the left column of the following
table, as well as characteristics easily computed from the former. Boyd and Epley proposed a
minima1 set of measurements. These appear numbered from 1 to 6. We have added a
seventh measurement (2’) to account for CPU preemption. On the right column are
corresponding values predicted by Boyd and Epley. It can be seen that the agreement is well
within 5% (relative error). The simulation results are averages of 4 seeded runs. Student
t-statistics computed fell well within the 5% confidence limits.

EXCP L = 45
CPOVH = 30

SC = 1 (one CPU)
S, = 2 (two channels connected to disks).

mean number of steps in the system
(1) mean time in the system

mean time between step exits

Simulation Boyd’s and Epley’s
Results Model prediction

N = 4.25 4.25
F = 1428

341 336

PRS
mean number of steps in MEMOQ N. = 0.04
mean time in MEMOQ 12.05 13.4

DRS
(5) mean total flow time in DRS per step Fs = 1433 1415

-CPU stage
mean number of steps in REDYQ
mean ready time
mean number of active or preempted steps
mean task duration
mean task + preemption duration
mean number of CPU tasks
CPU utilization

(2) mean total CPU service time per step
(2’) mean total CPU service + preemption

time per step
mean flow time in CPU stage per step

-I/O stage
mean number of active steps
mean number of steps in WAITQ
mean wait time in WAITQ

(4) mean number of I/O requests
mean I/O task time
channel utilization

(3) mean total I/O service time per step
mean flow time in I/O stage per task

(6) mean total flow time in I/O stage per step

I., = 0.20 0.20
w, = 4.31 4.3

0.49
z = 9.93

E’ = 10 6
f = IS:6

10.6

/& = 0.46
e = 155

2’ = 165.5
233

1.93
L, = 1.60 1.62
W, = 37.2 31.2

14.6
i= 45.0 45.0

p, = 0.98
i = 656.0

F, = 82.2 82.2
1200

5. CONCLUSIONS

A base model, constructed by refining a model suggested by Boyd and Epley was confirmed as
a valid mode1 of a real operating system. The queueing statistics obtained by simulation of the
base model at equilibrium agreed well with those predicted by the Boyd-Epley lumped model,
even though the latter does not take into account the initiators, classes or priorities of the base
model. The concept of equilibrium however had to be modified to enable the use of the lumped
model predictions. The potential use of both the lumped and base models for general application
is thus confirmed.

Note should be taken however of our use of the word “confirmed”. We mean that as far as the
tests we were able to carry out, no discrepancy was observed in the predictions of the simulated

8 BERNARD P. ZEICLER and DANIEL EWENCZYK

base model, the Boyd-Epley lumped model and the observed real system behavior. In the
comparison of simulation results with operating system data, we explored the (EXCPL,
CPOVH) parameter space and noting its regularities, we were able to pin down the acceptable
points in this space to a small region. The criterion for acceptability was the matching of CPU
and I/O utilization. The calibration was then qualitatively confirmed by comparing initiator
utilization and the effect of memory size changes with the reports of facility operators.

Clearly validation of the base model, as opposed to confirmation, would require a much more
extensive series of tests. Unfortunately, the acquisition of live operating system data is not a
trivial matter and pertinent data are not available to us. Fortunately however, the essential
measurements required to validate the models are known (namely the seven characteristics
shown numbered in the foregoing table) and it is thus possible to guide the development of
software observer systems toward incorporating capabilities for acquiring the necessary primary
data. In the present circumstances, the proposed methodology of simultaneously working with
both the analytically simple Boyd Epley and the more complex simulation model is necessary to
achieve results not possible with either alone. We may expect the general principle of multilevel
combined analytic-simulation modelling to become even more important in the future.

Our experience has also suggested further refinements which should improve the chances of
validation. We now feel that the single I/O queue of the present base model should be split into
several queues, each one corresponding to one channel. The data required as input should include
tape accesses statistics such as tape mounting dely, access duration distribution, number of
accesses per mounted tape distribution, etc. Time-sharing and APL sessions should be treated as
normal HASP jobs. The calibration parameter CPOVH would thus really represent the CPU
overhead due to the operating system itself. Such an enhanced model could be used to determine
the influence of adding I/O channels, main memory, disk or tape units on computing system
performance. We note that the foregoing modifications are refinements of the base model and so
would not go beyond the essential framework of this paper.

REFERENCES

1. D. W. Barron, Computer Operating Systems. Chapman and Hall, London (1971).
2. D. L. Boyd and D. L. Epley. A simple model for multiple-resource allocation in operating systems, in Computers and

Automafa (J. Fox, Ed.). Wiley, New York (1971).
3. P. S. Cheng, Trade-driven system modelling, IBM Systems J. 8, 4 (1969).
4. A. J. T. Cohn, Introduction to operating systems. MacDonald/American Elsevier Computer Monographs (1971).
5. Cl. Cuttle and P. B. Robinson, Executive Programs and Opera@ Systems. McDonald/American Elsevier Computer

Monographs (1970).
6. J. A. Cooperman and W. H. Tetzlaff, Analysis in an OS user environment. IBM Research RC3161 (1970).
7. H. A. Ernst, Control Program Modelling Techniques. IBM Research RC 3061 (1970).
8. H. A. Ernst, Problems in Computing Systems Performance Modelling: characterization, calibration and validation. IBM

Research RC3319 (1971).
9. General Purpose Simulation System V. IBM Corp. SH20-0851-I (1971).

10. Houston Automatic Spooling Priority. IBM Corp. 36OD-05.1.014.
I I. J. H. Katz, An experimental model of system/360, Communs Ass. comput. Mach. 10, II (1967).
12. H. Katzan Jr., Computer organization and the system 370. Van Nostrand Reinhold (1971).
13. M. N. MacDougall. Computer system simulation: an introduction. Computing Surueys 2, 3 (1970).
14. G. H. Mealy, B. I. Witt and W. A. Clark, The functional structure of OS/360, IBM Systems 1. 5, I (1%6).
15. W. E. Riddle, Hierarchical Modelling of Operating System Structure and Behavior. Dept. of Computer and

Communication Sciences, University of Michigan.
16. R. F. Rosin. Determining a Comoutina Center Environment, Communs Ass. comput. Mach. 8, 7 (1%5).
17. H. Schorr, Design principles fora high performance system, in Computers and Automata. Wiley, New York (1971).
18. P. H. Seaman and R. C. Saucy, Simulating Operating Systems, IBM Systems J. 8, 4 (1969).
19. System Management Facilities. IBM Corp. CC 28-6712-6 (1972).
20. The Comtre Corp. Operating Systems Survey (A. P. Sayers, ed.). Auerbach (1971).
21. G. Waldbaum and H. Beilner, SOUL: A Simulation of OS under LASP. IBM Research RC3810 (1972).
22. B. P. Zeigler, Discrete Event Specified Systems, Proceedings of the Eight Annual Princeton Symposium on Information

Science and Systems (1974).
23. B. P. Zeigler, Postules for a Theory of Modelling and Simulation, Proceedings ofthe 1975 Summer Computer Simulation

Conference. AFIPS Press, Montvale, N.J. (1976).
24. B. P. Zeigler, A Conceptual Basis for Modelling and Simulation, Internat. 1. gen. SW. 1, 4 (1974).
25. B. P. Zeigler, Theory of Modelling and Simulation. Wiley, New York (1976).
26. D. Ewenczyk, Formalization of rhe Boyd and Epley Three-Stage Model of a Multiple Resource-Allocation Operating

System. MS Thesis, Computer Science Dept., Technion, Israel (1973).

Formalization and confirmation of the Boyd-Epley operating system model

APPENDIX. FORMAL DESCRIPTION OF BASE MODEL

We present the formal description of the base model. The following mnemonics are employed:

9

DR:

f
gc
gP

i

;1

m
matu

n

PR!

Scr

S,

;

step class
demand resource subsystem
free memory
number of HASP classes
greatest priority
step identification number
initiator ordinal number
set of all positive integers
step memory requirement
memory available to users
number of initiators
step priority
permanent resource subsystem
number of CPU.tasks of a step
number of CPU’s
number of I/O channels
step
empty queue

Presentation of the formal base model
The model we propose here is a Discrete Event Specified System[ZZ]

M = (X, S, Y, 8, *, I)

where X is the input set, S is the state set and Y the output set.
t: S + Re where Re = R’ U (0) U {m) and R’ = {rlr z 0). t(s) is the maximum time the system is allowed to stay in its

present state s. We define the set Q as

Q = ((s, e)ls E S, 0 5 e 5 t(s))

where e is the time elapsed since the last state change. We shall call it the “elapsed time”.
Then the transition specifying function is the mapping

V: QxX+S

where, if we call 6 E X the “non-event”, and X -{b} the set of external events, there is an autonomous transition function
8, such that

6(s, e, 4) = S+(s) where 8, : S + S

*: Q + Y is the output function.

Such a structure M specifies a system in the same way that differential equations or sequential machines do (see [22] and [25] for
explications).

The input set X

X=l’xAxExCxDxE

I’ set of identification numbers. It is assumed that at a given time there cannot be two steps with the same identifica-
tion number.

A set of priorities A = { 1,2,. . , gp} where gp is the greatest step priority.
B set of memory requirements B = {I, 2,. . , matu} where matu is the memory available to users, that is the amount

of core memory which is not occupied by resident programs.
C set of classes C = {I, 2, . , gc) where gc is the number of step classes. The class of a given step remains constant.

D = I* number of CPU tasks. A step enters the system with a number r E I+ of CPU tasks to perform during its life in the
system. Since we assume that the last task of a step is always a CPU task, the number of I/O requests is r - I.

E set of initiator numbers. We assume that steps have already been allocated an initiator number in when they enter
the system, E = {I, 2,. , n}

Let x be an input job step.
XEX-{b? x = (i, p, m, c, r, in)
i = step identification number

p = priority
m = memory requirement
c = class
r = number of CPU tasks

in = initiator number.

We shall denote by x, a step the first component of which is i and by p, its priority. m, its memory requirement, c, its
HASP class. r, the number of CPU tasks it will perform during its life in the system, and in, the particular initiator it is
assigned to. Since at a given time there is at most one step associated with a given identification number, the notation x, will not
lead lo confusion.

10 BERNARD P. ZEIGLER and DANIEL EWENCZYK

We shall also denote by p(x) the priority of the step x; m(x), c(x), r(x) and in(x) have the same straightforward meaning.

The state set S
We shall define a set of components D = (a, p, c, 11).
Each component, say a, will be made up of a component state X. and a scheduling time g_ E Re. A component activation

may be interpreted as a set of actions performed on the state that modified the latter. This may include the modification of the
scheduling time of the same or other components and the possible “immediate reactivation” of the current component.

According to Zeigler[9], we shall define as “imminent event”a member of the set of events such that their scheduling time
be equal to f(s). A particular case is obtained if I(S) = 0. A selection rule has to be defined if there are several imminent
events, i.e. several events scheduled to occur at the same time.

The components of the base model will be
d: the step queue
,9: the permanent resource subsystem
e: the CPU stage
7: the I/O stage.
A state of M will then be (x., IJ~, x D x (I x o). Then t(s) = min (o_, cr#, o., u”) and the imminent events will be 8, 8, ., ., ,I, *

defined by the following mapping: IMM: S + 2D, IMM(s) = (old ED/u, = f(s)}.

Component a: the initiation queues
Let n be the number of initiator-terminators.
We shall have n queues, one per initiator. By convention, the top entry of a given queue is the step currently seizing the

corresponding initiator. If the queue is empty (symbol A) the initiator is idle. The state set of (I is (X* x (X U {A}) x Re)“,
where X* is the set of all finite length sequences of elements of x, A being the sequence of length 0; n the number of
initiators.

n is made up of n subcomponents Q /I) one per initiator. A typical state of ain is

(ink., j.,, G.)

init,. is the inth queue of the component a.
In the model, one of the parameters of incoming steps is an initiator number. We, therefore, do not consider allocation of

initiators internal to the model. This feature appears in the specification of input sequences where steps of a given class are
given equal probabilities to join any of the initiation queues assigned to this class.

j_ is a saving place where an incoming step is stored as a result of an external event.
0.. is the scheduling time of the subcomponent a,“.
An incoming step is immediately inserted into the corresponding queue, and if the latter is empty, directly passes to the

PRS. (I,,, may also be activated when a step exits the system. If init,. = A, i.e. no step is waiting for initiation, then din
deactivates itself without further action.

Component 8: the PRS (Permanent Resource Subsystem)
The state set is is (B U {0}) x X* X Re.
A typical state is (f, memoq, u6) where f is the free memory, memoq is the memory queue where steps queue in after

having seized an initiator. It is organized on a priority basis. Whenever fl is activated it reactivates itself unless no memory
can be allocated to the top entry of memoq. This is to provide for the case of the release of a large amount of memory by a
step. This memory may possibly be allocated by fragments to several smaller steps on the condition that they are at the top of
memoq.

/3 may either
-allocate memory to the top entry of memoq, send this step to the CPU stage and immediately reschedule itself and E,

the CPU stage.
-or do nothing if no memory can be allocated.

Component z: the CPU stage
The state set is

(Xx (R’U (O}))* x (X U {A}) x [O. I]” x Re.

A typical state is (cpuq, j., y’, 0;).
We assume the CPU stage contains SC CPU’s which are either busy or idle. We shall have one step queue the SC top

entries of which (if they exist) are the steps currently receiving CPU service. Since we allow preemption the steps which are
not being processed by one of the CPU’s are either preempted steps or have recently entered the stage and are waiting for the
beginning of the execution of the task. We shall call the queue of all the steps in the stage cpuq, the subqueue of all waiting
steps readyq, and actq the subqueue of active steps, i.e. those currently receiving CPU service.

Formally actq can be defined by

I
cpuq = actq readyq
length (actq) = min [length (cpuq), SC]

where SC is the number of CPU’s and length the mapping

length: (XX R+)* + I’ U {O}

length (cpuq) is the length of the queue cpuq.
Each time a step enters the CPU stage, it is given a processing time tc from a class dependent distribution R(v<‘) where

c E C is the class of the step, and y=’ is a uniformly distributed random number in the range (0, Il. The step is then inserted
into cpuq possibly causing a preemption.

Formalization and confirmation of the Boyd-Epley operating system model II

j. is the value stored in a save cell which may contain a step coming either from the PRS or from the I/O stage, or be

empty (A).
Let k, denote the number of steps currently in the CPU stage. Let x,, x2,. , xk, E X be steps and IC,, tc2,, , tck, E R’

be positive real numbers. rc, is the processing time there remained to the ith step of the queue after the completion of the last
event. Notice that here x, does not mean the step the identification number of which is i, but the ith step of the queue. A
typical cpuq where all CPU’s are busy will have the following aspect.

(Xl, fC,)

t I actq

cpuq, (xs,. b<) ‘,
(xsc+,, ksc+,

I : i readyq

(x*,. ICI,)

As mentioned earlier CPU’s are preemptible. Our scheduling and preemption algorithm is the following: an incoming step
(the value of j#) will either seize an idle CPU, either preempt another step if no CPU is idle and its priority is high enough, or
be inserted into readyq if its priority is too low. This will be formally described further down.

c may also transfer a step which has completed its current CPU task to the I/O stage or purge the system from this step if
the completed CPU task was its last one. In this last case the permanent resources retained by the step are given back to the
PRS and p is activated.

Componenf 7): the I/O stage
The state set is

(X x (R’ U {O)))* x [O, 11” x Re.

A typical state is (ioq, y2, u_,) where ioq is a queue with an organization similar to cpuq. The S, top entries of ioq are the steps
currently receiving channel service. We shall call ioactq the subqueue of these steps. If the S, channels are not all seized the
length of ioactq is smaller than S,. More precisely, if waitq is the subqueue of all the steps waiting for a free channel, then

I

ioq, ioactq, waitq E X*
ioq = ioactq waitq

length (ioactq) = min [length (ioq), S,].

A fundamental difference between the CPU and the I/O stages is that channels may not be preempted, and steps have to
wait for a channel to be free to begin and execute their I/O task.

When a new step enters this stage it is allocated a service time ti from a class dependent distribution Wc(yc2) where yc2 is a
uniformly distributed random number in the range [0, I].

A typical ioq is given here. k, will denote the total number of steps in the stage.

I (x,, ri,,

ioactq

I waitq

Notice that k, 5 S, 3 waitq = A. n may be scheduled by c. When activated, 9 sends the step which caused the activation to
the CPU stage. c is then activated.

Selection rule
We might have several imminent events (recall previous page). To avoid information loss, we adopt the following rules:

rules:
-whenever E and j3 are both imminent, c will be executed before 8.
-whenever l and n are both imminent, e will also be executed first.
The reason for these two rules is that we do not want to overwrite the contents of j_. This would happen if the allocation of

permanent resources (/3) or the exit from the I/O stage (n) were done before the insertion into cpuq (e).
Based on the above description. the transition function % is formalized as a set of tables, accessed under control of the time

advance and selection rules.

The transition function 8

The transition function is represented as a double entry table where the actions of each component are represented. To help
simplify this table let us define a few operators.

rop: x*+x
top (qn) is the top entry of the queue qn E X*.

12 BERNARD P. ZEICLER and DANIEL EWENCZYK

rest: X*+X
rest (qn) is the queue qn without its top entry qn = top (qn) rest (qn).

insert: Xx X* X I’-+ X*
Insert (x, qn, p) is the queue obtained by inserting the step x given a priority p into the queue qn. The insertion is made on

a priority basis. There is no redundancy in the fact that one of the parameters of x is its priority, and the definition of insert.
The reason for including a priority parameter in insert is that the insertion of steps into the initiation queues is done on a class
first-priority after basis. A step x = (i, p. m, c, r, in) is not inserted according to its own priority p but according to a different
priority b(c,p) which also takes the HASP class into account. b is the following mapping

b:CxA-rA.

As an example, the insertion of a step xi into the initiation queue in yields the new queue

-xi if init, = A (empty queue)
-insert [xi, rest(init,.), b(ci, p,)] if init,. # A.

pop: Xx(X x R+)* -, (Xx R+)*
pop (x, qn) is the queue obtained when the step x pops off the queue qn. An important assumption is that there never be

holes in queues. These must be thought of as linear linked lists or chains. This and our assumption that the S, top entries of
the h elements of ioq are receiving channel service gives to pop (xi, ioq) the following meaning. It is the queue resulting from
the two actions

-the step xi (the identification number of which is i) pops off ioq
-top(waitq), if any, becomes the S,th entry of ioq and therefore begins to receive channel service.

preempt,: X x (X x R’)* -+(X x R’)*
preempt, (x, cpuq) is the new cpuq resulting from the arrival of a step x into the CPU stage when each CPU is siezed

(k, t SC), t units of time after the last transition.
Let x, be the jth step in actq with minimum j such that

p,=rmn(p,,pz,..., Psc,).

Here again p, mean the priority of the jth step of actq.
(1) if p > p, then readyq becomes [x, ~Y,,,,(y~,.,)][x~. Ic, - t] readyq and actq becomes pop (x,. actq) where c(x) is the

class of the step x. This is called preemption.
(2) if p s p, then readyq becomes insert*([x, H&y&,)], readyq, p(x)} where insert* is an extension of the mapping

insert: and, insert*: (Xx R’) x (X x R+)* x A + (XX R+)* where insert* has the same effect than insert except that
it operates on queues of the set (XX R+)* instead of X*.

;: (Xx R’)* + (X x R+)*
actq’, is the queue actq the entries of which have had t subtracted from their second projection. For example

(x1, tcI,x2, Ic,): = (x,, tc, - e,x,, G-e)

The transition function CI (tables)
We shall first describe the transition caused by an external event, i.e. the input of a step. This step x = (i, p. m, c, r, in) is

stored into the saving cell j., of the subcomponent ain (the initiator number in). ain is then activated by giving o., the value
0.

The entries of the Table Al give 8(s, e, x). Blank entries mean unmodified parameters.
Tables A2 and A3 give the transition function S,(s), that is the law governing the system when the latter is working like an

autonomous machine.*

Table Al. Transition function 6

The following components External event x
are possibly modified x = (i, p, m, c, r, in)

InIt,.

j.,.
ga.,.

f
memoq

06
cpuq

1.
Y’
0;
ioq
YL
0,

0”

o@ - e
actq: readyq

v_ - e
ioactq: waitq

g* - e

*Due to space limitations we present the tables only for the n,. and p components of the sequential state. For the same
reasons the descriptions of the output set and function of the model are omitted. For a complete description, please see
reference 26.

Formalization and confirmation of the Boyd-Epley operating system model 13

Table A2. a,.-subcomponent number in of the component (I

o,, If j,_,. # A and i& # A the step If j_,. # A and init,. = A If j., = A a step has terminated

contained in the cell j_, Initiator A new step is

is enqueued in init,. initiation of the step j., is free initiated

uut,. insert [j.., rest(init,.), b(c, p)] 1.8.
J.,. A A

o-4, m m cc m

7
memoq insert L,, memoq, p&J insert [top(init,),

memoq, p[top(initJl

06 o@ - t(s) 0 6 -t(s) 0

c and n The only changed parameters are cpuq, cr., ioq and o, which respectively become actq:,.Feadyq, u. - t(s),
ioactq:,,,waitq and o,, - t(s)

Table A3. p-the permanent resource subsystem

oin init,

1.4”

o.x. o-.,-t(s) inE[l,n]

B if m[top(memoq)] 5 f else

f f - mbdmemoq)l
memoq rest(memoq)

ozs 0 m

c cpuq actq:,.$eadyq

1. top(memoq)

Y’
o. 0 fl. -G)

1 ioq ioactq:,,,waitq

Y2

o.l o, -t(s)

The use of these tables is straightforward. Given the present state s, t(s) gives the transition time. The mapping IMM (see

above) gives all the imminent events, one of which is selected with the selection rule. The imminent event thus selected leads

to one of the tables, the entries of which yield the new state. For instance, if the selected imminent event is fi, we look at Table
A3: the new value of memoq is rest (memoq); the top entry of the previous memoq is entered into j., etc.

A principle in the reading of all the tables is that the components assume their new value within a null time and only when
all the changes have been performed. This implies that the variables appearing as entries are always those pertaining to the
state s.

