
INFORMATION SCIENCES 13,77-89 (1977) 77

&&ation of an Andytbl Model

to Evaluate Storage S-

T. J. TEOREY

The Unitzersity of Michigan, Ann Arbor, Michigan 48109

and

K. SUNDAR DAS

Uniwrsity of Texas at San Antonio, San Antonio, Texas

Communicated by John M. Richardson

ABSTRACT

The File Design Analyzer is a software package which evaluates well-known data base
storage structures and access methods in terms of secondary storage processing time and
storage overhead required to service a set of user applications. It implements a first-order
analytical model to specifically evaluate sequential, indexed sequential, direct access, and
inverted multilist storage structures. Interaction with the package is available in conversa-
tional mode, enabling the experienced analyst to conduct on-line sensitivity analysis.

The paper describes three extensions which converted an abstract conceptual model into a
practical tool for evaluation of existing or proposed data base designs: batched transactions,
multi-access interference due to shared secondaty storage, and analysis of variable record
size. A case study from a real system illustrates the potential of the File Design Analyzer to
provide insight regarding the optimal choice of physical parameters within a specified storage
structure and to effectively compare alternative storage structures for a particular set of
applications.

I. INTRODUCTION

The data base design process is an important part of the work of a Data

Base Administrator (DBA), and an essential part of this process is the

evaluation of candidate physical designs. Previous analytical approaches to
physical design evaluation require separate models for different storage struc-

The research and development for the File Design Analyxer was conducted under Defense
Supply Service Contract Number MDS-903-74-C-0300 for the USAF Data Services Center
(AFDSC) and Grant Number AFOSR-72-2219 for the Air Force Office of Scientific Re-
search, Air Force Systems Command.

Q Elsevier North-Holland, Inc., 1977

78 T. J. TEOREY AND K. SUNDAR DAS

tures [2,4]. Simulation models are also available, but they are expensive to run
relative to the analytical models [1,5]. A recent breakthrough by Yao [7,8]
formulates a general analytical approach to the modeling of storage structures
which can be easily adapted for sequential, indexed sequential, direct access,
multilist, and inverted storage structures. The concepts of record access in this
model can also be applied to network storage structures. The purpose of this
paper is to describe a software package, called the File Design Analyzer, that
develops and extends Yao’s conceptual model into a practical tool for evalua-
tion of storage structures, and to illustrate the usefulness of this package by
describing some experimental results for an existing system.

The File Design Analyzer (FDA) evaluates and ranks the most well-known
data base storage structures and access methods in terms of the secondary
storage processing time (access time plus data transfer time) and storage
overhead required to service a set of user applications. The package can be
used by the system designer to tune an existing data base by varying certain
parameters and observing the effect on system response. It can also be used as
a design aid for proposed data bases for which the logical requirements are
well defined.

The program implements an expected value (first-order approximation)
model of simple storage structures proposed by Yao [7,8]. It accepts as input,
parameters which describe the secondary storage hardware characteristics, the
data base description, and the user workload in terms of simple retrieval,
complex query type retrieval, insertion, deletion and modification of records,
and report generation. It evaluates a static configuration but it has been
implemented for conversational use to facilitate obtaining multiple data points
quickly and inexpensively.

Several important extensions were made to the model to provide realistic
variations of the original idealized environment. They include the analysis of
multiple record sizes, multiaccess interference on secondary storage, batched
processing of transactions, and data reorganization for physical deletions and
overflow records. These extensions are discussed below, except reorganization,
which is developed in other papers [6,9].

The FDA was written in ANS/FORTRAN and is currently operational on
the Honeywell 635 and IBM 370/168. It consists of approximately 1100 source
statements and requires 20K words for the object program. Execution time on
the 370/168 is approximately 0.1 second per data point.

II. THE MODEL

The FDA inputs and outputs are illustrated in Fig. 1. The FDA output
displays I/O processing time for each type of operation specified (retrieval,

APPLICATION OF ANALYTICAL MODEL 79

DATA BASE
DESCRIPTION

\

CHARACTERISTICS- STRUCTURE
MODELS

r

I/O PROCESSING TIME
REQUIRED FOR THE

STORAGE STRUCTURE APPLICATION

PARAMETERS
I I

Fig. 1. File Design Analyzer.

insertion, etc.) the storage overhead, and the timexspace product for sec-
ondary storage for the entire application.

ACCESS TREE MODEL

Access to a data base is usually made through a series of index searches or
list processing. Consequently, to retrieve a certain record, only part of the data
base need be searched. The access structure of data bases can be modeled as a
tree as defined by Yao [7,8], and this structure is referred to as the access tree.
We illustrate the access tree concept by defining the access path for Honey-
well’s Indexed Sequential Processor, ISP [3]. Although the FDA currently
evaluates ISP, only minor modifications are required to evaluate other indexed
sequential implementations such as ISAM.

ISP permits access to records on a direct access device either sequentially or
through the use of indexes. Initially, records are sequentially allocated within
fixed-size pages across disk tracks and cylinders. The directory is composed of
a coarse index and a fine index. The coarse index is sequentially searched until
the appropriate fine index page is located. The average search length is
approximately one-half the size of the coarse index. The fine index page
contains the address of the page in which the required record resides. A search
of the fine index is never more than one page. Thus, the search progresses from
the coarse index, the fine index, and finally to the data page. In case of
overflow in the data page, an overflow page must be accessed.

An access tree representation for ISP is shown in Fig. 2. Within each level
the search is defined by average percentages of sequential accessing and
accessing via pointers; between levels the search is always via pointers. Access
paths and I/O processing time computations for other storage structures are
described in Teorey and Das [6] and Yao [7].

80 T. J. TEOREY AND K. SUNDAR DAS

/

SINGLE KEY FOR RETRIEVAL

J
COARSE INDEX.<> 0

FINE INDEX)

DATA RECORDS OVERFLOW

SEQUENTIAL ADDRESSING (AND ACCESSING) 01

ACCESS VIA POINTERS +

Fig. 2. The access tree representation of HP.

ASSUMPTIONS

-The model evaluates structures on the basis of a single record type. If
record size is variable, several typical sizes can be chosen so the I/O process-
ing time can be computed separately for each case. An example of this is given
in the Case Study (d).

The storage medium is assumed to be a movable head device (disk), which
includes fixed head devices as a special case with zero time. Individual
transactions are assumed unordered and they request records which are
uniformly distributed (and nonredundant) over the data base. The model
assumes that contiguous storage is allocated to the data base. If the disk is
dedicated to the process accessing the data base, the seeks are randomized
within this contiguous storage. If the disk is shared, the seeks are assumed
random over the entire disk surface.

Batched transactions are assumed to be ordered to maximize efficiency. The
transactions, if unordered, would have randomly chosen records from the data
base such that more than one transaction may occur for a given record. Thus
the average number of data pages accessed to service all transactions is given

by

AVERAGE=NDP*[1-(NE;;‘)‘]

where NDP is the number of data pages (blocks) required for the data base,
and [(NDP- l)/NDP]r is the probability that a given data page is not
requested by any of T possible transactions in the batch, i.e., the result of
random selection with replacement.

APPLICATION OF ANALYTICAL MODEL 81

l *******HARDWARE PARAMETERS********

19. TRACKS/CYL.
404.oonn USABLE CYLINDERS PER DISK DRIVE OR PACK
30.0000 M-SEC. AVG.SEEK TIME
10.0000 M-SEC.NEXT CYL SEEK TIME
16.7000 M-SEC.ROT.TIME

1984 WORJJS/TRACK
1074000. CPS_-TRANSFER RATE

1. WORDS/POINTER
1.0000 BLOCK CONTROL WORD SIZE. IN WORDS
1.0000 RECORD CONTROL WORD SIZE. IN WORDS

2. WORDS BLOCKING OVERHEAD
6. CHARACTERS PER WORD

********DATA BASE DESCRIPTION********

NUMBER OF RECORDS = 24762
NUMBER OF RETRIEVAL ITEMS PER RECORD = 1.0
NUMBER OF ACTIVE ITEM VALVES PER ITEM TYPE = 24762.0
AVERAGE NUMBER OF RECORDS PER ITEM VALVE = 1.0
LENGTH OF POINTER = 1.0 WORDS.
LENGTH OF RECORD = 8.0 WORDS.
WRITE VERIFY CODE = 1.0

********USER WoRKLOAD*"**f***

FREQUENCY OF RECORD RETRIEVALS
FREQUENCY OF QUERY RETRIEVALS
FREQUENCY OF RECORD INSERTIONS
FREQUENCY OF RECORD DELETIONS

= 463182 PER DAY
= 0.033 PER DAY
= 0.530 PER DAY

= 0.500 PER DAY
0.833 PER DAY
0.0 PER DAY

FREQUENCY OF RECORD UPDATES =
FREQUENCY OF ITEM UPDATES =
FREQUENCY OF ITEM INSERTIONS = 0.0 PER DAY
NUMBER OF QUERY CONDITIONS = 1.000
NUMBER OF RECORD CONDITIONS PER QUERY CONDITION = 1.0
NUMBER OF ITEM CONDITIONS PER RECORD CONDITION = 24762.0
ESTIMATED SIZE OF QUERY RESPONSE SET = 24762.0
********STORAGE STRUCTURE PARAMETERS FOR ISP********

PERCENTAGE FILL = 0.900
DATA PAGE SIZE = 320.0 WORDS.
ITEM KEY SIZE = 6.0 CHARACTERS.
INDEX PAGE SIZE = 320.0 WORDS.
BATCHED TRANSACTION FLAG = 0.0
AVERAGE RECORDS/BATCH = 0.0

Fig. 3. FDA input parameters.

The FDA does not attempt to model all possible storage structure im-

plementations. With the exceptions of Honeywell’s ISP, the storage structure
models were kept general so that most implementation-dependent parameters
could be supplied via user-defined inputs (Fig. 3).

INTERFERENCE

The degree of interference of data base access can be categorized as
follows:

1. Single access.
2. Single access with rotational delay.

82 T. J. TEOREY AND K. SUNDAR DAS

3. Multiaccess.
4. Multiaccess with all system resource delays.

Single access is the most ideal case. It implies a dedicated disk, no delays due
to multiprogramming, and CPU processing time subsumed within the time to
traverse an interblock gap. Thus sequential processing of data under single
access conditions results in virtually uninterrupted transmission of data. The
second category assumes that access to the next contiguous block is delayed an
average of half a rotation due to CPU processing and CPU wait.

The multiaccess case implies a shared disk in addition to m~tipro~a~ng
delays so that access to blocks, which are contiguous for this process, becomes
randomized by interference from other processes. The fourth category allows
computation of elapsed time due to all resource delays and service time,
whereas the first three categories describe only the I/O processing time (elapsed
time on that disk).

The FDA implements single access and multiaccess as lower and upper
bounds on I/O processing time for the given application. Operational experi-
ence with live test data indicates that single access with rotational delay is
more typical of a lower bound, and the current model now includes this
category. The fourth category was beyond the capability of an expected value
model, but preliminary results with this category using queuing models indi-
cate that the multiaccess interference model (category 3) is sufficient for
comparative analysis of storage structures. Queuing or simulation models
would be necessary to predict total elapsed time in a multiprogramming (and
possibly multiprocessing) environment.

III. EXPERIMENTS WITH STORAGE STRUCTURES

The objectives of the experiments were to provide insight regarding sensitiv-
ity of performance to the values of physical parameters within a specified
storage structure, to compare performance of alternative storage structures,
and to provide test data for validation of the model. The results of the
experiments were useful for determining the most important parameters in
storage structure design.

During the calibration process several adjustments were required in the
original model. The data base updating was done by setting up batches of
ordered update transactions. The original version of the FDA assumed that the
address of a record being processed was independent of the address of the
subsequent record accessed. The modifications for batched processing resulted
in the model I/O time being within 10% of live test data using accounting
information from a stand alone test with this application. The model then
accurately predicted the effect of block size changes on I/O processing time
for sequential files.

APPLICATION OF ANALYTICAL MODEL 83

CASE STUDY: AN INDEXED SEQUENTIAL DATA BASE ANALYSIS

a. Given Data Base Parameters

Data Base Size = 24,762 records.
Single record type.
Record size = 8 words (Honeywell 635).
Key Size=6 characters (1 word).
Percent fill = 90%.
Page size = 320 words.
Access method: Honeywell ISP.
Workload: Two passes monthly for record updates. Random retrieval

activity by 10 applications per day, ranging from 524 transac-
tions per month for the least active and 92,619 per day for the
most active, approximately linear between the two extremes.

6. Data Base Evaluation

One of the objectives of the FDA was to provide insight into the effect of
different parameters on system performance. With this in mind, several experi-
ments were run for this data base to test the effects of the most obvious
physical design parameters. Figures 4 and 5 illustrate the sensitivity of I/O
processing time and time x space product to index page size and data page size.
The relative performance remained unchanged between single access and
multiaccess.

Using I/O processing time as the performance criterion (Fig. 4), it would
appear best to minimize all page sixes. However, when the timexspace
product is taken as the performance criterion, the current data page size of 320
words appears to be optimal. In both cases the index page size should be no
larger than 64 words and possibly smaller. Because of the extremely slow rate
of growth of the data base, the I/O processing time and timexspace product
were both minimized at 100% fill. After several months, however, the perfor-
mance would start to degrade measurably, due to overflow, so that reorganiza-
tion might be necessary.

The data page size of 64 words produces a larger time x space product than
page size of 320 words because of the fragmentation of space in a 64 word
page. The computation of the allowed number of logical records per page is as
follows:

Records per page =
Page size x Y&Fill - BCW

Effective record size

where Effective record size = stated record size + record control word size, and
BCW =physical block control word size.

84 T. J. TEOREY AND K. SUNDAR DAS

TOTAL I/O PROCESSING TIME *lo4 SECONDS

WORKLOAD: 463,182 random retrievals per day
2 batched update passes per month

3.1*-

3.0 -_

2.9 .-

2.8 --

2.1 .-

INDEX PAGES
(Data pages=32fl words)

'
DATA PAGES

(Index pages=32Il words)

1
64 320 640

PAGE SIZE IN WORDS

Fig. 4. ISP performance vs. block size (single access).

If block and record sizes was 1 word, percent fill was 90% and record size
was 8 words; then a 64-word page would contain 6 records and a 320-word
page would contain 31 records. Thus, the larger page size would reduce the
total storage space required.

Alternative storage structures and access methods were tested for single
access and for multiaccess with random interference. The output (Tables 1 and
2) indicated that direct access minimized I/D processing time for single access
and ISP minimized I/O time for multiaccess. The direct method minimized the
time X space product in both tests, indicating that it should be considered as an
alternative to ISP for this application. Note that percent storage overhead for
direct is less than ISP in this example, resulting in a lower timex space
product.

APPLICATION OF ANALYTICAL MODEL 85

TIME * SPACE PRODUCT (*lOlo WORD-SECONDS)

WORKLOAD: 463,182 random retrievals per day
2 batched update passes per month

page=320 words)
--

320 wordsf

64 320 640

PAGE SIZE IN WORDS

Fig. 5. ISP performance vs. block size (single access).

TABLE I
Comparative Performance Statistics for Case Study (Single Access)

Total I/O Time Time
(sec)X 104 Rank

T x S Product
(Word-set)

x 10’0

TxS Y& Storage
Rank Overhead

SEQ 32.6 5 1.4 5 12.6%
Direct 1.05 1 .3 1 25.7%
IW. 8.49 4 2.7 4 38.6%
Multi. 8.486 3 2.7 3 38.6%
ISP 2.83 2 .9 2 35.6%

86 T. .I. TEOREY AND K. SUNDAR DAS

TABLE 2

Comparative Performance Statistics for Case Study (Multiaccess)

Seq
Direct
IIW

Multi
ISP

Total I/O Time Time

(set) X 104 Rank

659 5
6.2 2

147 3
147 3

5.6 1

T x S Product

(Word-w)

x 10’0

149
1.6

47.6
41.6

1.7

TxS

Rank

5
1
3
3
2

Tie

Degradation over

Single Access

20.2
5.9

17.3
17.3
2.0

c. Direct Access as an A~te~t~~ to ISP

The optimal design for direct access is superior to all other storage struc-
tures for this application. Table 3 summarizes the sensitivity of the direct
access method to the number of buckets for hashing and the number of
physical records specified per bucket. The performance (in I/O processing
time) appears to be highly sensitive to these parameters. Note that records
within a bucket are assumed unbl~ked but are stored in contiguous locations.
Storage overhead variation is due to extra pointers for chained overflow, and is
quite sensitive to the distribution of bucket size (as well as the distribution due
to the hashing function, but this application is assumed to be uniformly
distributed), The degradation in I/O processing time due to multiaccess
interference increases as the data base becomes more sequentially stored (i.e.,
larger bucket size).

TABLE 3

Performance of Direct Access for Case Study

Inputs Single Access Multi-Access

Number of Records/ I/O Processing TxS % Storage I/O Processing Time
Buckets Bucket Time (set) Product Overhead Time (set) Degradation

Xl@ x10*0 X10" over
SingJe Access

24762 1 .70 .29 41.5% 1.45 2.1
12381 2 .92 .36 34.5% 2.55 2.8
8254 3 1.00 .39 30.9% 3.52 3.5
4127” 6 1.05 .40 25.7% 6.23 5.9

‘Configuration for Tables 1 and 2.

APPLICATION OF ANALYTICAL MODEL 87

d. Effect of Variable Record Site

The assumption of single record type (and fixed size) in storage structures is
a serious limitation for many applications. However, the FDA does allow one
to specify several record sixes, run them separately, and analyze the I/O
processing time for each case. An experiment was attempted with a hypotheti-
cal application that involved every operation allowed (retrieval, insertion, etc.),
and three sets of records, each with the same average size, were modeled
assuming ISP. The results are presented in Table 4.

In each case the block size of page size was 320 words and the block control
word and record control word (overhead) were one word each. In all three
cases, there existed significant differences in I/O processing times, showing
how significant the distribution of record size (and the discrete nature of fitting
records into blocks) can be with respect to system performance.

TABLE 4
ISP Performance vs. Record Size Distributions

Case Expected

Record Size
(Words)

Record Sii

Distribution

I/O Processing

Time (set)

96 Increase

over Case A

100

100

100

Gmstant

f 10 wds.

J 1OOwds.

f 190 wds.

20% 20 wds.
10%5owds.
70% 130 wds.

14240 -

14640 3%

20390 43%

IV. CONCLUSIONS AND RECOMMENDATIONS

The experiments described in this paper are condensed from a large
collection of experiments which attempted to determine the most significant
storage structure parameters.

No attempt was made to rank the parameters in order of significance
because of the application-dependent nature of the experiments. Furthermore,
the following list is not meant to be exhaustive, but should be considered as a
minimal set of parameters to be tested for sensitivity in the physical data base
design process.

88 T. J. TEOREY AND K. SUNDAR DAS

1.
2.
3.
4.
5.

Parameter Storage Structure Applicable

Physical block size (data) All
Physical block size (index) HP, Multilist, Inverted
Percent fii ISP
Bucket size Direct Access
Physical ordering Sequential, ISP, Direct Access

In conclusion, the File Design Analyzer (FDA) program represents a
significant step toward understanding physical data base design. It is an
operational tool that is easily utilized and easily interpreted. Processing costs
are low, enabling the experimental designer to test sensitivity of I/O process-
ing time on many parameters at a single sitting.

On the other hand, the FDA should not be used without an awareness of its
limitations. It is a first-order model of I/O processing time and does not
include the waiting time in the queues for the system resources. It does not
model the probabilistic nature of dynamic storage allocation in virtual storage
systems, but allows the user to estimate page residence probabilities from
statistical data collected on their own.

The FDA performance criteria, I/O processing time and secondary storage
space, account for only part of total cost of managing data. Other costs include
the main storage for buffers and data management software, CPU time for
record processing and system overhead, personnel costs, development costs,
and data base creation and reorganization costs. Because I/O processing time
is usually a good measure of elapsed time to process a data base application, it
also represents the time delays for channels, control units, main storage, and
waiting time at time-sharing terminals. It would be straightforward then to
estimate at least the hardware costs from rental cost figures. Data base
creation and reorganization costs can be computed by formulating the individ-
ual data base operations required in terms of those already included in the
FDA.

Plans for extending the FDA for hierarchical and general network struc-
tures are currently under way. It is believed that a generalized version of this
model can eventually be linked to the logical data base design process, thus
providing a more useful design aid over a wider range of alternative logical
data s~ctures.

The authors wish to acknowledge with deep appreciation the guidance and
dedication of those who reviewed the computations and experiments: John De-
Heus, Bet@ Finney, Jim Fry, Alan Merten, and Bob Tufts.

APPLICATION OF ANALYTICAL MODEL 89

REFERENCES

1. A.F. Cardenas, Evaluation and selection of file Organization-A model and system, Comm
ACM 16,9 540-548 (1973).

2. A.F. Cardenas, Analysis and performance of inverted data base stmctures, Convn ACM
18, 5 253-263 (1975).

3. Honeywell Information Systems, Inc. Inaked Sequential Promsor, DA37, August 1973.
4. D. Lefkovitz, File Structuresjbr On-Line $ysterns, Spartan Books, New Jersey, 1969.
5. M.E. Senko, V. Lum, and P. Owens, A file organization evaluation model (FOREM), Proc.

IFIP 1968, CleC23.
6. T.J. Teorey and K.S. Das, Detailed .Qecij%ations for the File De&n Ana&zer, SEL Tech.

Report No. 87, Department of Electrical and Computer Engineering, The University of
Michigan, July 1975.

7. S.B. Yao, Es&at&m and ~ti~~~i~ of file o~~~io~ through ma&tic moeWing, ph. D.
Thesis, The University of Michigan, 1974.

8. S.B. Yao and A.G. Merten, Selection of file organization using an analytic model, hoc.
Intemational Conference on Vev Large Data Bases, Framingham, Mass., Sept. 22-24, 1975,
pp. 255-267.

9. S.B. Yao, K.S. Das, and T.J. Teorey, A dynamic reorganization algorithm, ACM Trun$.
Database @stems 1, 2 159-174 (1976).

Receitmi Janwy, 1977

