
DYNAMIC PROGRAMMING FOR COMPUTER
REGISTER ALLOCATION

WILLIAW w. AGRESTI~’

University of Michigan-~arborn Campus. Dearborn, Michigan 48128. U.S.A.

Scope and pur~s~computers and operations research admit to a rich and complex interface. Most
examples of problem solving in this domain use both computers and operations research as tools to solve
problems[I. 21. In particular, the computer is used as a tool in implementing a solution technique arising

from an operations research model. A different aspect of this interface is explored here: operations

research methodology is used as an analytical tool for a computer problem. With their widespread use,
computers themselves comprise an application area of vital concern. Operations research approaches can
be valuable in this regard, as evidenced by queueing models of computer operating systems]31 and

mathematical programming models of information systems[4]. In the present work. dynamic programming
is used to solve a problem in the optimization of computer programs. Programs written in a high-level
language (like FORTRAN) are translated into machine language by a compiler. The general problem is to

make this machine language version efficient (i.e.. execute fast and conserve memory). A specific problem

of this type-namely. index register allocation-is formulated in this paper. The solution is a dynamic
programming-based procedure which could be included in the compiler to generate more efficient programs.

Abstrsct-A procedure for optima1 index register allocation in loops is described. The procedure is a result

of the dynamic programming formulation of the index register allocation problem for other than straight-
line code. An example involving a simple loop is solved.

I. INTRODUCTION

The impact of the computer is undeniable; and part of the effect is due to the availability of
high-level languages. The rapid symbol-processing ability of the computer would be less often
tapped if the only access to it were the direct manipulation of a machine’s instruction set.
Better suited to problem definition, FORTRAN and COBOL and the others facilitate the
diverse applications which characterize the broad influence of computers. There is a price to
pay for such flexibility: programs written in these languages must be translated to become
machine-sensible. Compilers are the software which effect this translation into machine
language.

Even with the earliest compilers, the concern was not merely to accomplish the translation,
but to translate eficiently. Attention has been focused on describing an optimization phase for
the compilation process. The use of the word “optimization” owes more to history than to
accuracy. By compiler optimization is meant that transformations are introduced during
compilation which change one version of a user’s program into an equivalent version which
executes faster or consumes less memory. Such transformations have been called “op-
timizations” but there is usually no attempt to prove that the transformed program is “best”
with respect to some cost function. (Indeed, there are serious theoretical hindrances to such a
proof.) A more accurate term would be “lode-improving transformation” which allows that the
machine language program (code) has been improved but not optimized.

From the construction of the first FORTRAN compiler until the present, register allocation
has offered one of the best opportunities for program optimization by the compiler. The general
issue in register allocation is to describe rules by which a compiler will use a machine’s
available registers in the best possible manner. When several program statements are scanned,
the compiler can note what values are required in each of the calculations. This pattern of usage
suggests a plan for keeping certain values in high-speed registers over a span of several

fWilliam W. Agresti graduated from Case Institute of Technology with a B.S. in Management Science. He received a
M.S. in Industrial Engineering and a Ph.D. from New York University. Dr. Agresti is Assistant Professor of Industrial and
Systems Engineering and Director of the Computer and Information Science Program at the University of Michigan-
Dearborn. His research interests are in the area of computer software and simulatjon.

101

102 WILLIAM W. ACRESTI

statements. In this way, the program will run faster because the required quantities will not
have to be fetched from memory. Of course, there are only a limited number of registers; so the
problem becomes one of devising a schedule for loading these values into registers-ideally, a
schedule which permits the fastest possible execution of the program. The problem has been
widely studied in several versions depending on such factors as the scope of the allocation
(over a few statements or an entire program), the existence of common subexpressions, and
practical considerations of implementation on a particular machine.

Registers which are used for indexing are the special concern here. Indexing is a valuable
programming technique for operating on data which is arranged in storage in some systematic
way. As an example, suppose that we wish to calculate the sum of the contents of 100
consecutive memory locations, beginning at location K. Our computer has instructions with the
format,

OPER REG,ADDR

where “OPER” is the operation; “REG” is the register which holds one operand (and which
will hold the result); and “ADDR” is the address of the second operand. We can accumulate the
sum in register 1 with the sequence,

LOAD 1, K
ADD l,K+l
ADD 1, K+2

ADD 1, K+99

A computer which provides indexing offers a less tedious alternative. With indexing, the
effective address of the second operand is calculated as ADDR plus the contents of the
specified index register. Indexing is indicated by enclosing the index register in parentheses:

OPER REG,ADDR(INDEX REG)

If register 2 were used for indexing, we can add one to its contents each time through a loop,
thereby adding one to the effective address of the operand. Calculating the sum by indexing
would now be accomplished by:

LOAD 1 ,ZERO
LOAD 2,ZER0

LOOP ADD l,K(2)
ADD 2,0NE
if not through
loop 100 times,
then go to LOOP /

where “ZERO” and “ONE” are two locations which contain the numbers zero and one,
respectively.

As even this simple example shows, indexing is an efficient technique. It can help reduce the
running time of the machine language programs produced by compilers. The allocation problem
for index registers has been studied by Horwitz et al. [5] and by Luccio [6]. In [5], a procedure is
given for specifying which quantities should occupy index registers at each point in a program
so that the number of memory references (from LOAD and STORE operations) is minimized.
The programs which were examined in [5] and [6] involved only linear flow of control-i.e. no
branches or loops. More recent work by Kennedy[7] improved the procedure and suggested
extensions to programs containing simple loops.

The major departure here is to consider programs which possess nonlinear flow of
control-the loops and branches which more realistically characterize computer programs. A
new methodology, dynamic programming, is introduced to find solutions.

Dynamic programming for computer register allocation 103

2. THE INDEX REGISTER ALLOCATION PROBLEM

We are interested in those computers which provide some number of index registers. Two
types of ~structions are of interest. One type refers to the contents of an index register; the
last section had an example,

ADD l&(2)

The second type of instruction ~~~i~es the contents of the index register, e.g.,

ADD 2.ONE

Where there are more indices than registers, the problem is to specify what indices should
occupy index registers at each step in the program.

Because our only concern is with the references to indices in a program, we use “program”
to mean a sequence of such references. Where the index has been modified, an asterisk is
placed next to it. A program, assuming one reference per step, might look like the following:

This program tells us that index x, is referenced at step 1, index x3 is referenced and modified at
step 2, and so on. If we denote by P(i) the index referenced at the ith step, then P(1) = xl,
P(2) = x3,. . . , P(8) = x2.

We assume that the machine has i% index registers; and we define a register configuration
Qi to be an unordered set of A$ indices which occupy the index registers at step i in the
pro~am. An allocation A for an n-step program P is a sequence of configurations,

A = (Q,, Qa... , Q.).

Every legai allocation for P requires that the index called for at step i in the program must be
in a register at that step. In our notation,

P(i)EQi l~icn.

The problem then is this: when there are more indices than index registers, what procedure
will provide an allocation which satisfies the condition above and minimizes costs? Costs will
be determined in the same way as earlier workf5,71; and we begin by assigning a memory
location to each index. Because some indices may be modified at steps in the program, we can
identify an index in a register as being in one of two states. An index is passive if the value of
the index in the index register is the same as the value in memory. If the value of the index in a
register has been modified since the index was last loaded from memory, the index is active.
For an active index, the value in the index register is different from the value in memory. If we
decide to remove an active index from a register, we must store its current value in its memory
location. To remove a passive index, no “store” operation is necessary because the two values
agree.

If we assign a cost of one unit to a load or a store operation, we can easily list all of the possible
elementary costs:

(a) Replace an active index. Cost = 2 (store the value of the active index and load the new
index).

(b) Replace a passive index. Cost = 1 (load the new index).
(c) Change an index from active to passive. Cost = 1 (store the value of the active index).
(d) Change an index from passive to active. Cost = 0 (no memory references required).
If a “+” is appended to an active index, then XT is an active index and xj is a passive index.
The cost c(Q,, QZ) of changing from configuration Q, to configuration QZ involves simply

identifying occurrences of each of the four cases above. For example, to change from
QI = {x1+, x2, x3+, x4} to Qz = {x1, xZc, .x5+, x6}, we change x1+ to xl (cost = 11, change x2 to xz+

I@4 WILLIAM W. AGRESTI

(cost = 0), replace x3+ (cost = 2), and replace x4 (cost = 1). In this example, c(Q,, QJ. the total
cost of changing from Q, to Q2, is 4.

The cost of an allocation A is simply the sum of the costs of the successive changes of
configurations:

cost (A) = $, c(Qi-1, Qit

where Q. is some initial configuration.
While the number of legal configurations at each step is finite, it may be impractically large.

A result of Norwitz et al. 1.51 allows us to restrict the number of configurations we must evaluate
and still be certain that we will find the optimal allocation from this reduced collection. The
restriction involves considering only those configurations at step i which can be reached from a
configuration at step i - 1 by a minimal change. If Qi-, is a configuration at step i - 1, the
configurations which can be reached from Qi-, by minimal change are the following:

(1) A configuration Qj which is identical to Qi-,.
(2) A con~guration Qi which differs from Qiel only in that P(i) is passive in Qi-, and active

in Qi.
(3) All configurations Qi which differ from Qi-, only in that P(i), which is not in Qi-,,

appears in Qi replacing one of the indices in Qi-,.
To find the optimal allocation we will use the minimal change definition above, beginning

with some initial register ~on~guration QO. To Q. we assign a weight of zero. Using the minimal
change rule, we generate configurations at step i, associating a weight and a parent pointer to
each configuration. The parent pointer for configuration Qi, p(Qi), points to the configuration at
step i - 1 from which Qi was reached by minimal change. The weight of a configuration Qi is

The weight of a configuration is defined in the context of straight-line code. When the flow of
control involves branches and loops, this definition will require modification.

To further reduce the number of configurations, a cleansing rule[5,71 can be applied: if Qi’
and Qi’ are two con~gurations associated with step i such that

w(Qi’) + c(Qi', Qi') 5 w(Qi*)

then eliminate Qi’. As soon as the minimum change configurations have been generated and the
weights assigned, this cleansing rule can be tried. The effect of removing a configuration Qi’ is
that we need not use it as a basis for generating states at the next step i + 1.

3. THEDYNAMIC PROGRAMMING MODEL

The index register allocation problem will now be recast as a dynamic programming problem.
The interest at this point is on the motivation for such a model and the adequacy of dynamic
programming as a methodology. The characteristics of an archetype dynamic program will be
presented briefly, followed by the corresponding element in the index register allocation
problem.

Our first observation is that the problem is divisible into stages, which are the steps in the
program. There is a policy decision at each state: replacing an index or changing the state of an
index. Further, there are a number of states associated with each stage-the states being the
legal register confi~rations at each step. Because there are two problem statements, we will be
using two names to describe the same thing: step in the program and stage in the process; and
likewise, configuration and state. A feature of dynamic programming models is that the policy
decision at each stage transforms the current state into a state associated with the next stage.
The decision in the register allocation problem accomplishes this transformation, with the
“association with a stage” provided by the requirement that P(i) E Qi, 1 5 i 5 n. The Markov
property that an optimal policy for the remaining stages must depend only on the current state

Dynamic programming for computer register allocation 105

is satisfied because only the current configuration can affect remaining allocations. Finally, a
recursive relationship w(Qi) is available to identify the optimal policy.

In the definition of w(Qi), the weight of a configuration, the minimization over p(Qi)
represents decision inversion [8] and arises from the following situation. Even with the minimal
change principle, there are often severa ways of generating the same configuration. For
example, on a machine with two index registers, suppose that three legal configurations were
x,x2, x,x3, and x,x+ each with a weight of 5. At the next step, P(i) = x5 so that x3+ must be
present now in every configuration, By minimal changes, the configuration x1x3+ can be reached
by each of the three configurations above. But the weight associated with X,X,+ is 5 because

w(xIx3+) = min (w(xIx2) + c(x1x2, .x1X3*), w(X&) + c(x~X3, XIX;+),
W(XIX4) + C(X,XJ, x1x3+)]

= min {S + 1,s + 0,s + I}

= 5.

A condition for the use of dynamic programming is the decomposition of the cost function.
In index register allocation, the cost is simply the number of memory references needed to
change configurations. Such an additive cost function is separable and monotonic, which are
sufficient conditions for decomposition [9].

The reason for using dynamic programming is that it provides a united methodology for
handling the index register allocation problem in programs with nonserial flow of control. To
represent such programs, we use control flow graphs. A flow graph is a triple G = (N, E, no)
where

(i) N is a finite set of nodes
(ii) EC N x N is a finite set of edges

(iii) no6!! N is the initial node.
The nodes in G represent basic blocks; that is, sequences of instructions which are executed in
order. The edges represent possible transfers of control from one block to another. The control
flow graph of a simple loop appears in Fig. 1.

Fig. 1. Control flow graph of a simple loop.

For a program with n steps, the simple loop structure of Fig. 2 suggests the dynamic
programming treatment of the problem. In Fig. 2, the squares represent the stages (or program
steps). The state variables Qi capture the essential information and describe the input and
output at each stage. Stages j through k comprise the loop: these program steps are executed
n >O times.

Solving the index register allocation problem for a simple loop involves first expressing the
correct recursion equations for each step:

1. Stages 1 to j- 1,

w(Ql)=~~(c(pfQi)tQi>+w(p(Qi))} i=Z,...,j-I

2. Stages j to k - 1

w(Q)7 Qk) = plft) {c(Pi..I(Qj), (QI) + c(Qk> Qj) f w(Pj .I(QI))}
J ,

w(Qi,Q~)=~~~{c(p(Qi),Qi)+w(p(Qi),Qk)} i=j+l,...,k-1

106 WILLIAM W. AGRESTI

Fig. 2. Steps in a simple loop program as stages in a dynamic programming model.

3. Stage k

WC@) = z&l {c(P(@), Qk) + w(P(@), @)I

4. Stages k t 1, . . . , n

W(Q) = ;I {c(p(Qi), Qi) + w(p(Qi))} i = k + 1,. . . , n.

When the two branches converge at step j, the set of parents p(Qj) contains configurations
associated with step j - 1 or k. We will denote by pi-I(Qj) those parents associated with step
j - 1. This notation appears in the recursion equations at stage j.

Given an initial configuration Qo, we will consider each stage in turn from 1 to n. At stage i
we use the appropriate recursion equation above to find the minimum weight as a function of all
output stages Qi. At the last stage n, we identify the output state Qn with the minimum weight
and use the parent pointers to identify the other configurations Qn-,, Qn-*, . . . , Q, which make
up the optimal allocation.

A special problem arises when loops are considered. When the backlatch arc is taken, it is
not sufficient that the desired quantities are merely in registers; they must be in the same
registers as they were at the start of the loop. For this matching problem, we make the
following assumption, used by other investigators[7, p. 621. We assume that the register
assignments are made identical by using register-to-register moves. Such instructions are much
cheaper than loads and stores on many machines. They are not represented in our cost function
which counts only memory references.

The effect of the loop on the solution process is to increase the dimensionality of the
optimization problem for states j through k. For those states, instead of expressing the
minimum weight in terms of the output state Qi alone, we must express the minimum weight as
a function of two states Qi and Qk. The reason for this change is that the configuration Qk
affects the decision at stage j. As a consequence, Qk must remain as a variable throughout the
loop portion, stages j through k. Of course, the possible configurations ok ordinarily would not
be known earlier in the program at stages j, j t 1,. . . , k - 1. But because the states Qk must be
available earlier, we must effectively unroll the loop once and use as configurations Qk those
states which are associated with the second occurrence of step k. In summary, we will follow
the procedure below for the simple loop. (Those configurations reached by minimum change are
called minimum change states.)

Solution procedure
(a) Generate minimum change states Q,
(b) Obtain w(Q,)

Dynamic programming for computer register allocation

(c) For stages 2 through j - 1.
(i) Generate minimum change states

(ii) Apply cleansing rule
(iii) Obtain ~(8)

(d) By unrolling the loop once, generate minimum change states for stages j through k
(e) For stages j through k - 1, obtain @Q,. 8)
if) Obtain u$Qlf
(g) For stages k t 1 through n,

(i) Generate minimum change states
(ii) Apply cleansing rule

(iii) Obtain Mu.

Steo /

2

3

8

9

IO

Fig. 3. Simple loop example.

4. A SIMPLE LOOP EXAMPLE

The simple loop in Fig. 3 involves five indices on a two-register machine. We follow the
solution procedure above, operating on the first three stages of the process. The results are
summarized below.

step Program States Weight Parent

For example, at step 3 in the program the index x., is referenced. Two minimum change
states are feasible--Q3’ = x1+xX and Q1’ 2 x2+x1, each with a weight of 4 and parent state Q2’.

Having completed the initial straight-line part of the graph in Fig. 3, we unroll the loop once
to obtain the minimum change states for stages in the loop (see Table 1). Now, for stages 4, 5,
and 6, we obtain the weight w(Q;, Q,). The increased dimensionality of the problem for stages
in the loop requires maintaining an array of values w(Q+ Q7) instead of a simple list. (It should
be noted that the use of a sequential search procedure along with the recursion analysis may
reduce these storage requirements[9, p. 1971.)

C.A OR, ““i. d, No :-_c

108 WILLIAM W. AGRESTI

Table 1. Minimal change states for stages in loop

Step Program Minimum Change States

X5

First 5” x2
iteration 6 XI

7 xa

X,+X5 X2+X5 X3X%

X2X5 X2X, X2+XS X,+X2

XIX2 x,x2+ X,X? x,+x2 XIX5
*

XIX4
*

x2x4 X*+X4+ x,x*
+

X,+X** X4+X‘

4 X5 x1+x5 x2+x5 x3x3 XIX5 X2X5 x*-x<
Second 5 x2 x2x5 x2x1 x2+.% X,+X2 XIX2 x*x4+

iteration 6 XI XIX2
+

XIX2 XIX3 x,+x2 XIX3
4.

XIX.4
1 Xf XIX,

* c
x2x.4 x2+x4. x3x4

+
X,+X4+ x4+x5

Table 2. Recursion analysis at stage 4

Q,’
XIX4

+ Q:+ Q? Q,* Q; Q,
x2x4 x*+x5 x*‘xe’ x3x4+ X$+X4+

Ql' =xjxr. 8 9 8 10 9 9
Q.,‘= ~2x5 9 8 8 9 9 10
Q4’ = ~2~x5 8 7 1 7 8 9
Qd*=xxx5 9 9 8 10 8 10
QeJ =x4+x5 8 8 7 9 8 9
Q.,‘=x,*xT 7 8 7 9 8 7

Values of w(Q+ Q7)

To illustrate the use of the recursive equations, consider the entry in the upper left-hand
corner of Table 2, w(Qq’, Q,‘) = 8. This value arises from the following calculation:

W(Qsg, Q,‘) = min (c(Q3’, Qe') + c(Q7'+ Q4’)+ w(Q3')t
c(Q:, Q.+') + c(Q,', Q4') + w(Q3')l

=min{2+2+4,3+2+4)

= 8.

The parent state is Q3’. The analysis continues in like manner to stages 5 and 6, so that an
array of values w(Qa, Q,) is obtained.

It is only at this point that we are able finally to resolve the matter of dealing with that
critical backlatch arc that defines the loop. Until now we have had to retain an extra decision
variable Q, in all of our calculations. At stage 7, the effect of various states Q, on the loop can
be assessed. A summary of the analysis at stage 7 appears in Table 3, along with the results for
the remaining stages (which constitute a straightforward linear program segment).

Table 3. Results of recursion analysis for stages 7-10

Step Program States Weight Parent

1 Xf Q,' =x,x4+ 10 Qn’ =x,x2
Q,2 = x*x4+ 10 Q6’ =x,x*
Q,’ = x4+x% IO Qb2 =x,x,
Q,’ = x2’-x4+ 9 Qn’= X,X>+
Q,$ = x1x4+ 11 Qe4 = x,x?
Q,6 = X,+X.,’ 9 Qe6=x,*x2

Cleansing rule eliminates Q’, Q2, QT5
8 XZ Qa’ = x2+x4- 9

Qa’=x~‘x~ 11 ;:

QR’ =x,+x** I1 QT6

Cleansing rule eliminates Q:, Qa’
9 X3 Qy’ = XI-X> 11 QB’

Qg’ = ~2x4’ II Q;
10 XT Q:o = x2*x5’ 12 QP’

Q:o = ~2x7~ 13 Q9’
Q:o = x4+x<+ 12 QPZ

Dynamic programming for computer register allocation 109

To extract the solution, we examine the states associated with the final stage and identify
the state with the lowest weight, Both Qt, and Q?. have a weight of 12. To complete this
example, we will trace back from Qio to find one of the sofutions. We use the parent pointers
from Table 3 for stages 7-10. The recursion analysis with parent pointers was not presented
completely for stages in the loop. However, when these results are included and the earlier
summary of stages 1-3 is used, we arrive at the solution in Fig. 4. Recall that the “weight = 12”
specified the total number of load and store operations that would be required to perform the
aIlo~atjon. But more must be said about the interpre~tion of the solution in light of the number
of iterations through the loop.

step i

2

3

8

9

to

Fig. 4. An optimal solution to the simple loop example. Total cost = 12.

By the way in which the recursion equations operate, the solution corresponds to two
iterations through the loop. That is, equal value is given to all arcs of the control graph. The
cost of changing coufiguratjons from step 3 to 4 is included once; and the cost of changing
~on~gurat~ons from step 7 to step 4 is included once. In the absence of any jnformat~on about
the frequency with which various paths in the program are followed, it may be reasonable to
assume that each arc is equally likely to be traversed. But when the arcs, instead of being
simple diverging branches, form loops in the program, those arcs typically would be followed
more than once. Accordingly, the cost of changing configurations from step 7 to step 4 would be
incurred more than once, as would configuration changes during other steps in the loop.

A benefit of the dynamic programming formulation is that any frequency flow information
can be easily included in the analysis. If it were estimated that there would be M iterations of
the simple loop, then the coefficient m would be introduced into the recursion equations for the
toop stages j through k:

WfQi, @) = min (C(pj .I(Q~), Qi)+ (m - 1) * C(Qk, Qj) + W(Pi ,CQj))} I’) ,tQ,)

110 WILLIAM W. AGRESTI

Such a modification would preserve the meaning of the weight function as a count of the
total number of load and store operations required to accomplish the allocation. Further, it
would clarify the effects of packing registers with quantities over busy portions of a program.

5. CONCLUSION

The problem of optimal index register allocation in a pro~am with a simple loop was solved
by a dynamic programming model. The formulation offers a uniform method of treating index
register allocation in nonserial programs. The model conveniently accepts frequency flow data
and may be useful in more general register allocation problems, especially in clarifying the
packing of registers in nested loops.

A larger implication in this work is a possible bridge between dynamic programming and the
operation of an optimizing compiler. The input to the compiler is a source program written in a
high-level language. The compiler operates on this input, successively changing it through
intermediate forms into a final machine language version. It is appealing to view such a
progression as a staged decision process. Add to this the goal of generating an “optimal”
machine language program and the entire compilation process suggests a dynamic programming
formulation. Such speculation remains to be explored.

REFERENCES

1. J. H. Engel, The philosophical underpinnings of computers and operations research, Comput. Ops. Res. 1, 3 (1974).
2. A. Mjosund, The synergy of operations research and computers, Ops. Res. 20, 1057 (1972).
3. L. KJeinrock, Queueing Systems Vol. II, Computer App~ic~t~on~. John Wiley, New York (1976).
4. J. R. Nun~aker, Jr., A meth~ology for the design and optimi~tion of information processing systems, Proc. Spring

Jo& Computer Con!., pp. 283-294. AFIPS Press, Montvale, N.J. (197f).
5. L. P. Horwitz. R. M. Karp, R. E. Miller and S. Winograd, Index register allocation, J. Assoc. Comput. Much. 13, 43

(1966).
6. F. Luccio, A comment on index register allocation, Comm. Assoc. Comput. Mach. 10, 572 (1%7).
7. K. Kennedy, Index register allocation in straight line code and simple loops, Design and Optimization of Compilers, R.

Rustin (ed.), pp, 51-63. Prentice-Hall, Englewood Cliffs, N.J. (1972).
8. R. Aris, G. L. Nemhauser and D. J. Wilde, ~timi~tion of multistage cyclic and branching systems by serial

procedures, Am. Inst. Chem. Eng. L 10, 913 (1964).
9. G. L. Nemhauser, Introduction to Dynamic Programming. John Wiley, New York (1966).

