
DYNAMIC PROGRAMMING FOR COMPUTER 
REGISTER ALLOCATION 

WILLIAW w. AGRESTI~’ 

University of Michigan-~arborn Campus. Dearborn, Michigan 48128. U.S.A. 

Scope and pur~s~computers and operations research admit to a rich and complex interface. Most 
examples of problem solving in this domain use both computers and operations research as tools to solve 
problems[I. 21. In particular, the computer is used as a tool in implementing a solution technique arising 

from an operations research model. A different aspect of this interface is explored here: operations 

research methodology is used as an analytical tool for a computer problem. With their widespread use, 
computers themselves comprise an application area of vital concern. Operations research approaches can 
be valuable in this regard, as evidenced by queueing models of computer operating systems]31 and 

mathematical programming models of information systems[4]. In the present work. dynamic programming 
is used to solve a problem in the optimization of computer programs. Programs written in a high-level 
language (like FORTRAN) are translated into machine language by a compiler. The general problem is to 

make this machine language version efficient (i.e.. execute fast and conserve memory). A specific problem 

of this type-namely. index register allocation-is formulated in this paper. The solution is a dynamic 
programming-based procedure which could be included in the compiler to generate more efficient programs. 

Abstrsct-A procedure for optima1 index register allocation in loops is described. The procedure is a result 

of the dynamic programming formulation of the index register allocation problem for other than straight- 
line code. An example involving a simple loop is solved. 

I. INTRODUCTION 

The impact of the computer is undeniable; and part of the effect is due to the availability of 
high-level languages. The rapid symbol-processing ability of the computer would be less often 
tapped if the only access to it were the direct manipulation of a machine’s instruction set. 
Better suited to problem definition, FORTRAN and COBOL and the others facilitate the 
diverse applications which characterize the broad influence of computers. There is a price to 
pay for such flexibility: programs written in these languages must be translated to become 
machine-sensible. Compilers are the software which effect this translation into machine 
language. 

Even with the earliest compilers, the concern was not merely to accomplish the translation, 
but to translate eficiently. Attention has been focused on describing an optimization phase for 
the compilation process. The use of the word “optimization” owes more to history than to 
accuracy. By compiler optimization is meant that transformations are introduced during 
compilation which change one version of a user’s program into an equivalent version which 
executes faster or consumes less memory. Such transformations have been called “op- 
timizations” but there is usually no attempt to prove that the transformed program is “best” 
with respect to some cost function. (Indeed, there are serious theoretical hindrances to such a 
proof.) A more accurate term would be “lode-improving transformation” which allows that the 
machine language program (code) has been improved but not optimized. 

From the construction of the first FORTRAN compiler until the present, register allocation 
has offered one of the best opportunities for program optimization by the compiler. The general 
issue in register allocation is to describe rules by which a compiler will use a machine’s 
available registers in the best possible manner. When several program statements are scanned, 
the compiler can note what values are required in each of the calculations. This pattern of usage 
suggests a plan for keeping certain values in high-speed registers over a span of several 
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statements. In this way, the program will run faster because the required quantities will not 
have to be fetched from memory. Of course, there are only a limited number of registers; so the 
problem becomes one of devising a schedule for loading these values into registers-ideally, a 
schedule which permits the fastest possible execution of the program. The problem has been 
widely studied in several versions depending on such factors as the scope of the allocation 
(over a few statements or an entire program), the existence of common subexpressions, and 
practical considerations of implementation on a particular machine. 

Registers which are used for indexing are the special concern here. Indexing is a valuable 
programming technique for operating on data which is arranged in storage in some systematic 
way. As an example, suppose that we wish to calculate the sum of the contents of 100 
consecutive memory locations, beginning at location K. Our computer has instructions with the 
format, 

OPER REG,ADDR 

where “OPER” is the operation; “REG” is the register which holds one operand (and which 
will hold the result); and “ADDR” is the address of the second operand. We can accumulate the 
sum in register 1 with the sequence, 

LOAD 1, K 
ADD l,K+l 
ADD 1, K+2 

ADD 1, K+99 

A computer which provides indexing offers a less tedious alternative. With indexing, the 
effective address of the second operand is calculated as ADDR plus the contents of the 
specified index register. Indexing is indicated by enclosing the index register in parentheses: 

OPER REG,ADDR(INDEX REG) 

If register 2 were used for indexing, we can add one to its contents each time through a loop, 
thereby adding one to the effective address of the operand. Calculating the sum by indexing 
would now be accomplished by: 

LOAD 1 ,ZERO 
LOAD 2,ZER0 

LOOP ADD l,K(2) 
ADD 2,0NE 
if not through 
loop 100 times, 
then go to LOOP / 

where “ZERO” and “ONE” are two locations which contain the numbers zero and one, 
respectively. 

As even this simple example shows, indexing is an efficient technique. It can help reduce the 
running time of the machine language programs produced by compilers. The allocation problem 
for index registers has been studied by Horwitz et al. [5] and by Luccio [6]. In [5], a procedure is 
given for specifying which quantities should occupy index registers at each point in a program 
so that the number of memory references (from LOAD and STORE operations) is minimized. 
The programs which were examined in [5] and [6] involved only linear flow of control-i.e. no 
branches or loops. More recent work by Kennedy[7] improved the procedure and suggested 
extensions to programs containing simple loops. 

The major departure here is to consider programs which possess nonlinear flow of 
control-the loops and branches which more realistically characterize computer programs. A 
new methodology, dynamic programming, is introduced to find solutions. 
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2. THE INDEX REGISTER ALLOCATION PROBLEM 

We are interested in those computers which provide some number of index registers. Two 
types of ~structions are of interest. One type refers to the contents of an index register; the 
last section had an example, 

ADD l&(2) 

The second type of instruction ~~~i~es the contents of the index register, e.g., 

ADD 2.ONE 

Where there are more indices than registers, the problem is to specify what indices should 
occupy index registers at each step in the program. 

Because our only concern is with the references to indices in a program, we use “program” 
to mean a sequence of such references. Where the index has been modified, an asterisk is 
placed next to it. A program, assuming one reference per step, might look like the following: 

This program tells us that index x, is referenced at step 1, index x3 is referenced and modified at 
step 2, and so on. If we denote by P(i) the index referenced at the ith step, then P(1) = xl, 
P(2) = x3,. . . , P(8) = x2. 

We assume that the machine has i% index registers; and we define a register configuration 
Qi to be an unordered set of A$ indices which occupy the index registers at step i in the 
pro~am. An allocation A for an n-step program P is a sequence of configurations, 

A = (Q,, Qa... , Q.). 

Every legai allocation for P requires that the index called for at step i in the program must be 
in a register at that step. In our notation, 

P(i)EQi l~icn. 

The problem then is this: when there are more indices than index registers, what procedure 
will provide an allocation which satisfies the condition above and minimizes costs? Costs will 
be determined in the same way as earlier workf5,71; and we begin by assigning a memory 
location to each index. Because some indices may be modified at steps in the program, we can 
identify an index in a register as being in one of two states. An index is passive if the value of 
the index in the index register is the same as the value in memory. If the value of the index in a 
register has been modified since the index was last loaded from memory, the index is active. 
For an active index, the value in the index register is different from the value in memory. If we 
decide to remove an active index from a register, we must store its current value in its memory 
location. To remove a passive index, no “store” operation is necessary because the two values 
agree. 

If we assign a cost of one unit to a load or a store operation, we can easily list all of the possible 
elementary costs: 

(a) Replace an active index. Cost = 2 (store the value of the active index and load the new 
index). 

(b) Replace a passive index. Cost = 1 (load the new index). 
(c) Change an index from active to passive. Cost = 1 (store the value of the active index). 
(d) Change an index from passive to active. Cost = 0 (no memory references required). 
If a “+” is appended to an active index, then XT is an active index and xj is a passive index. 
The cost c(Q,, QZ) of changing from configuration Q, to configuration QZ involves simply 

identifying occurrences of each of the four cases above. For example, to change from 
QI = {x1+, x2, x3+, x4} to Qz = {x1, xZc, .x5+, x6}, we change x1+ to xl (cost = 11, change x2 to xz+ 
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(cost = 0), replace x3+ (cost = 2), and replace x4 (cost = 1). In this example, c(Q,, QJ. the total 
cost of changing from Q, to Q2, is 4. 

The cost of an allocation A is simply the sum of the costs of the successive changes of 
configurations: 

cost (A) = $, c(Qi-1, Qit 

where Q. is some initial configuration. 
While the number of legal configurations at each step is finite, it may be impractically large. 

A result of Norwitz et al. 1.51 allows us to restrict the number of configurations we must evaluate 
and still be certain that we will find the optimal allocation from this reduced collection. The 
restriction involves considering only those configurations at step i which can be reached from a 
configuration at step i - 1 by a minimal change. If Qi-, is a configuration at step i - 1, the 
configurations which can be reached from Qi-, by minimal change are the following: 

(1) A configuration Qj which is identical to Qi-,. 
(2) A con~guration Qi which differs from Qiel only in that P(i) is passive in Qi-, and active 

in Qi. 
(3) All configurations Qi which differ from Qi-, only in that P(i), which is not in Qi-,, 

appears in Qi replacing one of the indices in Qi-,. 
To find the optimal allocation we will use the minimal change definition above, beginning 

with some initial register ~on~guration QO. To Q. we assign a weight of zero. Using the minimal 
change rule, we generate configurations at step i, associating a weight and a parent pointer to 
each configuration. The parent pointer for configuration Qi, p(Qi), points to the configuration at 
step i - 1 from which Qi was reached by minimal change. The weight of a configuration Qi is 

The weight of a configuration is defined in the context of straight-line code. When the flow of 
control involves branches and loops, this definition will require modification. 

To further reduce the number of configurations, a cleansing rule[5,71 can be applied: if Qi’ 
and Qi’ are two con~gurations associated with step i such that 

w(Qi’) + c(Qi', Qi') 5 w(Qi*) 

then eliminate Qi’. As soon as the minimum change configurations have been generated and the 
weights assigned, this cleansing rule can be tried. The effect of removing a configuration Qi’ is 
that we need not use it as a basis for generating states at the next step i + 1. 

3. THEDYNAMIC PROGRAMMING MODEL 

The index register allocation problem will now be recast as a dynamic programming problem. 
The interest at this point is on the motivation for such a model and the adequacy of dynamic 
programming as a methodology. The characteristics of an archetype dynamic program will be 
presented briefly, followed by the corresponding element in the index register allocation 
problem. 

Our first observation is that the problem is divisible into stages, which are the steps in the 
program. There is a policy decision at each state: replacing an index or changing the state of an 
index. Further, there are a number of states associated with each stage-the states being the 
legal register confi~rations at each step. Because there are two problem statements, we will be 
using two names to describe the same thing: step in the program and stage in the process; and 
likewise, configuration and state. A feature of dynamic programming models is that the policy 
decision at each stage transforms the current state into a state associated with the next stage. 
The decision in the register allocation problem accomplishes this transformation, with the 
“association with a stage” provided by the requirement that P(i) E Qi, 1 5 i 5 n. The Markov 
property that an optimal policy for the remaining stages must depend only on the current state 
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is satisfied because only the current configuration can affect remaining allocations. Finally, a 
recursive relationship w(Qi) is available to identify the optimal policy. 

In the definition of w(Qi), the weight of a configuration, the minimization over p(Qi) 
represents decision inversion [8] and arises from the following situation. Even with the minimal 
change principle, there are often severa ways of generating the same configuration. For 
example, on a machine with two index registers, suppose that three legal configurations were 
x,x2, x,x3, and x,x+ each with a weight of 5. At the next step, P(i) = x5 so that x3+ must be 
present now in every configuration, By minimal changes, the configuration x1x3+ can be reached 
by each of the three configurations above. But the weight associated with X,X,+ is 5 because 

w(xIx3+) = min (w(xIx2) + c(x1x2, .x1X3*), w(X&) + c(x~X3, XIX;+), 
W(XIX4) + C(X,XJ, x1x3+)] 

= min {S + 1,s + 0,s + I} 

= 5. 

A condition for the use of dynamic programming is the decomposition of the cost function. 
In index register allocation, the cost is simply the number of memory references needed to 
change configurations. Such an additive cost function is separable and monotonic, which are 
sufficient conditions for decomposition [9]. 

The reason for using dynamic programming is that it provides a united methodology for 
handling the index register allocation problem in programs with nonserial flow of control. To 
represent such programs, we use control flow graphs. A flow graph is a triple G = (N, E, no) 
where 

(i) N is a finite set of nodes 
(ii) EC N x N is a finite set of edges 

(iii) no6!! N is the initial node. 
The nodes in G represent basic blocks; that is, sequences of instructions which are executed in 
order. The edges represent possible transfers of control from one block to another. The control 
flow graph of a simple loop appears in Fig. 1. 

Fig. 1. Control flow graph of a simple loop. 

For a program with n steps, the simple loop structure of Fig. 2 suggests the dynamic 
programming treatment of the problem. In Fig. 2, the squares represent the stages (or program 
steps). The state variables Qi capture the essential information and describe the input and 
output at each stage. Stages j through k comprise the loop: these program steps are executed 
n >O times. 

Solving the index register allocation problem for a simple loop involves first expressing the 
correct recursion equations for each step: 

1. Stages 1 to j- 1, 

w(Ql)=~~(c(pfQi)tQi>+w(p(Qi))} i=Z,...,j-I 

2. Stages j to k - 1 

w(Q)7 Qk) = plft) {c(Pi..I(Qj), (QI) + c(Qk> Qj) f w(Pj .I(QI))} 
J , 

w(Qi,Q~)=~~~{c(p(Qi),Qi)+w(p(Qi),Qk)} i=j+l,...,k-1 
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Fig. 2. Steps in a simple loop program as stages in a dynamic programming model. 

3. Stage k 

WC@) = z&l {c(P(@), Qk) + w(P(@), @)I 

4. Stages k t 1, . . . , n 

W(Q) = ;I {c(p(Qi), Qi) + w(p(Qi))} i = k + 1,. . . , n. 

When the two branches converge at step j, the set of parents p(Qj) contains configurations 
associated with step j - 1 or k. We will denote by pi-I(Qj) those parents associated with step 
j - 1. This notation appears in the recursion equations at stage j. 

Given an initial configuration Qo, we will consider each stage in turn from 1 to n. At stage i 
we use the appropriate recursion equation above to find the minimum weight as a function of all 
output stages Qi. At the last stage n, we identify the output state Qn with the minimum weight 
and use the parent pointers to identify the other configurations Qn-,, Qn-*, . . . , Q, which make 
up the optimal allocation. 

A special problem arises when loops are considered. When the backlatch arc is taken, it is 
not sufficient that the desired quantities are merely in registers; they must be in the same 
registers as they were at the start of the loop. For this matching problem, we make the 
following assumption, used by other investigators[7, p. 621. We assume that the register 
assignments are made identical by using register-to-register moves. Such instructions are much 
cheaper than loads and stores on many machines. They are not represented in our cost function 
which counts only memory references. 

The effect of the loop on the solution process is to increase the dimensionality of the 
optimization problem for states j through k. For those states, instead of expressing the 
minimum weight in terms of the output state Qi alone, we must express the minimum weight as 
a function of two states Qi and Qk. The reason for this change is that the configuration Qk 
affects the decision at stage j. As a consequence, Qk must remain as a variable throughout the 
loop portion, stages j through k. Of course, the possible configurations ok ordinarily would not 
be known earlier in the program at stages j, j t 1,. . . , k - 1. But because the states Qk must be 
available earlier, we must effectively unroll the loop once and use as configurations Qk those 
states which are associated with the second occurrence of step k. In summary, we will follow 
the procedure below for the simple loop. (Those configurations reached by minimum change are 
called minimum change states.) 

Solution procedure 
(a) Generate minimum change states Q, 
(b) Obtain w(Q,) 
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(c) For stages 2 through j - 1. 
(i) Generate minimum change states 

(ii) Apply cleansing rule 
(iii) Obtain ~(8) 

(d) By unrolling the loop once, generate minimum change states for stages j through k 
(e) For stages j through k - 1, obtain @Q,. 8) 
if) Obtain u$Qlf 
(g) For stages k t 1 through n, 

(i) Generate minimum change states 
(ii) Apply cleansing rule 

(iii) Obtain Mu. 

Steo / 

2 

3 

8 

9 

IO 

Fig. 3. Simple loop example. 

4. A SIMPLE LOOP EXAMPLE 

The simple loop in Fig. 3 involves five indices on a two-register machine. We follow the 
solution procedure above, operating on the first three stages of the process. The results are 
summarized below. 

step Program States Weight Parent 

For example, at step 3 in the program the index x., is referenced. Two minimum change 
states are feasible--Q3’ = x1+xX and Q1’ 2 x2+x1, each with a weight of 4 and parent state Q2’. 

Having completed the initial straight-line part of the graph in Fig. 3, we unroll the loop once 
to obtain the minimum change states for stages in the loop (see Table 1). Now, for stages 4, 5, 
and 6, we obtain the weight w(Q;, Q,). The increased dimensionality of the problem for stages 
in the loop requires maintaining an array of values w(Q+ Q7) instead of a simple list. (It should 
be noted that the use of a sequential search procedure along with the recursion analysis may 
reduce these storage requirements[9, p. 1971.) 

C.A OR, ““i. d, No :-_c 
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Table 1. Minimal change states for stages in loop 

Step Program Minimum Change States 

X5 

First 5” x2 
iteration 6 XI 

7 xa 

X,+X5 X2+X5 X3X% 

X2X5 X2X, X2+XS X,+X2 

XIX2 x,x2+ X,X? x,+x2 XIX5 
* 

XIX4 
* 

x2x4 X*+X4+ x,x* 
+ 

X,+X** X4+X‘ 

4 X5 x1+x5 x2+x5 x3x3 XIX5 X2X5 x*-x< 
Second 5 x2 x2x5 x2x1 x2+.% X,+X2 XIX2 x*x4+ 

iteration 6 XI XIX2 
+ 

XIX2 XIX3 x,+x2 XIX3 
4. 

XIX.4 
1 Xf XIX, 

* c 
x2x.4 x2+x4. x3x4 

+ 
X,+X4+ x4+x5 

Table 2. Recursion analysis at stage 4 

Q,’ 
XIX4 

+ Q:+ Q? Q,* Q; Q, 
x2x4 x*+x5 x*‘xe’ x3x4+ X$+X4+ 

Ql' =xjxr. 8 9 8 10 9 9 
Q.,‘= ~2x5 9 8 8 9 9 10 
Q4’ = ~2~x5 8 7 1 7 8 9 
Qd*=xxx5 9 9 8 10 8 10 
QeJ =x4+x5 8 8 7 9 8 9 
Q.,‘=x,*xT 7 8 7 9 8 7 

Values of w(Q+ Q7) 

To illustrate the use of the recursive equations, consider the entry in the upper left-hand 
corner of Table 2, w(Qq’, Q,‘) = 8. This value arises from the following calculation: 

W(Qsg, Q,‘) = min (c(Q3’, Qe') + c(Q7'+ Q4’)+ w(Q3')t 
c(Q:, Q.+') + c(Q,', Q4') + w(Q3')l 

=min{2+2+4,3+2+4) 

= 8. 

The parent state is Q3’. The analysis continues in like manner to stages 5 and 6, so that an 
array of values w(Qa, Q,) is obtained. 

It is only at this point that we are able finally to resolve the matter of dealing with that 
critical backlatch arc that defines the loop. Until now we have had to retain an extra decision 
variable Q, in all of our calculations. At stage 7, the effect of various states Q, on the loop can 
be assessed. A summary of the analysis at stage 7 appears in Table 3, along with the results for 
the remaining stages (which constitute a straightforward linear program segment). 

Table 3. Results of recursion analysis for stages 7-10 

Step Program States Weight Parent 

1 Xf Q,' =x,x4+ 10 Qn’ =x,x2 
Q,2 = x*x4+ 10 Q6’ =x,x* 
Q,’ = x4+x% IO Qb2 =x,x, 
Q,’ = x2’-x4+ 9 Qn’= X,X>+ 
Q,$ = x1x4+ 11 Qe4 = x,x? 
Q,6 = X,+X.,’ 9 Qe6=x,*x2 

Cleansing rule eliminates Q’, Q2, QT5 
8 XZ Qa’ = x2+x4- 9 

Qa’=x~‘x~ 11 ;: 

QR’ =x,+x** I1 QT6 

Cleansing rule eliminates Q:, Qa’ 
9 X3 Qy’ = XI-X> 11 QB’ 

Qg’ = ~2x4’ II Q; 
10 XT Q:o = x2*x5’ 12 QP’ 

Q:o = ~2x7~ 13 Q9’ 
Q:o = x4+x<+ 12 QPZ 



Dynamic programming for computer register allocation 109 

To extract the solution, we examine the states associated with the final stage and identify 
the state with the lowest weight, Both Qt, and Q?. have a weight of 12. To complete this 
example, we will trace back from Qio to find one of the sofutions. We use the parent pointers 
from Table 3 for stages 7-10. The recursion analysis with parent pointers was not presented 
completely for stages in the loop. However, when these results are included and the earlier 
summary of stages 1-3 is used, we arrive at the solution in Fig. 4. Recall that the “weight = 12” 
specified the total number of load and store operations that would be required to perform the 
aIlo~atjon. But more must be said about the interpre~tion of the solution in light of the number 
of iterations through the loop. 

step i 

2 

3 

8 

9 

to 

Fig. 4. An optimal solution to the simple loop example. Total cost = 12. 

By the way in which the recursion equations operate, the solution corresponds to two 
iterations through the loop. That is, equal value is given to all arcs of the control graph. The 
cost of changing coufiguratjons from step 3 to 4 is included once; and the cost of changing 
~on~gurat~ons from step 7 to step 4 is included once. In the absence of any jnformat~on about 
the frequency with which various paths in the program are followed, it may be reasonable to 
assume that each arc is equally likely to be traversed. But when the arcs, instead of being 
simple diverging branches, form loops in the program, those arcs typically would be followed 
more than once. Accordingly, the cost of changing configurations from step 7 to step 4 would be 
incurred more than once, as would configuration changes during other steps in the loop. 

A benefit of the dynamic programming formulation is that any frequency flow information 
can be easily included in the analysis. If it were estimated that there would be M iterations of 
the simple loop, then the coefficient m would be introduced into the recursion equations for the 
toop stages j through k: 

WfQi, @) = min (C(pj .I(Q~), Qi)+ (m - 1) * C(Qk, Qj) + W(Pi ,CQj))} I’) ,tQ,) 
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Such a modification would preserve the meaning of the weight function as a count of the 
total number of load and store operations required to accomplish the allocation. Further, it 
would clarify the effects of packing registers with quantities over busy portions of a program. 

5. CONCLUSION 

The problem of optimal index register allocation in a pro~am with a simple loop was solved 
by a dynamic programming model. The formulation offers a uniform method of treating index 
register allocation in nonserial programs. The model conveniently accepts frequency flow data 
and may be useful in more general register allocation problems, especially in clarifying the 
packing of registers in nested loops. 

A larger implication in this work is a possible bridge between dynamic programming and the 
operation of an optimizing compiler. The input to the compiler is a source program written in a 
high-level language. The compiler operates on this input, successively changing it through 
intermediate forms into a final machine language version. It is appealing to view such a 
progression as a staged decision process. Add to this the goal of generating an “optimal” 
machine language program and the entire compilation process suggests a dynamic programming 
formulation. Such speculation remains to be explored. 
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