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I. INTRODUCTION 

The immense respect in which the biological profession holds D’Arcy W. 
Thompson’s On Growth and Form is not explicable by the usual norms of 
scientific seminality. It is not that this work has founded a discipline, or 
solved long-standing puzzles crucial to progress elsewhere. Nor did 
Thompson’s methodology change the face of a field. The direction of 
mathematical biology in this century has been away from the geometry he 
espoused, toward formal models from differential equations and informa- 
tion theory. If today there is such a thing as a “science of form” [17], its 
foundations derive from work half a century later than Thompson’s. The 
sturdy popularity of this book resides rather in its own unique method, a 
quite non-Darwinian search for geometric simplicity which is classical in its 
mathematics, eclectic in its natural history, and perfect and elegant in its 
prose. Subsequent complication and refinement of the explanations does 
not affect our delight in the simple clarity of Thompson’s models. 

The most original theme of this whole work, and the most admired, has 
left the fewest scientific offspring. This is the chapter “On the Comparison 
of Related Forms” introducing the almost unprecedented method of trans- 
formations and their visualization by Cartesian grids. Of all such grids ever 

MA THEMA TICA L BIOSCIENCES 34, 177-2 19 ( 1977) 177 

0 Elsevier North-Holland, Inc., 1977 



178 FRED L. BOOKSTEIN 

published, the majority, I believe, are still of Thompson’s own penning, 
reprinted innumerable times. His is the only fundamental investigation of 
the problem, ubiquitous throughout the biological and medical sciences, of 
analyzing change of form. An author whose work touches on this theme will 
ordinarily quote a sentence or two of Thompson’s text, express his despair 
of quantifying the diagrams, and then turn in the course of actual data 
analysis to simpler, inadequate models of less geometric insight but greater 
arithmetic tractability. Not for Thompson these compromises with 
“findings”! -his concern was pure method. There is a greatness of scope 
about his original construction which invariably compels respect. Successive 

generations of methodologists, trying to alter the method or extend it 
slightly, have never built on each other’s work, but only on Thompson’s 
own, after the manner of conservatory students reconstructing Mozart’s 
Requiem. There has sometimes been greater reward in a less ambitious task, 
the chipping off of small bits of the technique congruent with the comput- 
ing technology of the time, as for allometry in the 1930s multivariate 
morphometrics today. But all authors following so on Thompson’s chapter 
acknowledge that they have not matched his scope or elegance, have not 
grasped even as well as he the puzzle of relating mathematics to change of 
form. Today Thompson’s method of transformations faces an audience 
itself transformed in numbers, financial resources, and computing power; 
but the method remains as intractable as it seemed in 1917, and just as 
“promising, ” intriguing, and frustrating. 

In this essay I shall summarize Thompson’s own exposition and the few 
efforts to apply it directly to the analysis of biological shape change. I shall 
then review certain recurrent compromises, more or less successful, in- 
tended to bridge the divergence between the purity of the method and the 
causal and statistical complexity of real data. In the final section I shall 
present some recent work of my own which attempts, as others have done, 
to quantify the original intent, without compromise. 

II. THE AUTHENTIC METHOD 

THOMPSON’S 0 WN WORK 

D’Arcy Thompson’s method is this: to represent a change of one shape 
into another by the single mathematical object which is the map of one 
shape onto the other, and then to visualize this mathematical object. 

The preceding chapters of his essay had explored the applications of 
mathematical insight and geometrical models to various empirical forms 
and manifestations; the subject of shape change, to which Thompson now 
turns, is just another abstractable aspect of form. The virtue of mathematics 
is, after all, “to eliminate and to discard; to keep the type in mind and leave 
the single case, with all its accidents, alone. . . .[The] deformation of a 
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complicated figure may be a phenomenon easy of comprehension, though 

the figure itself have to be left unanalyzed and undefined. This process of 
comparison, of recognizing in one form a definite permutation or dejorma- 
tion of another, apart altogether from a precise and adequate understanding 
of the original ‘type’ or standard of comparison, lies within the immediate 
province of mathematics. . . ” [55, p. 2711. His intention here, strictly 
methodological, has two thrusts. The first is to continue his search for the 
basis of form in force. “[The transformed representation] once demon- 
strated, it will be a comparatively easy task (in all probability) to postulate 
the direction and magnitude of the force capable of effecting the required 

transformation” [55, p. 2721. This goal is now considered quite archaic, as 
causation is now universally considered to work through natural selection at 
the level of ontogeny [ 18, p. 271f.l. But the other thrust is still cogent. 
Thompson sets two conditions: “that the form of the entire structure under 
investigation should be found to vary in a more or less uniform manner, 
after the fashion of an approximately homogeneous and isotropic body.. . , 
and that our structure vary in its entirety, or at least that ‘independent 
variants’ should be relatively few” [55, p. 2741. These postulates accord with 
his belief that correlation of characters is the rule, that constituent parts of 
an organism never can evolve quite independently. From this he draws a 
sweeping conclusion: 

When the morphologist compares one animal with another, point by point or character 

by character, these are too often the mere outcome of artificial dissection and analysis. 

Rather is the living body one integral and indivisible whole, in which we cannot find, 

when we come to look for it, any strict dividing line even between the head and the body, 

the muscle and the tendon, the sinew and the bone. Characters which we have differenti- 

ated insist on integrating themselves again; and aspects of the organism are seen to be 

conjoined which only our mental analysis had put asunder. The co-ordinate diagram 

throws into relief the integral solidarity of the organism, and enables us to see how simple 

a certain kind of correlation is which had been apt to seem a subtle and a complex thing. 

But if, on the other hand, diverse and dissimilar fishes can be referred as a whole to 

identical functions of very different co-ordinate systems, this fact will of itself constitute a 

proof that variation has proceeded on definite and orderly lines, that a comprehensive 

‘law of growth’ has pervaded the whole structure in its integrity, and that some more or 

less simple and recognisable system of forces has been in control. It will not only show 

how real and deep-seated is the phenomenon of ‘correlation,’ in regard to form, but it will 

also demonstrate the fact that a correlation which had seemed too complex for analysis or 

comprehension is, in many cases, capable of very simple graphical expression [55, pp. 

275-276). 

Abandoning, then, his search for physical causation, in view of the 
complexity of the situation, Thompson sets out on a “floating mathematics 
for morphology, unanchored for the time being to physical science, but 
capable of valid generalisation on its own level” [23, p. 5791. He contents 
himself with a large variety of examples drawn from all over the two living 
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kingdoms. Of these, that analysis linking Diodon and Orthagoriscus (= 

Mohz) is probably the most famous of all. His analysis is quite instructive. (I 
have changed his figure numbers to correspond to mine.) 

Figure [l(a)] is a common, typical Diodon or porcupine-fish, and in Figure [l(b)] I have 

deformed its vertical co-ordinates into a system of concentric circles, and its horizontal 

co-ordinates into a system of curves which, approximately and provisionally, are made to 

resemble a system of hyperbolas. The old outline, transferred in its integrity to the new 

network, appears as a manifest representation of the closely allied, but very different 

looking, sunfish, Orthugoriscus mob. This is a particularly instructive case of deformation 

or transformation. It is true that, in a mathematical sense, it is not a perfectly satisfactory 

or perfectly regular deformation, for the system is no longer isogonal; but nevertheless, it 

is symmetrical to the eye, and obviously approaches to an isogonal system under certain 

conditions of friction or constraint. And as such it accounts, by one single integral 

transformation, for all the apparently separate and distinct external differences between 

the two fishes. It leaves the parts near to the origin of the system, the whole region of the 

head, the opercular orifice and the pectoral fin, practically unchanged in form, size and 

position; and it shows a greater and greater apparent modification of size and form as we 

pass from the origin towards the periphery of the system. 

In a word, it is sufficient to account for the new and striking contour in all its essential 

details, of rounded body, exaggerated dorsal and ventral fins, and truncated tail [55, pp. 

3063011. 

e 

FIG. 1. Cartesian transformation from Diodon to Orrhagoriscus (= Mola). From [55, 

p. 3011. 
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A close reading of his own diagrams unearths several inconsistencies. 

The throat of Molu is the mirror-image of the area dorsal to the eye, but not 
so for Diodon; yet the grid is symmetrical, and hence has not accounted for 
this clear dorsoventral difference. The divergence of the outermost horizon- 
tal grid lines of Mola beginning at the far left, why does the divergence of 
the axes b, c begin only behind the pectoral fin? The caudal margin of the 
anal fin has shifted between diagrams from axis b to half way between axis 
b and axis a, so that the vertical expansion of the axes rightward in Mola is 
insufficient to match the data. Should we reverse the roles of the two 

genera, so that Mola supported the rectilinear grid, what then would be the 
reading of the transformation? Would it still be made of conic sections, 
circles and hyperbolas? Thompson left no notes on the detailed construc- 
tion of these drawings, so we cannot tell how he settled upon the axes that 
actually appear. 

A subsidiary theme emerges warily in the course of Thompson’s survey 
which has proved of most enduring interest among later students of the 
method. This is the diagrammatic sequencing of transforms and its cognate 
in paleontology, the search for intermediates. The most successful example 
is the very regular succession of deformations in the phylogeny of Equus, in 
which a form he declared dubious, Parahippus, is now considered not, after 
all, to belong. Thompson’s interpolation is by drawing fractional parts of 
grid intersection displacements between figures. It is very simple, and takes 
no account of possible regional variation in evolutionary rate, but in this 
case it works beautifully. More famous than this is the less successful 
demonstration that the distortion from human to baboon differs “only in an 
increased intensity or degree of deformation” from the distortion from 
human to chimpanzee. His figures are assembled in my Fig. 2. “In both 
dimensions, as we pass from above downwards and from behind forwards, 
the corresponding areas of the network are seen to increase in a graduate 
and approximate logarithmic order in the lower as compared with the 
higher type of skull; and, in short, it becomes at once manifest that the 
modifications of jaws, brain-case, and the regions between are all portions 
of one continuous and integral process” [55, pp. 319-3201. It is unfortunate 
that Thompson inexplicably began with a “human skull” of a braincase 
impossibly large; in addition there are errors of drawing similar to those for 
the Diodon example, for instance the wandering of the gonial angle relative 
to the lower end of coordinate line 4. Thompson hoped to fill in this series 
too with intermediates, but the necessary fossil material was unearthed only 
after he ceased work. Without saying quite what he means by a “direct line 
of deformation,” he concedes that neither of the apes lies “~~reci.se.$” in the 
sequence of the other’s hypothetical connection with man. 

It seems that Thompson’s postulate of homogeneity took precedence 
over his draftsmanship in most of these examples, and it is not surprising 
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that grids published after him, with the exception of Needham’s (Fig. 5 
below), are invariably less legible. 

LATER EXAMPLES 

It is fair to say that, after Thompson’s original publication, the method 
we are discussing underwent “vicissitudes” rather than “development.” It 
has mainly been the last theme, interrelating the grid method with tech- 
niques of ordination, that accounts for most of the true grids computed by 

persons other than Thompson. A good review of this literature to the early 
1950s may be found in [42]. No new examples at all appeared until the 
1930s perhaps owing to Thompson’s failure to provide instructions. Col- 
bert, in 1935, displayed a “Cartesian coordinate chart to illustrate the 
manner in which the skull of Rhinoceros might have evolved through 
Guindutherium from a primitive form such as Cuenopus. . ..This is essen- 
tially the method used so widely by D’Arcy Thompson, but here it is 
applied in a more detailed manner than was done by that author” [lo]. The 
drawings are excellent, but the accompanying text runs only ten lines. 
Colbert seems to have come to no useful conclusions at all for his pains. 

A major difficulty for Thompson in his drawings was the location of grid 
lines traversing large regions without landmarks, such as the cranial vaults 
in Fig. 2. A clever solution to this problem was put forward by Avery [l] in 
1933. He inked a square grid on a small tobacco leaf and photographed it 
over its subsequent development. There resulted an empirical sequence of 
true Thompson transformations, from which he extracted directly the areas 
of the little grid quadrilaterals and turned the whole into an analysis of 
area1 growth gradients after the fashion of Huxley. 

Much more thoroughgoing in its use of geometry is a subsequent 
reanalysis of these data by Richards and Kavanagh, [43]. The leaf images, 
the points followed individually throughout the growth, are exact enough to 
support a differentiation everywhere. From the derivative one may ascertain 
just what growth there is in any direction, and the authors present the 
directions of maximum and minimum growth by little crossed axes, of 
length proportional to the directional growth rate, scattered over the leaf 
figures. It is not clear to me how these were computed, as the derivatives 
postulated by their model need to be estimated with delicacy whenever the 
current system is not Cartesian, which is to say, at all times after the instant 
of the tattooing. Tobler [55, Fig. 21 has recomputed these axes, still using 
Avery’s original data, and shows unsystematic errors in Richards and 
Kavanagh’s computations scattered throughout the images. 

Criticism of the arithmetic should not obscure the advance those authors 
were explicitly attempting toward a tractable transformation theory. They 
consider their method a combination of the Cartesian transform with the 
method of growth gradients to provide both numerical and geometric 
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FIG. 2. Cartesian transformation from “human skull” to chimpanzee and to baboon. 
From 155, pp. 318-3191. 

insight into observed processes. Their conclusion, in particular, is quite 

Thompsonian in spirit: 

It seems reasonable to expect that the pattern of specific growth-rates should be 
explicable in terms of the characteristics of the growing material at the various points in 

the organism. . In the example of the tobacco leaf, there was a tendency for the direction 

of maximum rate to coincide with the direction of the vascular bundles. It may be 
worthwhile, in future investigations, to see how closely the directions of these maximum 

and minimum rates can be related to recognizable structural characteristics of the 

organisms. 

In cases in which the directions of the extreme rates prove to be tied in this manner to 

definite structures within the organism, the problem of describing the growth transforma- 

tion becomes somewhat more definite. At any instant the directions of extreme rates 

determine throughout the organism three families of surfaces such that any member of 

one family intersects any member of the other families at right angles. (The simplest 

example of such a system of surfaces is, of course, the set of planes determining a 

rectangular coordinate system. In the case of growth in a plane, the directions of extreme 
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growth-rate determine two mutually orthogonal sets of curves.) As the growth continues, 

these surfaces, though transformed, will still remain at right angles to each other [43, pp. 

228-2291. 

There were never any “future investigations,” and these facts had to be 
rediscovered by me in the course of my own researches (see Sec. IV). The 
geometry of this analysis has been imitated only once, and then only with 
the abandonment of the original impetus, the dependent variable having 
been converted from a shape change to a field of scalar growth rates. 
Erickson [15], demonstrating a computerized version of the calculations, 
neither makes any use of the directions of growth (only of its directionality, 
a scalar) nor cites Thompson in his references. 

Other studies, unable to deal with descriptions of single grids in extenso, 
have explored the ordination parameter in Thompson’s seriation scheme. 
Kummer [28] attempted a consistent reconstruction of the hominid line 
from Proconsul through modern man, then fitted many intermediate fossils 
to fractional positions along this transformation. The brilliance of the 
drawing is tempered somewhat by the goodness of fit to Piltdown Man and 
by his evident disdain for the possibility of regionally varying rates of 
hominization. He nowhere explains how he estimates the serial position of 
particular forms, nor why the distances all happen to be integral multiples 
of one-eighth. Lull and Gray [29], also using Thompson’s device for inter- 
polation linearized upon the boundary, find the coordinate method too 
sophisticated for the available data (which, for ceratopsians, are quite 
widely spaced). Their extrapolations buckle the plane, growth gradients 
become apparent too soon, and the transforms of ontogeny are not related 
to those of phylogeny in any comprehensible way. They conclude that 
nothing new about ceratopsian phylogeny can be discovered by this 
method, which ought not to replace the traditional system of “comparing 
single pairs of measurements.” Yet they conclude, oddly, that the fault is in 
the data, not in the method: the Thompsonian grid is too attractive to be 
rejected. 

Several studies have attempted to resolve the perplexities of the grid 
method by the application of some other statistical technique. In 1967 P. H. 
A. Sneath [51] published a method which, though called “trend surface 
analysis of transformation grids, ” is in fact a somewhat different product 
for the analysis of displacement trend-surface grids. Sneath’s interest is not 
in the geometric features of the grids themselves, but only in the “factors 
underlying the deformation” and particularly in the gross differences in 
general shape. His purpose is taxonomic, not biotheoretic: he wishes 
taxonomists not to be fooled by repetitious correlated expansions that could 
be characterized by a few coefficients of a function. He borrows from 
geology the notion of a trend surface, which summarizes scalar data 
distributed over a map. Operating from an arbitrary sample of correspond- 
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FIG. 3. Cartesian transformation from scapula of Papio to scapula of Gorilla, with 
indication of “crania-lateral twist.” From [40, Fig. 351. Copyright 1973 by the University 
of Chicago. 

ing points in pairs of images optimally superimposed, he fits separate trends 
for the two Cartesian displacements, vertical and horizontal, of the points in 
one diagram relative to their mates in another. He then simply partitions the 
trends into polynomial components and compares coefficients from fit to 
fit, for his intent is not, after all, the mapping of shape change. In spite of its 
basis in spatial data, this technique has no specific geometric or biological 
content. Components of the trend (i.e., quadratic, cubic,..., terms) link 
together discrepant curves and bends throughout the observed image, in 
disregard of biological structure. All local phenomena are smoothed out; in 
particular, there is no way of estimating growth rates in the various parts of 
the image. We are unable to return from the statistical manipulations to the 
original direct transforms of shape. 

C. E. Oxnard [40, pp. 62-661 curiously reverses this tactic. He uses 
transformation grids to summarize some canonical axes produced by a 
conventional multivariate analysis. Having extracted three main factors 
discriminating primates by their scapulae, he selects three pairs of scapulae 

which differ only on a single score-first, second, or third. He draws the 
resulting transformations and looks for stresses which correspond to vari- 
ables heavily loading on the factors. One grid is a “crania-lateral twist,” as 
in Fig. 3; another is a “mediolateral compression,” and the third a “cranio- 
lateral stretching.” Since factor scores are interval measures, it would be 
very fine if these categories of deformation were also. Can we ask how much 

crania-lateral twist is in the transformation shown, and can we verify that 
reversing the direction of the transformation gives us the inverse amount of 
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depicted twist? It would be very exciting if the transforms added or 
multiplied somehow to account for comparison of scapulae differing on all 
the scores. But as published, the words correspond to no formal properties 
and do not suggest any possibilities for measurement. 

DIFFICULTIES 

Thus the vicissitudes of the explicit method of transformation grids since 
its inception. Those who have attempted to make of the technique a tool for 
analysis or understanding commensurate with the elegance of its illustra- 
tions have often superimposed some arithmetic field over the original design 
for the engridment. Under this rubric I would include the elemental growth 
rates of those who studied Avery’s leaf, and also the Cartesian displace- 
ments of Sneath. The others, those who did not add quantity to Thompson’s 
original diagrammatic scheme, generally have failed to gain any geometric 
insight either, however carefully drawn their diagrams. I include Thompson 
himself in this latter category. In all his analyses, he rests with the possibil- 
ity of a single system of forces-not a very well-defined analytical category. 
His goal was not to measure: he was content to exemplify the geometry 
logically prior to any measure. 

The problem here is fundamental. It seems impossible to extract quantity 
from the Cartesian grid, as Thompson formulated it, in any straightforward 
way. Even after a decade during which the brightest graduate students all 
have had access to computing power adequate for large multivariate data 
sets, there is no hint in the literature of a line of attack upon quantification 
once one has painstakingly drawn out the Cartesian grid. Sokal and Sneath 
[52, pp. 82-831 argue from two quite well-drawn examples of intentionally 
incomprehensible accurate diagrams that the problem is one of feature 
enumeration. For any “realistic” grid fitting the data more closely than 
Thompson’s (which is not a difficult accomplishment), various ebbs and 
flows of the lines become apparent; it is clear that more than one source of 
curvilinearity is at work, and these probably betoken a multiplicity of 
sources of variation. We have no visual facility to count these elementary 
“fields” or sense how they could be separated and measured. In the effort to 
talk about what is there we open our mouths and become speechless. There 
are stretches in certain slowly varying directions, and certain subtle changes 
of angle overall, and a constant shifting in the relative spacing of grid lines 
in both directions. The visual complexity of these grids is frustrating and 
indescribable, like distortions in an unflat mirror whose shape we cannot 
comprehend. Figure 4 exemplifies all these difficulties. 

This is what Medawar meant when he called the method of transforma- 
tions “analytically unwieldy” [31, p. 2311: that the transformations cannot 
be analyzed, broken into parts. It is very well to declare that a single shape 
change is all of a piece, but if families of them have to be analyzed, then we 
need some means of deciding when a whole collection is likewise all of a 
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FIG. 4. Example of a realistically drawn Cartesian transformation. From (52, Fig. 
5-21. W. H. Freeman and Company. Copyright 0 1963. 

piece. To do this we need to count the pieces of pattern. When the data are 
as complex as for Lull and Gray’s ceratopsians, the methods which succeed 
elegantly for the equids fail utterly. Where are we to turn? 

The compromises I will review in the next section all determine in 
advance of the analysis certain distances or separations from whose statisti- 
cal manipulation a grasp of structure is expected to emerge. It seems to me 
that no such method can be general, can be validly applied to more than a 
handful of data sets. I will argue cases as I explain them, only to conclude 
that we have to start over. 

III. COMPROMISES 

ANALYSIS OF GROWTH GRADIENTS 

In a great many samples of related shapes, pairs of distance separations 
(as other types of variables as well) obey an equation of the form y = bxk, 
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the dometric equation, which is to say that they fall on a straight line in 
log-log plots. Such behavior will obtain whenever the intrinsic growth rates 

(dx/dt)/x,(dy/dt)/y of the two separations are in constant ratio. In the 
special case in which one of the variates is general body size (measured by 
overall length), we are studying the change of proportions with size. Gould 
[ 161 would have this be the definition of allometry, irrespective of constancy 
of coefficients; but it is better for a discussion of Thompson to hew to 
Huxley’s original definition (elaborated in [24]) in terms of numerically 
constant or slowly changing differential growth ratios among diverse parts 
and dimensions. 

When a large number of short segments throughout a collection of 
organisms show constancy of pairwise relative growth rates during develop- 
ment, Huxley would have us speak of “the general distribution of growth 
potential,” or growth gradients, which are the various coefficients k, growth 
rates with respect to some standard rate, distributed spatially over the 
organism. When these ratios are not quite constant, but vary smoothly with 
position and biological age, we may still compute the gradient field as it 
varies over successive growth periods. 

In his original publication, Huxley interpreted his method as a quantita- 
tive refinement of Thompson’s original scheme. Referring to the Diodon 

transform, Fig. 1, he writes: 

If, as D’Arcy Thompson points out, the transformation, so difficult to understand at 

first sight, becomes readily comprehensible on the idea of an orderly change in the 

distribution of growth-activity along the axis of the body, then clearly the proportions of 

the animal must be continually changing so long as it is increasing in absolute size, or at 

least over a long space of time. But the fish’s outline and the system of co-ordinates drawn 

to fit it represent the state of affairs only at one particular moment of its life-history. If the 

fish had grown to twice the bulk, its proportions would have changed, and the co-ordinate 

grid would have to be altered; yet the underlying growth-gradient might have remained 

wholly unaltered. 

For this reason, the co-ordinate method, while of the utmost importance as affording a 

graphic and immediate proof of the need for postulating regularities in the distribution of 

growth throughout the body, is of little use for detailed analysis, because by its nature it 

neglects the fundamental attribute of differential growth, namely the change of relative 

proportions with absolute size: it is static instead of dynamic, and substitutes the short 

cut of a geometrical solution for the more complex realities actually underlying biological 

transformation [24, pp. 105-106j. 

Apparently Huxley never noticed what emerges from four decades’ hind- 
sight: the method of gradients requires that the directions in which the 
gradient is likely to go be specified in advance-a “geometrical” input. The 
reason for this is essentially algebraic. Huxley knew that if separate parts of 
a limb manifest a nontrivial growth gradient, then the whole length is 
necessarily in exact allometric relation with none of its parts. He did not 
notice a simpler, geometric difficulty. It growth proceeds allometrically with 
different coefficients in two different directions from the same point, then 
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even though the total area is growing allometrically, displacements in 

arbitrary directions are not. A rectangle growing as xm along one side and ___ 
as x” along the other will have a diagonal growing as vx2m + x2” , which is 
not in allometric relationship with either side. I have already discussed the 
modification of this system by Richards and Kavanagh to account for 
directionality; the result is still expressed in terms of scalar fields-rate of 
increase in area, anisotropy-not leading to any major advance in the 
praxis of data analysis. 

In practice, then, the method of growth gradients has been applied only 
when the axes along which gradients are to be measured are constant and 
fixed in advance. In the commonest instance, there is only one dimension of 
extent to be had, so that the gradient is necessarily a function of one real 
variable, a particularly simple sort. A locus classicus of this style is the work 

on segmental lengths of arthropod limbs [24, 36, 37, 541. Medawar [30] 
simplified the algebraic treatment of these unidimensional gradients by 
introducing an explicit function for the relative position of any landmark as 
a function of age. (Yates [60] showed by a reanalysis that Medawar’s data, 
human vertical proportions, do not support the verbal interpretation he 
placed upon them; but this is not the fault of the formal innovation.) For 
systems without persevering landmarks, such as growing plant tissues, the 
necessary mathematics is more complex: the age of the specific tissue must 
be entered as an additional variable. Salamon, List, and Grenetz [47] 
exemplify this more sophisticated analysis for the “streak photograph,” a 
data-collection device which represents differentials explicitly by divergence 
of neighboring streaks. 

In systems of more than one intrinsic spatial dimension, there are two 
methodological possibilities. In the study of accretionary growth, growth 
localized at a growing edge, it is common to measure separation along axes 
which vary with the developmental stage of the organism in some natural 
fashion. Moss and Salentijn [35], believing the growth of the human 
mandible to be of this form, measure distances along a certain logarithmic 
spiral which includes three mandibular foramina. Raup [41] models the 
snail shell by a basic plane section simultaneously rotating about an axis, 
moving along that axis, and increasing in scale. Shiells [50] measures a 
growing shell along its circumference. 

A second possibility is the provenance of a specialized multidirectional 
coordinate system with symmetry properties. Needham [38] used the prin- 
cipal body axis and the abdominal segmental boundaries normal to it to 
derive a true two-dimensional growth gradient for the crab Pinnotheres 

pisum. Figure 5 summarizes his quantification in a remarkable Cartesian 
transformation grid much clearer than a contoured plot of directional k’s 

could be. Such an analysis should not be confused with similar analyses of 
two-dimensional gradient fields in one direction only, as in Needham [39, 
Fig. 4.61, or of one-dimensional gradient fields followed over successive 
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FIG. 5. Cartesian coordinate transformations between the adult female (A) and the 

adult male (B) of Pinnotherespisum. Each grid is the trace of a grid squared upon the orher 
form. The transformation is from a near-triangle to a near-circle. From [38, Fig. 51. 

Reproduced by permission of the Royal Society. 

stages, as in Needham [36], Blackith, Davies, and Moy [2], or Brown and 
Davies [7]. It is very difficult to combine gradients and grid in the same 
diagram. The illustrations of Ambystoma larvae in Richards and Riley [44], 
for instance, manifest far too many straight lines to suggest any Thompso- 
nian homogeneity of deformation. 

Akin to symmetry in space is constancy over time: systems in a “steady 
state” of growth. For instance, there is a considerable botanical literature on 
the subject of shoot and root meristems, centers of morphogenetic pattern- 
ing which lie in invariant spatial relation to the steadily differentiating mass 
of tissue produced in their past. Schtiepp [48] places upon sections of 
meristems coordinate curves which are trajectories, relative to the growth 
center, of particular cells as the continued growth of the meristem pushes it 
away from them. In the resulting diagrams, any two regions each bounded 
by a crosscut of those trajectories at points of constant age are true 
Thompson transforms of each other, for they correspond point for point 
inside. In such stable growth patterns, time is an ignorable coordinate. Any 
future snapshot is identical to the present snapshot with the points sys- 
tematically relabeled. Certain spacings along those trajectories in any sec- 
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tion then correspond to specific local growth rates across sections. A broad 
geometric theory of meristematic activity making extensive use of this 
particular sort of symmetry may be found in [49]. 

Both these extensions of gradient analysis evade Thompson’s demand 
that the dependent variable should be form itself. A method appropriate for 
the study of segment series cannot be modified to analyze vertebrates: the 
higher class has no natural segment boundaries along which to align the 
vector separations to be measured. These boundaries are perpendicular to a 
growth gradient along a principal body axis, but in general shape changes 
there is no such axis (away from the midline) for correlating directions at 
finite distance. Distances measured today along a straightedge will corre- 
spond to arcs more or less curved tomorrow [55, p. 3201, but the proponents 
of growth-gradient analysis do not instruct us in which arcs to use. Some- 
how the features of form-the bulges and bends, convexities and concavi- 
ties and protuberances-are lost in the reduction to quantity. This will not 
do: there is not enough geometry left. 

SIMULATIONS 

Under this head I choose to list three analyses unknown to each other 
which I find to share a common spirit closer to Thompson’s, Each one 
investigates growth rates in the small throughout an organ, and then 
discusses the extent to which the separate local changes cohere in the global 
change of form actually observed. Always the data are not capable of 
explicitly supporting the leap to larger patterns, creating a logical gap which 
is bridged by mathematical assumptions that simulate the final change of 
form. 

P. B. Green [20] studies the patterns of surface growth which might 
account for a particular observed invariance of shape in three dimensions. 
His subject is the apical tip of Nitella, which maintains its shape-a 
hemisphere surmounting a cylinder-as it incorporates new plasm and 
grows upward. It is a stubborn mathematical fact that the preservation of 
shape does not determine a unique local growth-rate field. Anisotropy is 
optional; it need merely be properly coordinated with the change of 
directional gradients over a curving surface. For radially symmetric systems 
such as the Nitella tip, alternative growth models can all be expressed as 
functions of meridional distance from the apex. Different functions corre- 
spond to quite different local mechanisms, for while isotropic growth 
suggests scalar morphogenetic fields, anisotropic growth requires a histo- 
logical asymmetry grounded in some cytoplasmic texture. A certain 
mathematical elegance is associated with this analysis, as form invariance 
leads to a differential equation directly governing the rate function. The 
calculus is developed further by da Riva Ricci and Kendrick [46]. To settle 
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the question of isotropy Green proceeded to measure actual rates of 
increase of separation between points marked with microspheres on the 
growing hemispherical surface. He finds, in fact, anisotropies which reverse 
their sense over cell age. The origin of directionality in the known structures 
of plant cell walls is reviewed by Green [21]. Such a strategy, despite its 
elegance, cannot be expected to generalize to systems lacking the peculiar 
symmetries of this organ (radial symmetry and invariance of form over 
time), as the necessary differential equation can no longer be produced. 

The anatomist D. H. Enlow has long studied the details of human bone 
growth. His findings regarding the craniofacial region are collected in [13, 
141. Bone grows generally by “remodeling,” unending deposition and re- 
sorption. These alternatives can be discriminated in photomicrographs. 
Enlow has carefully examined the nature of growth on every surface, across 
every tuberosity, of the normal craniofacies. He is thereby able to specify, 
for any particular anatomical form of interest, what local growth processes, 
taken in concert, are responsible for the observed changes of form and 
relative position. There are certain recurrent themes, for instance that 
V-shaped forms generally grow by deposition on the inside of the V and 
resorption on the outside, and thus displace themselves as they grow. 

From his analysis, he concludes that form moves through bony tissue, 
slowly changing under the impulse of external correlations and alignments. 
There is an insight here which goes beyond Thompson. Growth may 
remove material as easily as it deposits it. Shape is in part negative, 
adjustment to space outside the material boundary. In fact, in a growing 
bone maintaining a shape which is not convex, certain surfaces are always 
necessarily shrinking, undergoing “decretionary” growth. In addition, 
within the face as a whole, bones are moved passively by abutting on other 
bones themselves growing. In principle such a system for analyzing growth 
should account for all changes of bone shape, abnormal as well as normal, 
in terms of the two basic processes, deposition and resorption, all over the 
growing surface. Unfortunately the quality of present numerical data is 
insufficient to support quantitative analysis systematizing the detailed 
qualitative and directional analysis. We do not know how to talk clearly 
about widely spaced simultaneous remodeling processes which together very 
nearly preserve a functional form. If a geometric formalism could be 
invented to represent usefully the elegant osteology of this method, analysis 
could advance rapidly beyond the image of Fig. 6, and perhaps I might no 
longer consider this work a “compromise” with Thompson. 

My last example of simulation is an intensive study of one phase of newt 
neurulation [25]. The data are a scalar field of cell size decrease from stage 
13 to stage 15 of the embryo, together with measures of the notochord’s 
exogenous extension during that period. The analysis produces, according 
to a mathematical model of tissue shear, a predicted shape change for the 
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FIG. 6. Summary diagram of the growth of the mandible. Resorption is indicated by 

arrows pointing in, deposition by arrows pointing out. From [ 14, Fig. 3-1501. Reproduced 

by permission. 

whole neural plate. In the form of a summary Cartesian transformation grid 
(Fig. 7) this simulation may be compared with an observed grid previously 
published: it is a fair replica. The most interesting feature of the simulation 
is the isolation of anisotropy. The separate cells of stage 13 shrink in 
cross-section individually and isotropically, whereas the extension of the 
notochord is highly directional. The authors put forward a rather com- 
plicated model for the propagation of this shear through the bulk of the 
tissue by rearrangement of cell-cell connections. At present this phase of the 
simulation has an irreducibly stochastic component, which I trust can be 
removed by further mathematical analysis. But it is not necessary to believe 
in the reality of this mechanism to appreciate its elegance and parsimony. 
In differential growth analysis over areas, one consequence of anisotropy is 
an increase in the number of essential numerical parameters from one to 
three (two growth rates, or area1 growth rate and anisotropy, together with 
orientation of the principal axis). The Jacobson-Gordon model shows that 
over most of a tissue one can make do with the scalar representation alone 



194 FRED L. BOOKSTEIN 

if the more complex specification of anisotropy is present as a driving force 
abutting the simpler system. Their conclusion is quite in the spirit of 
Thompson: “the joint. operation of two physical forces is necessary and 
sufficient to effect this transformation” [25, p. 1911. 

None of these simulations presently are capable of mathematical gener- 
alization to transformation grids in their full complexity. Each contains at 
least one good idea which ought to be present in any more inclusive scheme. 
From Green, the nugget is the treatment of surface elements; from Enlow, 
the idea of simultaneous positive and negative growth; from Jacobson and 

FIG. 7. Cartesian transformation grid for the simulation of neural plate development. 

The wedge in lower center is the developing notochord. The particular computer run 

depicted here allowed shear but no isotropic shrinkage of cell areas; it simulates the shape 

change from disk to keyhole but not the relative proportions of top and bottom. From [25, 

Fig. 161. Reproduced by permission. 
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Gordon, the modeling of anisotropy as viscous response to exogenous shear. 
All are suggestive, but none are yet generally satisfactory. 

VECTOR-DISPLACEMENT METHODS 

A large body of work directly relevant to our theme arises from the 
problems faced by the practicing orthodontist. He is in the business of 
manipulating a future shape, which in these pages will be considered to be 
represented by a sagittal cephalogram, an x-ray of the head from the side. 
To prescribe a treatment he must first predict a plausible outcome in the 
absence of manipulation. The predicted mature shape may be thought of as 
a geometric transformation applied to the growing form at any stage; the 
transformation we need will presumably average somehow the specific 
changes in appropriate populations followed over time. Furthermore, any 

particular face is more or less distinguished from an aesthetically ideal 
shape; to characterize the transformation between these two is to provide a 
hint of how the orthodontist might restore grace and balance. 

In view of this multiplicity of practical motivations, it is surprising that 
the techniques of the field are mainly variations of a single limited theme. 
In all methods known to me, with the exception of Enlow’s, the observed 
shape is at some point strictly superimposed on a normal shape or on an 
earlier shape from the same ontogeny. The pair of shapes are then related 
by the vector displacements from image to image of all the structures the 
investigator cares to follow. In the course of the analysis there must 
necessarily be an algorithm for registering and orienting the images. These 
rules are arbitrary and vary from analysis to analysis; and unfortunately 
they affect all quantitative conclusions. 

C. F. A. Moorrees [33, 341 constructs transformation grids explicitly. His 
registration is rather peculiar. The nasion has two fixed coordinates; the 
sella turcica and anterior nasal spine, one each. The horizontal and vertical 
axes are scaled separately, and oriented according to “natural head posi- 
tion”. The actual grid, which may be drawn by hand or by computer, is 

drawn separately for the upper and the lower face, with a discontinuity 
along the line of occlusion. Figure 8 is an example of the resulting diagram. 
Having produced a sort of transformation grid, Moorrees and his colleagues 
do not really know what to do with it. In fact, the complex registration has 
made it statistically intractable. The grid is but a picture of a certain 
idiosyncratically standardized collection of vector displacements. The origi- 
nal biological form has been altered in the engridment, because of the 
separate scalings in two directions. The grid as drawn is not the transforma- 
tion to the observed form from normative configuration or past form, for a 
new anisotropy has been imposed. Also by virtue of the registration, certain 
points of the grid are intrinsically less variable than others. Because of such 
constraints, Moorrees’s work, whatever its contribution to orthodontic diag- 
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FIG. 8. Cartesian pseudogrid for a normalized cephalogram indicating “marked 

mandibular prognathism and cephalad position of sella turcica, basion, articulare, and 

gonion.” The facial profile is to the left. From [34. Fig. 5B left]. Copyright 0 International 

Orthodontic Congress. 

nosis, cannot help us in the mathematical development of Thompson’s 

original intent. His grids are simply a visual summary of a complicated 

spatial correspondence. 

Several other traditions reduce these constraints to the minimum neces- 

sary, two: one registration (meaning point superposition) and one orienta- 

tion (meaning line alignment). (One occasionally finds a technique of two 

point superpositions. but never, to my knowledge, two alignments.) Walker 

and Kowalski [58, 591 register on the sella turcica and use for horizontal the 

line from the base of the occipital bone to the center of the palate. Several 

systems, reviewed in Merow [32], register on the sella but use the Frankfort 

horizontal, the tangent to the top of the porion which passes through the 

orbitale. Delattre and Fenart [12] register on the vestibulary apparatus and 

its implied horizontal. Ricketts [45] registers the mandible on the pogonion 

and a special circular arc. Superposition according to any of these customs 

produces a series of vectors representing for any landmark its succession of 

coordinates in this series of coordinate systems, and thereby, implicitly, a 

succession of Cartesian grids. They have all this common flaw: the variable 

pictured is not what we need. The method of transformations has no role 

for fixed points or orientations; it is couched in terms of how points grow 

apart from each other, not from some arbitrary center. The import of a 

diagram such as Fig. 9 is wholly misleading. For any of the vector-displace- 

ment techniques, statistical treatment is extraordinarily problematical. All 

location measures are beset by the measurement error of the standard 

location and orientation in addition to their own. This supplies a functional 
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correlation between any pair of displacement measurement errors which is 

of constantly changing magnitude and direction. Points near the center of 

registration move less than points farther away, and all points generally 
move away from the fixed point-both these trends anatomically quite 
meaningless. Landmarks near each other move in roughly parallel fashion, 
as the divergence between them is swamped by the joint susceptibility to 
pushes outward by all tissues between them and the fixed point. When one 

bit of tissue undergoes a small unconformity of development, all landmarks 
on the far side of it manifest the same jog in their traces. Then the structure 

of variation of the outermost vectors is a completely opaque composite of 
variations there and elsewhere; to untangle it one has to start over by other 
procedures entirely. And one must disentangle thus, for conclusions about 
growth which vary with the registration one chances to use are worse than 
no conclusions at all. 

With all their flaws, the registered grids have one great temporary 
advantage. They remove just enough of the “floating” quality of Thomp- 
son’s general framework to make possible a multivariate statistical analysis, 
however flawed. Vectors and displacements have population averages and 

FIG. 9. Vector-displacement diagram for the progression of various landmarks from a 

starting configuration. The whiskerlike lines each follow one landmark through successive 

outlines, none of which but the first are drawn. Note the slowly shifting regional patterns. 

From [59, Fig. 71. Reproduced by permission. 
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standard deviations which can be presented for use in diagnosis (cf. [32]). 

The “profile” so noted does not, for all the reasons given above, represent a 
true shape comparison between normal and observed or over successive 
stages of ontogeny. We cannot analyze Thompson’s grids in general by 
studying the displacements of all the grid intersections from one fixed 
intersection-to do so would be to lose all the variation of the fixed 
intersection, to misapprehend all the factors of systematic variation in 
which that fixed point is implicated. The vector techniques of orthodontia 
may suggest uses for orthodontic appliances, but they do not aid us in the 
general mathematical analysis. 

MULTIVARIATE MORPHOMETRICS 

One might imagine that a method for measuring shape could be adapted 
easily to measure shape change, and would thereby automatically make a 
contribution to the study of transformations. This is simply not true. In 
terms of measures of shape, however subtle, shape change can only be an 
abstract vector of differences, one for each measure. This series is in no way 
the unique mathematical object which Thompson steadfastly envisioned. 
The landmarks and positions suitable for characterizing shape are likewise 
not necessarily suited to the characterization of change-we may need to 
know where everything is going, the relative motions of intercalated points 
as well as landmarks. 

Nor are the subtleties of biological correlation between separate changes 
in parts, which is the wellspring of Thompson’s method, expressed ade- 
quately in variance-covariance matrices. All multivariate techniques, how- 
ever resourceful, are restricted to linear relations among the variates; but 
the reality of variation in form is far from linear-it is functional. Pearso- 
nian correlations between characters, which underlie the canonical styles of 
variation that a multivariate analysis finds, are but a hint of the essential 
factors underlying the observed transformations of form. 

Of all those working in the new multivariate morphometrics, the only 
one, to my knowledge, who acknowledges these limits is Oxnard. In his 
collected thoughts on the analysis of form [40], he takes pains to verify 
statistical insights by comparison with simple biomechanical demonstra- 
tions about the observed regimes of variation. All others-for reviews see [3, 
11. 19, 26]-identify the variation of empirically derived canonical linear 
combinations with the biological mechanisms producing the variation. This 
tradition could not be more divergent from the geometric insights of 
Thompson’s scheme. In the reviews I just cited, totaling some four hundred 

pages, I could not find a single biological drawing, a single visual example 
of data, to borrow for this essay. The geometry is drained so thoroughly 
by the formalism of abstract measurement spaces that in most analyses 
the findings-canonical forms of variation, extreme types, multivariate 
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means--cannot be depicted at all, for the requisite point configurations do 
not satisfy the rules of the three-dimensional Euclidean space in which we 
and our subjects of study all live. The multivariate techniques capture shape 
in a way which necessarily misrepresents shape change. The spokesmen for 
this school tend to invoke Thompson’s name (Gould and Johnston, for 
instance, describe his vision as “multivariate”), but they are studying 
variation of their indices only, not of the underlying shapes. 

This critique applies, it seems to me, whether the measures of shape be 
themselves classical or modern. The classical approach is best represented 
by conventional craniometrics, the practitioners of which industriously 
measure the relative positions and sizes of arbitrarily many landmarks all 
over the skull or other form. It is becoming recognized that there is an 
appalling inelegance and redundancy in this method, that data which have 
been measured as 

ought to be somehow captured in the form of 

instead. There are modern techniques of outline representation which more 
parsimoniously capture outlines by successive point coordinates or by some 
continuous function of polar angle or arc length. These functions are then 
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reduced to parameter values by Fourier analysis, direct sampling, or some 
other construction. I review these developments in [4]. In addition to an 
assortment of statistical difficulties, they all have the same fallacy as the 
conventional method: from numerical changes in the parameters, whether 
amalgamated multivariately or not, it is just not possible to model sys- 
tematic transformation of the original geometric forms. 

At the conclusion of my survey to 1976 of the literature on Cartesian 
transformations. I find no innovation indigenous to morphometrics or 
borrowed, no methodological advance for particular styles of data, that is 
comparable in stature with Thompson’s original method. Six decades after 
its publication the method still resists quantification except in special cases. 

It remains a fascinating puzzle for biostatistics and mathematical biology, 
endlessly suggestive and promising, but much more difficult than it was 
supposed to be. There is yet no progress. Anyone trying to make new 
headway must begin to build, as I do, exactly where Thompson left off. 

IV. THE METHOD OF BIORTHOGONAL GRIDS 

Like several of the authors reviewed. I too have been tantalized enough 
by the recalcitrant elegance of the Thompson problem to attempt a fresh 
mathematical unfolding. There are variously detailed presentations of my 
findings in [4-61. Here I shall only outline the new responses to old 
difficulties. 

A PRIVILEGED COORDINATE SYSTEM 

My mathematical researches began with an aspect of the Thompson 
method not previously noted: that the features of a grid as we apprehend 
them depend capriciously on the grid with which we begin. Consider, for 
example, the transformation of a square into a 60” rhombus, drawn twice in 
Fig. 10. The upper engridment would be described as a vertical shrink by 
the factor \/3 /2, the horizontal unchanged, followed by 30” of shear. In 
the lower engridment there is instead no shear, but one axis shrinks by 

v/z /2 while th e other expands by v/6 /2. There is no contradiction 
between these two reports. Any description varies with the starting grid, just 
as the matrix for a linear transformation changes contravariantly when a 
vector basis is altered. 

I suggest that the lower of the two representations in Fig. 10 is to be 
preferred. For affine transformations, those which take parallel lines into 
parallel lines, such a pair of axes is guaranteed. There will always exist a 
pair of directions, the principal axe3 of the transform, which are perpendicu- 
lar both before and after transformation, and with respect to which the 
observed shape change is described by a pair of dilatations (length multi- 
plications. stretch or shrink). one along each axis. A third parameter fixes 
the direction of these axes in the organic tissue. 
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FIG. 10. Two reports of the same affine transformation. Top: Axes do not change in 

length, but their angle is altered from 90” to 60”. Boffom: One axis shrinks, the other 

expands; their angle remains at 90”. 

FIG. 11. The same shape change, a 2 : 1 stretch, attached to a square in three different 

ways. As the orientation of the axes is altered, the visual impact of the affine transform 

varies in a complex manner. 

In Thompson’s original technique, the starting grid is aligned with some 
feature of the anatomy, the single shape. I would align instead with the 
shape change itself, regardless of the initial form, which just cuts out a piece 
of grid after the fashion of a cookie-cutter. In Fig. 11, for example, is shown 
a single transformation, with dilatations of 2 and 1, repeated three times. As 
the orientation of the initial square is varied, the reports of side stretches 
and shear, and the visual impressions of the right-hand engridments, change 
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in a complex manner; but the report using principal axes shows, of course, 
two parameters constant, only one changing. 

Using these axes we can recognize iterations and inverses of a fixed 
transform with ease. The transformation shown in Fig. 12 is the result of 
applying that of Fig. 10 twice in succession. This is not at all obvious in the 
Thompson engridment, but using the representation by principal axes we 
can tell, for the axes of Fig. 12 are the same as those of Fig. 10, and the 
dilatations of the latter (0.5, 1.5) are just the squares of the dilatations of the 
former. Likewise, that the transforms of Fig. 13 are inverses is not at all 
obvious from the Thompson engridment; but we see from the principal-axis 

representation that the one has dilatations 0.7,2.85, the other 0.7- ‘,2.85-l, 
and that the axes are the same. 

For more general transformations than the affine we cannot obtain two 
families of straight lines at 90” in both images. Still, we may proceed to a 
privileged coordinate system by a descent to infinitesimals. Consider the 
projection transform, Fig. 14(a), which maps a window onto its oblique 
shadow. Through almost every point of the square pass exactly two per- 
pendicular lines mapped into lines perpendicular in the trapezoid, as in Fig. 
14(b). The orientation of these lines rotates from point to point of the 
shapes. We can draw out a collection of smooth curves which are tangent 
everywhere to one of the local principal axes. Then any two curves are 
perpendicular wherever they intersect in either image. We cannot draw 
curves through all points, so we select from the two families to suggest their 
changing directions by a curvilinear grid. There results the diagram in 

Figure 14(c). 

FIG. 12. Two engridments of the transformation which is the twofold iteration of that 

in Fig. 10. Top: arbitrary axes; botfom: principal axes. 
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FIG. 13. Two engridments of a transformation and its inverse. TOP: arbitrary axes; 

bottom: principal axes. 

The curves do not have a biological reality as loci-they are but threads 
along which are strung little right angles, tangents and normals. These 
perpendiculars, I would argue, have a biological meaning. In the small, little 
squares of sides aligned with these axes, and only these, grow into little 
rectangles similarly aligned. All other squares grow into oblique parallelo- 
grams instead. The observed growth with respect to these axes is symmetric, 
in other words, and is described by a simple pair of local dilatations. If the 
axes appear to rotate on the page, it is because of growth in other parts of 
the beast. The little box is just expanding at two rates in two directions, and 
knows of no rotations. 

My proposal is that these local directions are to be suspected of biologi- 
cal invariance. Any 90” angle remaining at 90” through any finite transform 
is presumed to remain at 90” through all intermediate stages of the trans- 
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FIG. 14. Top: A projection from a window to its shadow, in arbitrary axes. Middle: 
Through each point of the correspondence there is one pair of lines which start and finish 

at 90” to each other. Bofrom: The transform may be represented by the integral curves of 
these local perpendiculars. 

form and into the foreseeable future. All apparent curving and bending of 
form is produced, on this assumption, by differential growth along axes 
variously oriented but fixed, along with their right-angled intersections, as 
by India ink in the tissues. Parts rotate only when they are pushed. 

Such a postulate clearly distinguishes the mathematical model from the 
actual processes underlying shape change. “Growth” here means only 
adjustment of outline, for all other types of information are excluded from 
the data base. The curved “lines of growth” are mathematical artifacts, 
neither anatomical features nor causal agents. In ontogeny, shape change is 
a response to many different fundamental processes: differentiation, dif- 
ferential division or death, change of cell shape or bulk material parameters, 
morphogenetic movements. My mathematical model attends to none of 
these known processes, but only to the resulting geometry. In the compari- 
sons we might make which are not ontogenetic (of individual with norm, of 
siblings, of endpoints of evolutionary lines), we are even farther from 
process, dealing instead with evanescent traces of actual ontogenetic con- 
trols. It is necessary to assume that points of homologous pairs arise from 
identical Anlagen and differ only in the quantitative details of the dilata- 
tions which brought them to their measured locations. This stance of 
stubborn geometric reductionism is necessary in view of the great logical 
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difficulty of comparing whole shapes in the absence of a complete material 
history. When the postulate of invariance of axes conflicts with observation, 
we must go with the data, must say that the transformation has evidently 
changed. Otherwise we make the simplest possible assumption, that things 
which have appeared unchanging (the lines of growth, intersecting con- 
sistently at 90’) will continue so. 

To extract information about growth, we compare shapes of matching 
little cells in a grid and its transformed image. In any computable grid at 
finite spacing, these cells will be not quite rectangles; in the limit of 
infinitesimals, they are exact rectangles. For the projective transform, Fig. 
14(c), we construe the splaying of the originally square vertical sides as a 
consequence of excess of horizontal dilatation over vertical. The sides have 

been pushed out; we feel the axes bracing themselves against their per- 
pendiculars in order to exert the appropriate stress. (The shears of Thomp- 
son’s engridments contrariwise lead one to a metaphor of stresses externally 
imposed, a vision less useful.) We read dilatations directly from the diagram 
pair as ratios of grid spacings in the two images. The convergence or 
divergence of curves for one shape separately has no particular meaning. 

This method is perfectly general. Through almost every point of a 
differentiable transformation pass two differentials which are at 90” both 
before and after transformation. The integral curves of these differen- 
tials form a grid whose intersections are at 90” in both images. These are 
called the &orthogonal grids for the transformation, for there are two of 
them, one in each image, corresponding curve for curve, intersection for 
intersection. We quantify shape change by extracting the two dilatations at 
every point of either shape, measured along the local canonical axes. 
Thompson’s fundamental error was the construction of diagram pairs which 
were unsymmetrically specified: rectangular grid on one side, unrestricted 
grid on the other. In view of the symmetry of all growth in the small, the 
appropriate grids for any two shapes have the sume formal property, that all 
grid intersections are at 90”. This characterizes the biorthogonalpair uniquely. 

We have thereby produced a canonical coordinate system which reduces all 
change of shape to gradients of differential directional growth, without 
shear. As with the affine transform (Fig. 10 lower), we have specified a 
coordinate system for the change itself. It becomes possible to measure 
shape change, then, without measuring shape at all. In fact, the measure- 
ment of a particular shape is subsumed under this rubric as the transforma- 
tion from that shape to some predefined norm. 

The method of biorthogonal grids cuts through several of the methodo- 
logical difficulties common to its predecessors. First, with passive rotation 
removed, growth is represented by those two dilatations with orientation, in 
effect a symmetric tensor field over one whole image which can be com- 
pared with others on the same image. It is registered everywhere. There is 
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therefore no need to register the images in advance. The only privileged 
points are the landmarks which we use to calculate the one-one correspon- 
dence; they happen to align the grid but are not discernible as special points 
within it. In principle the results of any of the existing schemes for 
extraction of quantity-growth gradients, vector displacements, multivariate 
morphometrics-can be reconstructed from a collection of biorthogonal 
grids, and their biases owing to registration and orientation can even be 
analytically derived. Second, the technique prescribes explicitly the dis- 
tances, directions, and gradients that are worth examining. This is managed 
by abstracting away two particular empirical possibilities, the “moving 
forms” of Enlow and the tears and morphogenetic movements of Moorrees 
or Jacobson and Gordon. In the absence of these more precise models of 
actual change, in which landmarks do not stay landmarks and points 

arbitrarily close together end up far apart, the proper mathematical model is 
that of a diffeomorphism, from which the dilatations and principal axes 
follow rigorously. This is precisely Thompson’s own assumption, and so 
quantification answers precisely to the needs of his method. 

this 

EXISTENCE AND FORM OF BIORTHOGONAL GRIDS 

I now demonstrate formally the existence of biorthogonal grids for 
arbitrary Thompson transformations. Let u(x,y) be the x-coordinate of the 
image point corresponding to original point (x,,v), and u(x,,v) likewise the 
y-coordinate. The Thompson transform is then the map (x,y)+ 

(u(x,y), u(x,y)) taking a region of the (x,y)-plane onto a region of the 
(u, u)-plane. Assume the existence of derivatives 

au au 
4=x> u2=-, ay 

a% a% 
%1=,x,> u12=-> 

a2u 

u22= V’ 

and likewise o,, v2, u,,, o,~, vz2. 
At any point of the (x,y)-plane the Jacobian matrix 

is the linear transformation taking a vector (dx,dy) in the tangent space 
about the point (x,y) into a vector (dx,~)J=(u,dx+u,dy,~,dx+v~dy) in 
the tangent space about (u(x,y),u(x,y)). 

We are interested in the existence of direction pairs which are perpendic- 
ular in both tangent spaces. In the tangent space about (x,y), any pair of 
perpendicular vectors can be written either in the form (l,O),(O, 1) or the 
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form (z, l),( - 1,~) for some real z. We seek a pair perpendicular in both 
tangent spaces: this means that (z, 1)J must be perpendicular to (- 1,z)J. 
That is, (ZU, + +,zz), + GJ must be perpendicular to (- u, + zuZ, - u, + zu2). 
Taking the dot product, we have 

0 = (zu, + Uz)( - U, + ZUJ + (ZD, + u2)( - 0, + zuz) 

=Az2+ Bz-A, (1) 

with 

A = u,u,+ v,v2, 

B=uf-uf+o;-t$. 

Whenever A is not zero the discriminant B 2 + 4A2 of the quadratic (1) is 
positive, implying that there are two real roots z of the equation. This does 
not mean there are two pairs of perpendicular vectors. The product of the 
two roots is -A/A = - 1. Then if one vector is (z, l), the other is (- l/z, l), 
parallel to (- l,z), representing not another solution but rather the other 
element of the perpendicular pair. Thus there is only the unique biorthogo- 
nal pair of which I spoke. This finding is at least as old as [56]. 

When A =0 but B#O there is one root z =O, corresponding to the vector 
(0,l). This is perpendicular to (1,O) in the (x,y) tangent space, while their 
transforms (O,l)J=(u,,u,), (l,O)J=(u,,v,) are perpendicular in the (u,u) 
tangent space, for the form A is just their dot product. 

There remains the case A =O, B =O. Write the latter constraint in the 
form u~+u~=u~+c~=cz~, say, and write u,=acos0,, a,=asinr3,, u2= - 
asin8,, u,=acos8, for 0,,e2 to be determined. Then O=A=u,u,+v,v,= 

a2( - cos0, sine, +sin8, cos8,)= u2sin(0, - 0,) SO e, = e2 or 8, = 0,+ T. Then 
J is of the form 

ucose ucOse usin 
- usin 

asine or 
ucose 1 ( asine 1 -ucose ’ 

either a similitude or a similitude followed by the reflection (:, -Y). In 

either case, any pair of vectors perpendicular in the (x,y) tangent space is 
also perpendicular in the (u,u) tangent space. 

In general, the conditions A = 0 and B = 0 each specify curved loci in the 
(x,y)-plane, and points where A = B=O are intersections of curves, hence 
isolated points. Examples can surely be constructed where the constraints 
A = B = 0 are in force along extended loci, but their probability of emerging 
from actual data is vanishingly small. In the language of the theory of flows, 
the case of isolated points is “generic.” Elsewhere than at such points, the 
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equation 

Ady2+Bdxdy-Adx2=0 (2) 

specifies a pair of differential fields whose integral curves exist and are 
everywhere extensible, by the usual existence theorems. At each point the 
two values of dy/dx have product - 1 and thus represent perpendicular 
directions. The whole biorthogonal grid is specified by the single differential 
equation (2) whose coefficients are forms in the empirical Thompson map 
given by (1). 

It is of interest to examine the behavior of solutions of this system 
around singularities where A = B = 0. At such a point, which without loss of 
generality we may assume to be (0,O) in the (x,y)-plane, J may be taken as 
the identity matrix of order 2 by a suitable change of coordinates in the 
(u,c)-plane. We wish to study the variation of directions dy/dx of our field 
with displacement from (0,O) in a small neighborhood. Write (x,y)= 
(ecos8,esinQ), where e is small. Then to first order in e, 

u,,(~,~,= 1 +ecosBu,,+esin0u,,, 

U2p.y) = ecosdu,,+ esineu,,, 

~ll(X,Y, = ecosBu,, + esinBG,2, 

c,,(,,,)= 1 + ecosBu,,+ esin8u,,. 

Likewise to first order, 

and 

B (,,,,=2e[cosB(u,,-t;,,)+sin@(u,,-u,,)]. 

The coefficients of the forms A and B are all zero only in very unlikely 
circumstances, for instance, if u and u form a pair of conjugate harmonic 
functions. For all empirical data sets we may assume that the first-order 
terms are not all zero near the singularity (0,O) and that they govern the 
behavior of the solutions there. 

Let us write L = u, + u2, M= u, - u2, and let L,,M, be their partial 
derivatives with respect to x at (0,O) and L,, M, their partials with respect to 
y there. Then we have 

A=e(L,cos8+L,sinB)=ecosB(L,+L2tan6), 

B=2e(M,cos6’+M2sin8)=2ecos0(M,+M,tan0). 
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When we substitute these values in the equation (2) describing the bior- 

thogonal field near (0, 0), and divide through by e cos 8, we arrive at 

(L,+L,tan0)z2+2(M,+M2tan0)z=L,+L2tan0, (3) 

where z = dy/dx. Note that the variable e has dropped out-to first order, 
the biorthogonal directions are independent of e for e near zero. 

Consider those rays 0 = 0* out of the singularity (0,O) which lie along one 
or the other of the perpendicular directions at every point upon them. If the 
vector (1,~) is on the ray 0 = 8*, then z = tan0*. Substituting this value in 
(3), we have as the equation for the azimuth 0* of these special rays 

(L,+L2tan0*)tan20*+2(M,+M,tan0*)=L,+L2tan0*. 

If L2#0 this is a cubic equation in tan0*. (If L,=O we may still interpret it 
as a cubic with one root tan0* = co, O* = -+ 71/2.) The cubic has either one 
real root or three. In the latter case we may assume all roots distinct-the 
“generic” case, coincident roots occurring only in data with probability 
zero. For each value of tanQ*, of course, there are two directions, exactly 
opposite each other, which are aligned with the biorthogonal pairs at all 
their points. 

The two possibilities occur as the solution curves away from the singular- 
ity are concave or convex to the singularity. (A simple geometric argument 
shows they cannot be mixed.) The grids then appear as follows: 

One root. Three roots. 
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These correspond to fields of index - 1 and + 1, respectively, as described 
in [22, pp. 30-341. In empirical analyses, either of these occurs from time to 
time. 

At all points other than these singularities the appearance of biorthogo- 
nal grids in a small neighborhood is that of a regular network, a so-called 
“orthogonal parametrization,” the distorted image of regular graph paper, 
as in Figs. 15 or 17 below: cf. [8, p. 183, Corollary 2; p. 187, Problem 91. 
Furthermore, all coordinate curves of a typical grid begin and end only at 
the boundaries of the forms. For if they did not, they would have to either 
end at a singularity of the system or cycle around a singularity in a spiral or 
a loop; and the two generic types of singularities do not allow this behavior. 

SAMPLE COMPUTATIONS 

In computing these curve systems it is necessary to know in advance the 
one-one correspondence between the images. It cannot be explicitly input to 
a computer, but must be inferred from a sample of corresponding points by 
some general interpolation routine. Matters are simplest if one assumes no 
data upon the interiors of the forms, but only a boundary correspondence. I 
have in fact adopted the following strategy. The data for a computed 
correspondence between two images are discrete pairs of homologous 
landmarks, the corners of the quadrilaterals in Fig. 15 or the seven specific 
anatomical locations of Figs. 16 and 17. These landmarks determine polyg- 
onal boundaries for each image, along corresponding sides of which the 
homology is presumed linear. Let one image now be fixed as the domain of 
the coordinate transformation. Then the X- and y-coordinates of the map- 
ping function are separate solutions of the Dirichlet problems V2x =O, 
04 = 0 on that image with boundary values assigned equal to the real and 
imaginary parts, respectively, of the homologous boundary points on the 
other (the target) image. The resulting correspondence, engridded tradition- 
ally in Fig. 16, is smooth and intuitively pleasing. Further methodological 
development is needed to take into account interior data points. 

Any algorithm approximately solving the Dirichlet problem can be 
modified to approximate segment by segment the integral curves of the field 
of little perpendiculars. The whole procedure I call the method of biorthogo- 

nal grids. I have constructed a preliminary computer program which han- 
dles the two-dimensional version in which biological shapes are represented 
by outline drawings. 

In practice, the grids appear to be aligned in very sensible ways. 
Consider, for instance, the transform in Fig. 15, the growth of an abstract 
“foot.” The input data consisted of the quadrilateral corners, coordinate by 
coordinate; the output is the mesh filling the forms, two grids which 
correspond point for point between the images. At right I have enlarged the 
upper grid and written in selected dilatations for the “growth” from square 
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to quadrilateral. A report of distances and angles between the corners, while 
encapsulating the actual shape change, would be tedious and would not 
isolate “factors” in any useful sense. The biorthogonal analysis is much 
more suggestive. Line BD is close to the major axis of growth, which is 
bowed slightly above it, with dilatations graded from 2.2 at one end to 2.9 
at the other. Perpendicular to this, and also nearly aligned with a diagonal 
of the original square, is a minor axis close to AC with dilatations graded 
from 1.3 near C to 1.7 near A. The remaining axes and dilatations 

intergrade nicely. By means of the biorthogonal display we have been able 
to summarize this entire transform in but two main gradient-bearing curves. 
There is no need to report changes of angle. There is only change of scale, 
continuously varying in alignment and magnitude. The change is encapsu- 
lated in the derived coordinate system; the original configuration of land- 
marks, their relative distances and angles, is quite accidental. 

It is interesting to apply this method to the problem of hominization, 
Cartesian grids for which have been drawn previously by Thompson (cf. 
Fig. 2) Hutchinson [23, p. 6001, Kummer [28, p. 11 I], and Sneath [51, pp. 
67, 981. Here I shall explain the grid of the transformation from chimpanzee 
to modern man. Intermediates of the progression are more fully explored, 
and an interesting orthogenesis unearthed, in Bookstein [6]. 

Before any computation it is necessary to have fixed a suitable plane 
projection and reliable landmarks whose relative motions fairly summarize 
the one-one correspondence between the two forms. I selected the familiar 

midsagittal plane (about which the skull is symmetric) and seven landmarks 
upon it that I could locate from drawings: the first upper incisor, I; the 
nasion or bridge of the nose, N; the bregma, B; the lambda, L; the inion or 
occipital protuberance, 0; the external auditory meatus, A; and the last 
upper molar, M. I noted the coordinates of these points for the representa- 
tive “modern European” in Fig. 177 of [9] and for the female chimpanzee in 
Fig. 79 of [12]. Although the heptagon formed by the landmarks systemati- 
cally misses the large convexities of the outline, the deficit shapes are 
similar in the two images, so that not much error is introduced thereby. 
Smaller features, such as the orbital ridge and the mastoid process, are not 
fairly represented by the sevenfold pairing, but their misrepresentation does 
not alter the general picture. 

The Cartesian grid for this transformation, with the interpolation com- 
puted as I have described, is presented in Fig. 16. It closely resembles the 
grids published elsewhere both in its general lineaments and in its shifting 
inscrutable skein of changes of spacing and orientation. The biorthogonal 
grid, drawn in Fig. 17, is considerably different. Just as two axes summed 
up Fig. 15, so do three axes, I believe, summarize the shape change of Fig. 
17. I shall denote these axes by the numbers of the arrows pointing to their 
ends in the bottom diagram: axes 1-5, 2-4, and 3-6. Some dilatations along 
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FIG. 16. Thompson-style grid for the transform from Homo sapiens to chimpanzee, 

with biological boundary superimposed. The letters identify landmarks named in the text. 

these axes and elsewhere are written in upon segments of the grid for 
modern man. They represent relative growth from chimpanzee to modern 
man of the segments they bestride. 

Along its length the axis 3-6 participates in two processes usually 
reported separately. The dilatations along its lower reaches are less than 
unitv, in accordance with the shrinkage in length of the midface and the 
closure of the diastema. At its upper end, near arrow 3, the dilatations are 
considerably greater than unity. Together they constitute a growth gradient 

which is really quite steep. Two features notably exclude this axis from the 
purview of conventional craniometrics. It is virtually straight in the chim- 
panzee outline but strongly bent, owing to growth elsewhere, in the modern 
form; and it represents a mixed allometry, partly positive, partly negative, 
so that the arc-length change from end to end is smaller than the changes of 
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FIG. 17. Biorthogonal grids for the same transform. The decimal numbers are 
selected dilatations. The three main axes of change, indicated by arrows, are described in 
the text. 

either of its subarcs taken separately. Of course, as the place where the 
change occurs is not a landmark, the subarcs could not routinely be 
measured separately in any case. 

The curve 3-6 is not necessarily a strict optimum for any of the aspects I 
just reported. I could as well have selected one of the curves “parallel” to it 
on either side or some other curve, even nearer, that the computer happened 
not to draw. The curve 3-6 merely typifies a systematic variation along its 
length of direction and dilatation throughout its corridor of the diagram. 

Perpendicular to this major axis 3-6 are two other axes worth examining. 
Axis l-5 bears another monotone gradient, from 1.24 at its lower end to 1.7 
at its upper. It represents the pushing-out of the orbit from the cranial base, 
increasing the space available for forebrain at the same time the face is 
shrinking. Axis 2-4 parallels l-5 near the back of the head. The dilatations 
along it are virtually constant between 1.7 and 1.8; it represents an even 
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vertical expansion of the hind braincase at a rate greater than the longitudi- 
nal expansion along the major axis: a directionality of expansion which, of 

course, gives increased volume with the least increase in weight. 
In this manner the observed shape change, chimpanzee to human, is 

described by a smoothly varying pattern of oriented dilatations instead of a 
congeries of arbitrary craniometric indices. If angles do change, it is 
because of differential growth elsewhere in the image. The axes are fixed at 
90"; there is no rotation about the cranial base or anywhere else. Rather, 
the back of the head is pushed down-and the orbit pushed out-by an axis 
of growth perpendicular to the major one. The whole summary of the shape 
change is surprisingly efficient, and makes no explicit use of the landmarks 
at all. In fact, these axes correspond to none of the conventional landmarks, 
and the variation they describe so concisely is spread thin among a host of 
suboptimal indicators throughout the literature on the subject. 

A FUTURE FOR TRANSFORMATION ANALYSIS 

I believe the method of biorthogonal grids to be not a compromise like 
those of Sec. III but rather a basic step toward the direct and automatic 
quantification of transformations. The only test is by empirical exercise, in 
the analysis of sequences for seriation or prediction and in the statistical 
and substantive interpretation of the dilatation patterns extracted. Of 
course, a great many methodological questions remain to be explored. Two 
classes are particularly crucial. 

1. Computations need to be computer-mounted for more realistic rep- 
resentations of biological shape. A general method needs to be able to 
handle curved outlines, internal data points, surfaces, and solid forms in 
three dimensions. These are likely to be difficult technical problems, as they 
go beyond currently available techniques of computational geometry. 

In extending the biorthogonal method to handle three-dimensional data, 
it is not necessary to alter the mathematical argument in any essentials. In 
the planar case, the subject of all my examples here, the boundary by itself 
is not a rigid structure, and its changes in length do not determine its 
changes in shape. It is not enough to know at what rates it is growing all 
around, but in which directions as well. Then the biorthogonal engridment 
is necessarily in terms of differential growth throughout the inside of the 
form. When we add a dimension we encounter the surfaces of solids, which 
are curved two-dimensional manifolds, These forms will in general be more 
or less convex. Now closed strictly convex surfaces are mathematically 
rigid. Specify geodesic distances between points in the surface and the 
whole structure is fixed up to a combination of Euclidean reflection, 
translation, and rotation. (The demonstration of this is known as the 
Problem of Weyl: cf. [53, Sec. X.61.) If we specify length changes on a 
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surface, the ensuing solid form change is fully determined, including all 
bulging. In short, for three dimensions change in shape is wholly specified 
by change in surface distances-this was not true for outlines in the plane. 

, Hence our grid. too, can be restricted to the surface itself; we need not 
construe “pressures from the interior” as in the metaphors of the planar 
analysis. This is just as well in view of the great practical difficulty of 
collecting morphometric data from the insides of living biological forms. 

In three dimensions, then, as in two, the Thompson problem is effec- 
tively one of transformations on surfaces. Now locally any reasonable 
surface can be mapped conformally onto the plane. (The cartographers 
discovered this long before the mathematicians; cf. [27, Sec. 581.) In such a 
map distances may be distorted, but by the same factor in all directions 
away from any point; then angles are preserved. Two corresponding 

neighborhoods on two curved surfaces may each be mapped conformally 
onto planes. The biorthogonal axes through neighborhoods are defined by 
reference only to angles, and so are unchanged by any such combination of 
maps. Then the very same mathematical theory of coordinate form applies 
locally: the distorted grids and the singularities we have already seen are 
just to be pasted upon the curved forms. One need not even execute the 
conformal mapping in the course of computation. The formulae are set 
forth entirely in terms of tangent spaces, precisely so that they might 
generalize verbatim to surfaces in three-dimensional space. 

The only difference between the analysis in two dimensions and the 
analysis in three is that closed surfaces in space have no boundaries. 

Coordinate curves of a biorthogonal grid extend indefinitely, winding 
around and around the form in an ergodic net. Furthermore, no coordinate 
system without singularities can apply to a simple closed surface anyway, 
and in particular no biorthogonal system could possibly do so. (This is 

Poincare’s Theorem; cf. [8], Sec. 4.5, especially p. 282.) Then we must 
restrict the analysis to more or less local patches of surface, perhaps 
hemisphere-sized, set at the discretion of the investigator. 

To execute a biorthogonal analysis in three dimensions will be straight- 
forward once we have a one-to-one twice differentiable correspondence 
between empirically measured surfaces. Techniques for the computation of 
such correspondences in useful form are prologue to the biorthogonal 
method, not properly part of the technique itself. There seems, however, to 
be no published algorithm to refer to. I outline a possible approach using 
Coons surfaces on cylindrical coordinates in [4]. 

2. Statistical conventions of considerable geometric sophistication are 
needed to analyze the output of these computations. The representation of 
transforms locally in terms of two dilatations and an orientation reduces 
growth in the large to a symmetric tensor field. It must be possible to 
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compare these with each other, add them together, “factor” them, average 
them. It ought to be possible to deal with them as dependent variables to be 
parceled out and “explained” in analogues of the analysis of variance. For 
instance, we should be able to fit a series of powers of the same growth field 
to a given series of shapes in some optimal way, and to refer to the “fitted 
growth” and the “unexplained growth” for each transformation. We also 
might want to perform a morphometric analysis of covariance, optimally 
dividing out some sort of allometric growth before fitting a secular trend. 
We need, finally, to be able to simulate arbitrary dilatation fields upon 
arbitrary forms: given a shape, to apply to it any growth that we care to, 
and then visualize the resulting curving form, thereby in particular extrapo- 
lating and interpolating. 

With any of these improvements, the method of biorthogonal grids 
clearly can remedy the presently ungeometrical content of the methods of 
shape and growth analysis. Several applied problems cry out for a sound 
morphometrics: besides orthodontia, these include embryology normal and 
abnormal, computed tomography, plastic surgery, and all the many special 
sciences of specific organs animal and vegetable. The advantages of a 
geometric morphometrics are incalculable. It is the ubiquitous unsatisfied 
demand for such a formalism, a calculus of form, that has kept the 
Thompson problem in the eye of the profession through sixty years of stasis. 
A technology for routine diagnosis, analysis, and prediction of shape would 
spread a fertile new quantification throughout the biosciences. 
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