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T. Skolem shows that there are at most six integer solutions to the Diophantine 
equation x6 + 2f’ + 4z6 - 1OxYgz + lOxqVz* = 1. The author shows here that 
there are precisely three integer solutions. 

Skolem [l-3] shows that the equation Norm (X + y0 + z&) = x5 + 
2y5 + 4z5 - 10 xy3z + 10x2yz2 = 1, where e5 = 2, has at most six solutions 
in integers x, y, z of which he gives three, (x, y, z) = (1, 0, 0), (-1, 1, 0), 
(1, -2, 1). We show here that there are no further solutions. 

We have to find all integers m, n such that 

&(x + ye + 282) = e1*e2n, 

where E 1 , e2 are fundamental units of Q(0). By the calculations of Skolem [l], 
we may take cl = -1 + 8, c2 = 1 + 8 + e3. We work p-adically, but it is 
expedient to be judicious in the choice of p; in fact we take p = 251, one of 
the first rational primes to split completely into first-degree prime factors 
in Q(B): Such primes include 5,151,241,251 ,. . . . A small computer calculation 
shows that 

l f5O = 1 + 2515 with 5 = 818 - 16e2 + 76tY3 - 78e4 mod 251, 

e;” = 1 + 251~ with 71 = 1078 + 17e2 - 14e3 + 68e4 mod 251, 

and also that the only terms E~+E~~, 0 < r < 249, 0 < s 6 49, having the 
coefficients of Bs and 84 both divisible by 251, are given by (r, s) = (0, 0), 

(1, 0), (2,O). Writing m = 250M + r, n = 50iV + s, we immediately have 

A(x + ye + ze2) = ~~‘(1 + 2510M (1 + 251~)~ 

with r = 0, 1, or 2. 
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Write (1 + 2510af (1 + 251~)~ = 1 + 251(Mt + iV7) + 2512( ) + ... 
= K. + K# + K# + K3e3 + Kpe4 

with 

K,, = 1 + 251(0 . A4 + 0 * N) + 2512( ) + -1.. 

Kl = 251(81M + 107N) + 2512( ) + . . . . 

K, = 251(-16M + 17N) + 2512( ) + .**, 

K3 = 251(76M - 14N) + 2512( ) + *.a, 

K4 = 251(-78A4 + 68N) + 2512( ) + . . . . 

Equating coefficients of e3 and b4 to zero gives 

(i) K3 = K4 = 0 when r = 0, 

(ii) K,-K3==K,-K4=Owhenr=1, 

(iii) Kl - 2K2 + K3 = K, - 2K3 + K4 = 0 when r = 2. 

Point (i) implies 

0 = (76M - 14iV) + 251( ) + --., 

0 = (-78M + 68N) + 251( ) + a.., 

and since 
76 -14 

-78 68 E mod 60 251, 

we have’ [by 3, remark at end of proof of Theorem 111 that there is at 
most one solution, which is clearly A4 = N = 0. 

Point (ii) implies 

and 

0 = (-92M + 31N) + 251( ) + . . . . 

0 = (154M - 82N) + 251( ) + a*., 

I -92 154 -82 31 = 9 mod 251, 

so as above there is at most one solution, which is M = N = 0. 

1 For completeness, we state this remark in the form that we need: 

Let F&y) = x2,, pi&(x, y). j = 1, 2, where f;.,(x, y) are polynomials with integer 
coefficients, and p is prime. Suppose that f*,, = ax + by, f& = cx + dy with 

ab I I cd +Omodp. 

Then F&c, y) = F,(x, y) = 0 has at most one solution in integers x, y. 
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Point (iii) implies 

and 

0 = (189M + 59N) + 251( ) + *+a, 

0 = (-246M + 113N) + 251( ) + . . . . 

189 59 
-246 113 = -22 mod 251, 

so at most one solution, which is M = N = 0. 
Accordingly, the only solutions are given by 

(x + ye + zey = (e - l)‘, r = 0, 1, 2, 

as required. 
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