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1. INTRODUCTION 

This paper deals with the causality structure of multilinear, multipower 
operators on a Hilbert resolution space. One objective of this study is to clear 
up certain unanswered questions raised in [l]. In particular we present a counter- 
example consisting of a compact set K C&(0, 1) such that no memoryless 
multipower operators of order n >, 2 can be defined on K. This lays to rest the 
tempting conjecture that a Weierstrass-type approximation result holds between 
the finite memoryless polynomic functions and the memoryless continuous 
functions. 

In order to present the counterexample it is necessary to prove that certain 
causality properties of a multipower operator hold if and only if the symmetric 
multilinear generator of the multipower operator also has these properties in 
each linear argument. These results are important in their own right. 

Because this study is motivated by and supportive of [l], we shall adopt the 
notation, definitions, and conventions of this reference. In brief, H is a Hilbert 
space and W: H” -+ H is a multilinear operator if W[x, , x2 ,..., x,J is linear in 
each argument. W is symmetric if it is invariant under all possible permutations 
of arguments, for instance, W[xl , x2 ,... ] = W[x, , x1 ,... ] all x1 , x2 E H. The 
multilinear function W generates a multipower function, WI: H + H, by the 
formula IV(X) = W[x, x,..., x]. I f  W generates @then there is a symmetric w 
determined by W which also generates l?’ (see [I, 2,4]). For this reason, we 
focus exclusively on multipower functions and their symmetric multilinear 
generators. 

A family {P : t E V} of orthoprojectors on H is said to be a resolution of the 
identity if Y is a linearly ordered set with maximal and minimal elements t, , 
t, , respectively, and if (1) P(H) 3_ P(H) whenever t > I, and (2) P(H) = (O}, 

* Sponsored in part by the U. S. Air Force Office of Scientific Research, Grant No. 

732427, and No. 774352. 

667 
Copyright 0 1977 by Academic Press, Inc. 
All rights of reproduction in any form reserved. ISSN 0022-247X 



668 WILLIAM A. PORTER 

Pm(H) = H hold. The Hilbert space H, equipped with the resolution {P> 
is called a Hilbert resolution space. For later use we note that L&O, T) equipped 
with the projections 

is a Hilbert resolution space. 
A function f: H---f H is said to be causal (anticausal) if Ptf = PtfPt all t E v 

((I - P”) f (I - P”) all t E v), respectively. If f is both causal and anticausal it is 
called menwryless. The function is prestrictly causal if it is causal and moreover 
there exist finite sets {t, < ti < ... < tN+l = tm} C Y and {di = Pi+1 - Pi : 
i = O,..., N} such that f = zr!, d,fPi--l. Here we adopt the abbreviation 
Pi = Pti. The function f is strictly causal if it is in the closure (uniform or 
strong) of the prestrictly causal class. For examples of functions with these 
various properties the reader is referred to [l, 51. We note that on L,(O, r), 
indefinite integration is strictly causal (and causal) and scalar multiplication is 
memoryless (and causal, anticausal), while time translation is prestrictly 
causal (and strictly causal, causal). 

If W is the multipower operator induced by multilinear W then it is easily 
shown that the causality properties of W determine those of I% In particular. 
if W is causal (anticausal, memoryless, prestrictly causal, strictly causal) in 
each argument then I&’ is also of the same type. If W is symmetric then it must 
have the same causality property in all arguments. In the following we show 
that these sufficient conditions are also necessary. 

2. SOME ALGEBRAIC RELATIONS 

Let W denote a symmetric multilinear generator of the multipower function 
I$‘. The relations between W and l$’ exhibit most of the algebraic structure of 
the power functions on R. These similarities can be used to our advantage in 
simplifying our discussion. 

The main property we shall need here is related to the identities 

2!X,X, = (x1 + x3)2 - (x1)2 - (x3)2, 
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which hold on the scalar field. These identities, which can be verified by direct 
inspection, have an apparent pattern. Indeed, for arbitrary n > 0 

n!x, ,..., x, = (;lxty - ~l(py + ... + w-‘~lw”. (1) 

We note that the map W[x, ,..., x,J = xrxa , . . . . x, is n-linear, symmetric and 
that I@(x) = W[x,..., x] = (x)~. Equation (1) indicates that on the scalars 
multipower l%’ can be used to compute multilinear W. 

In an earlier study Schetzen [6] elevated Eq. (1) to operator form. Schetzen’s 
result is embodied in our first lemma. 

LEMMA 1. Let W be the symmetric n-linear generator of n-power m on H. 
Then W can be computed using I@ by the formula 

As with the power functions on the scalar field Lemma 1 can be verified by 
direct inspection. 

3. CAUSALITY PROPERTIES 

We now assume {H, P”} is a Hilbert resolution space and investigate the 
relative causality structure of multipower functions and their symmetric 
generators. 

LEMMA 2. Let symmetric n-linear W generate n-power ?V. If JV is causal, i.e., 
PtW = PtwPt, t E v, then W[xx, ,..., x,] is causal in every argument. 

Proof. Using Lemma 1 we have 

?z!PVqX~ ,...,x,] = Ptw $$ - ... -(-l)“-’ ;IP”w(xj) 
( ) 

= Ptw i PfXi - ... - (-l)n-l f P”W(Ptx,) 
( 1 i=l j=l 

= n!PtW[Pk, ,..., Ptxi]. 

Using this result and P, = I - Pt it follows easily that 

PtW[x, ,...) P,Xj )... ] = PtW[Ptx, )..., 0 )..., P%,] = 0, j = 2,..., n. 
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Since xj = Ptxj + (I - Pt)xj , j = 2,..., n, and using the multilinearity of W 
it follows that 

PtW[x, ,..., xj ,.. ., XJ = PtW[x, , . . ., P$ ,..., Xn] 

which completes the proof. 
The same algebraic operations work with I - Pt and using the definition 

of anticausality, Lemma 2 can be dualized. These results are all gathered in 
the next lemma. 

LEMMA 3. Let n-linear W generate n-power W. Then W is causal (anticausal, 
memoryless) if and only if W is causal (anticausal, memoryless) in each argument. 

A causal map f is prestrictly causal if for some finite mesh; di = Pi - Pi-l, 
such that CE, di = I, 

f z i AJ pi-l. (3) 
i=l 

LEMMA 4. Let symmetric n-linear W generate n-power W. If W is prestrictly 
causal then [x1 ,..., xn] is prestrictly causal in all variables. 

Proof. Since AiAi = 0 : i fj it follows that Eq. (3) holds if and only if 
Ai f  = AifPi-1, i = I ,..., N. The lemma follows then by an obvious modification 
of the proof of Lemma 3 above. 

Our attention turns now to the strictly causal class of functions. A sequence, 
{W,}, of n-power operators converges uniformly to a function f  if for arbitrary 
E > 0 there exists N such that Jj f  (x) - Wa(x>l~ < E jJ x jJD all x E H, a: > N. 
The sequence (W,} converges strongly to f  if for every x E H and E > 0 there 
exists N such that 11 f(x) - W,(x)lj < E all 01 > N. The strictly causal class 
changes with the type of convergence but fortunately the next results remain 
the same. To simplify matters we focus on the bipower case, the n-power proof, 
using Eq. (I), being a transparant modification. 

LEMMA 5. Let (We> 6 e a sequence of bipower operators which converges uni- 
formly (strongly) to bipower Wo . I f  W, and W, are the respective bilinear sym- 

metric generators then W, converges to W, uniformly (strongly). 

Proof (Strong Closure). For arbitrary x1, x2 E H and E > 0 pick N such 
that 11 W=(z) - W,,(z)/1 < 2613 f or 01 > N at the three points a = x1, x2, 
x1 + x2 . Then using norm inequalities on the identity 
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(Uniform Closure). Suppose now that for every l > 0, N exists such that 

II w&4 - Wo(4ll G 6 II x l12Y x E H. Using norm inequalities on Eq. (4) we have 

II W&I , %I - w&G , xzlll d 4% Xl + x2 II2 + II Xl II2 + II x2 I!“>. 

and hence 

Note now that W, - W, is bilinear and hence the proof is complete. 
Our final result in the present direction is the following: 

LEMMA 6. The bipower map WO is strictly causal if and only if its symmetric 
bilinear generator is strictly causal in each argument. 

Proof. If W is strictly causal then for every E > 0 there exists a mesh such 
that 

satisfies 

II ~44 - %l<~>ll e E II x II27 all x~H,ol>N, 

or for arbitrary x E H 

respectively. Using Lemma 5 we see that 

II W&I 9 x21 - W&, 9 xzlll < 32 II Xl II - II 372 II- 

Using Lemma 4 we see that W,[x, , x2] is prestrictly causal in each argument 
which completes the proof. 

To summarize our results, let {W, , n = O,..., N} be a family of n-linear 
symmetric operators. The function 

is poljmomic. 

THEOREM 1. f is causal (memoryless, strictly causal, prestrictly causal) if and 
only if the symmetric generator of each n-power component is causal (memoryless, 
strictly causal, prestrictly causal) in all arguments. 
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4. ~‘HE COUNTEREXAMPLE~ 

Let f be a continuous function on real separable H and KC H compact. 
It is known [4] that, for every 6 > 0, there exists a finite polynomic function, g, 
such that 

Furthermore, it is known [l] that, in L,(O, T), if f is causal (strictly causal, 
prestrictly causal) then g can be chosen with the same property. we demonstrate 
here, however, that a memorylessfexists for which no memoryless approximating 
polynomic operator exists. 

LEMMA 7. In L,(O, T) all bounded linear memoryless operators, T, are of the 
form (TX)(t) =f(t) x(t), t E (0, T), wheref(t) = (Tl)(t). 

Proof. Let y(t) = 1 on [0, T]; and let 

(Ty)(t) = f (6 t E 10, 4 

Consider an arbitrary step function x, that is, 

X(f) = 2 ciXAi(t>, CjE R, 
i=l 

where (Oi} is an arbitrary mesh with xAi(t) the characteristic function associated 
with Ai . Since T = Cc, A,TA, , we have 

= zl diTAi~i~di = (sl ci(AiTxd W) 

= tl w’if (t) = f (4 4th t E P, 4 

This is true for any step function and hence for all L,(O, T) since the step functions 
are dense. 

We consider now a bilinear operator W which generates the bipower m- 
From Theorem 1 above, I$’ is memoryless if and only if W is memoryless in 
each variable. This affords a relatively simple proof of 

1 The collaboration of T. Clark in constructing this section is happily acknowledged. 
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LEMMA 8. There are no nontrivial bilinear memoryless operators defined on 

all ofL,(O, 7). 

Proof. For arbitrary y, W[., y] is linear memoryless. Let 

f&) = (W 7 Yl)W, t E [O, 71, 

then using Lemma 7 

Wb9 Yl(4 = fuW 4t), t E [O, T]. 

In the same vein 

(5) 

WL? YIP) = f&> r(t)* t E [O, T]. 

Now for 1 (t) = 1, 

WLYIW = f%/(t) . 1 -fdt) .r(t), 

which, substituting in Eq. (5) shows that 

W[X> YIW = B(t) 44 YPh tE[o, 71, 

where Q = W[l, 11. However, 

JW, 4 = Q(t) X2(t), t E [O, 71, 

and since there exist points, x, on the unit ball of L,(O, T) whose square value 

is not in L,(O, T) the lemma follows. 
Using the same syle of proof it follows easily that every memoryless n-linear 

operator on L,[O, T] is of the form 

( Wbl ... x,])(t) = W[l,..., l] (t) x1(t) ‘.. x,(t), tE[O, T]. 

Hence there are no memoryless n-linear operators defined on all of L,[O, T]. 

In view of these results it would suffice to find a compact set, KCL,(O, 1) 
and a continuous function, f, on H such that the identity plus a constant does 

not approximate f on K. Our counterexample is somewhat stronger than this 
in that no memoryless multipower operators of order n 3 2 can exist on K let 
alone on H. 

EXAMPLE. Consider the function x,(t) = t-1/4 and the sequence {z,}, where 

z,(t) = 0 t c P, l/n), 
= x,‘(t), t e [l/n, 11. 
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We note that z,(t) < .zn+r(t) on [0, I] and moreover that 

-1 
J zn(t) dt = 

s 
’ t-‘/2 dt = 2(1 - n-1/2 ), 

0 1/n 

The monotone convergence theorem then applies with the result that x0 is 
square integrable and has the L,(O, 1) norm 

jl x: 11 = 2. 

While x0 EL~(O, 1) note that x0 $L,(O, I), indeed 

%s,l l 

x04(t) dt = @T j1 dtjt = In(l) - ljy In(c) = NJ. 

Moreover, by inspection it follows that x0 is not inL,,(O, 1) for any m = 3,4,.... 
Consider now the set K defined by 

K = {xr : q(t) = ~ t - r j-1/4, t, T, t - Y  E [O, l]}. 

Each X, is a translate of x0 and hence K CL,(O, 1). K is bounded, in fact 
11 X, /I2 < 2(2)li2 for every x, E K. From the above discussion it is also evident 

that K n L2,,(0, 1) = v  for m = 2, 3 ,.... We shall demonstrate first that K is 
compact. 

A well-known fact (see [4]) for sequences (fm} in L, is that: I f  fn 4-f a.e. 

and llfn II - llf II < ~0 then llfn -f II + 0. So let {fk} be an arbitrary sequence 
in K. Then {A> is a sequence in compact [0, I] and hence there exists a convergent 
subsequence {K’} with limit v  E [0, I]. This gives a subsequence (fk*} and 
potential limitf, . It is easily shown that 11 fk, II2 - 11 fn 11. A sketch of the functions 

fk, and f,. shows that fk, converges pointwise to f. . Thus the arbitrary sequence 
if?.> has a convergent subsequence and K is compact. 

W’e demonstrate next that no memoryless multipower operators, n > 2 
exist on K. Let S denote the step functions supported on [O, I]. Since S is 
dense in L,(O, 1) it suffices to consider a bipower map 

where p E S. 

VW = PW XV>, t E [O, 11, 

I f  p # 0 then there exists at least one interval Ai C [0, I] such that measure 
(AJ > 0 and p(t) # 0, t E Ai . Let Y E Ai and note that 

Iw(%)l(t>12 = tL2k) %4w, tEAi. 

However, by our earlier computation X, $L4(Ai) hence /j W(x,.)li = CO or W 
is not well defined on x, and hence K. 

This completes the counterexample and our study. 
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