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FIG. 2. The variation of the enhancement factors for the 
interfacial shear stress E, and E2 with the mass transfer rate. 

Both the equations possess the equal limits for 0 = 0 and 
@ + - m, but equations (3) and (4) for Q -+ + co yield E, = 0 
whereas equation (6) yields E2 -$ - co. This (- a), a change 
in sign, is not at all understandable. That means with 
conditions @ > 0 (by blowing velocity of gas phase) equation 
(6) produces the reversion of the shear stress, which is not at 
all feasible. 

A negative abscissa of Q, the uncoupled solution [equation 
(6)], predicts a greater enhancement factor with a maximum 
of 30 % at Q, = - 1.8 as compared with the coupled solution 
[equation (3)]. In Fig. 2 the course of both equations can be 

seen. For practical purposes and in the case where 0 is much 
greater when compared to u,, u, can be neglected but not 
otherwise. It is recommended when the velocity of the steam 
phase when compared to the velocity of the interphase 
liquid-gas is much greater and not for small differences, i.e. 
only when u./ii -+ 0. 

For the case that (0 - u,) goes to zero El and E2 tends to 
infinity but T? in both cases tends to zero as can be seen 
immediately from equations (3)-(6). 
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NOMENCLATURE 

fin thickness ; 
specific heat; 
emissivity ; 
heat-transfer coefficient ; 
thermal conductivity ; 
exponent of power law ; 
fin parameter ; 
heat-transfer rate ; 
dimensionless heat-transfer rate, qx,/bk (Tb 

L time ; 
T, temperature; 
Tbr fin base temperature; 
Te, environment temperature ; 
X, distance from fin base; 
x0, reference length ; 
X, dimensionless distance, x/x0, 

Greek symbols 

T,); a, thermal diffusivity, k/PC; 
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similarity variable, X/2 \/z ; 
dimensionless temperature; 
Stefan-Boltzmann constant: 
density ; 
dimensionless time, af/& ; 
perturbation parameter. 4N’s. 

I\ I'RODUClIOR 

THE TRANSIEN'I behaviour of fins is of importance in appli- 
cations such as electronic components, solar collectors, 
radiators on space vehicles. One basic problem is to predict 
how the fin responds when its base temperature undergoes a 
step change. For convecting fins with linear cooling law, the 
method of separation of variables can be applied to obtain the 
solution in series form. Such solutions have been reported by 
Donaldson and Shouman [1] for a straight fin and by 
Chapman [2] for an annular fin. The drawback with these 
solutions is that for small values of time the convergence is 
rather slow. Therefore as an alternative, Suryanarayana [3] 
used the Laplace transform technique which enabled him to 
derive rapidly convergent approximate solution for the early 
part of the transient. 

In some fin applications the analysis based on linear 
cooling law is not applicable because the process is governed 
by a power law type dependence on temperature, i.e. 8”. For 
example, theexponent m takes the values of0.75,1.25,3.0 and 
4.0 when the lin is cooled due to film boiling, natural 
convection, nucleate boiling and radiation to space at 
absolute zero, respectively [4]. Of these, only the case of 
radiating fin has been treated in the literature. The papers by 
Okamoto and Negishi [5] and Russell and Chapman [6] may 
be cited as representative contributions. In [5] a numerical 
scheme is used to predict the transient response of a finned 
tube-sheet radiator while in [6] the method of free-parameter 
is used to determine the base temperature-time variations 
which permit similarity solutions for an infinitely long 
radiating fin. 

With the foregoing in perspective, it seems desirable to 
develop a method of analysis for the transient response of a fin 
with a power law type cooling process, Such an analysis is 
presented in this paper using a coordinate perturbation 
expansion in dimensionless time. For the case of convecting 
fin (m = I), exact solutions of the sequence of perturbation 
equations are given in terms of repeated integrals of error 
function and the perturbation solution is shown to be 
identical to the exact solution derived using Laplace trans- 
form. For other values of m, analytical solutions of the 
perturbation equations do not seem feasible. These are solved 
numerically using the method of superposition [7] and results 
for nt = 2,3 and 4 are tabulated. In each case the perturbation 
expansion is terminated at the third term and its range of 
applicability is subsequently increased with Shanks transfor- 
mation From the temperature solutions, series for base heat 
flux are derived. It will be seen that the analysis gives accurate 
predictions over the major portion of the transient period. 

Formulation 
Consider one-dimensional conduction in a semi-infinite fin 

of uniform thickness, h. Let the fin be initially at the 
environment temperature T,. At time t = 0, the base 
temperature is suddenly changed to Tb. We assume that the 
heat dissipated from the fin surfaces follows a power law type 
dependence on temperature difference. As remarked earlier, 
this makes the analysis applicable to a number of physical 
situations. The choice of a semi-infinite geometry permits the 
transformation of the governing nonlinear partial differential 
equations into a sequence of similarity type linear per- 
turbation equations, The applicability of the results to finite 
fins will be discussed later. For constant thermal properties, 
the governing equation for the transient response can be 
written in dimensionless form as 

(1) 

.Q(O,T) = 1, 0(X,0) = U(r .T) = 0 (2) 

where except for N and 0 the symbols are as detined in the 
nomenclature. The parameter N and 0 are defined approp- 
riately in accordance with the mechanism of surface heat 
transfer. For example, with convecting fin (m = 1). A” =: 
2hxi/bk, 0 = (T - T,)/(T, - T,) and for a tin radiating to 
zero environment temperature (m = 4) N’ = 2EriT,)xg;‘hk 
and 0 = T/T,. 

Coordinate perturbation solution 
Let us assume a perturbation expansion in dimensionless 

time c as 

n-0 

where n = X/2,/r and E = 4N’r. Substituting equation (3) 
into equations (1) and (2) gives 

m (4) 
n=O 

n=O, O,=l, O,=O, n=l,2,3 ,_._ (5) 

?J = Z, 8, = 0, n = 0, 1,2.. (6) 

In equation (4) primes denote differentiation with respect to 9. 
We shall carry out the expansion to three terms. Equating 
coefficients of so, s1 and e’, we have 

P: eg + 2& = 0 (7) 

n=o, f&=1; ‘I=“, O,=O (8) 

s’ : 0; + 2n0; - 40, = 0; (9) 

n=o, 8,=0; ?r=x, 8,=0 (10) 

s2: 0” + 2~0; - 80, = mO~-‘O, (11) 

‘I=o, O,=O; q=r_, f&=0. (12) 

The zero-order problem defined by equations (7) and (8) is 
recognised as the classical problem of transient conduction 
into a semi-infinite solid. For the solutions of equations 
(9)-(12) we first concentrate on the case of convecting fin (m 
= 1) and demonstrate that the perturbation solution is 
identical to theexact solution which can be obtained with the 
aid of Lapiace transform. For m = 1, equations (9) and (10) 
and (11) and (12) can be solved in terms of repeated integrals 
of error function. Omitting the intermediate details, we give 
the 3 term perturbation solution as 

O=erfcn+c: i’erfcf7-berfcn 
i 

+ 2 
i 

Perfcn -$i”erfcn + AerfC,i 
1 

(13) 

where i” erfc n is the nth repeated integral of error function. 
The base heat-transfer rate in dimensionless form is given 

by 

4% 

Q = bk(T, - T,) 
= - L F(O). 

Z,,/T 
(14) 

Using equation (13) to evaluate V(O) we have 

(15) 

The solution of equations (1) and (2) for m = 1 can be 
obtained with the aid of Laplace transform and appears in 
terms of E and ‘1 as 
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+e@erfc(n +i.si:i)] (16) 

from which the heat-transfer rate follows as 

Using the series expansion expansion for the error function 
appearing in equation (17), it is easy to demonstrate that the 
perturbation solution (15) is identical to the exact solution 
(17). Although we have given only three terms in equation 
(15), we calculated two additional terms and found them to be 
identical to the corresponding terms of expanded version 
of equation (17). 

Deferring the discussion of the accuracy of the truncated 
perturbation expansion, we now consider the solutions of 
equations (9) and (10) and (11 and 12) for m = 2,3 and 4. It 
did not appear feasible to attempt exact analytical solution of 
these equations and were therefore solved numerically using 
the method ofsuperposition detailed out in [7]. The solutions 
are briefly tabulated in Table 1. From the numerical solutions 
the heat-transfer rate series follow as 

m = 2: Q&r = 1 + 0.183617~ - 0.010246~~ (18) 

m = 3 : Q&n = 1 + 0.147253~ - 0.010076~~ (19) 

m = 4: Q&7 = 1 + 0.1237578 - 0.007081a2. (20) 

DISCUSSION 

For brevity, we concentrate our discussion on the heat- 
transfer rate, which is of main interest, rather than the 
temperature distribution. Examining the case of convecting 
fin, equation (15), it is seen that the coefficients of the terms 
diminish very rapidly and therefore the solution may be 
expected to be valid even for E > 1 although E is originally 
stipulated to be less than unity. A simple calculation shows 
that up to E = 4, equation (15) gives negligible error compared 
to the exact solution. However, making a still bolder appli- 
cation and using E = 10, the error becomes 13% and thus the 
usefulness of the solution is limited. To extend its range of 
applicability we apply Shanks transformation [8] to equation 
(15) to obtain 

Q&r = 
1 + 0.291667~ 

1 + 0.041670~ 
(21) 

Equation (21) agrees to within 3% with the exact solution up 
to E = 10 and within 10% up to E = 30 which obviously shows 
a significant improvement over the original solution. To 

assess the accuracy of equation (21) we choose N = 5 keeping 
in mind that for N 2 3 a finite fin rapidly approaches the 
behaviour of an infinitely long fin. A plot of Q vs 7 based on 
equation (21) is compared with the exact solution in Fig. 1 
where the steady-state value Q,, is also indicated. It is evident 
that equation (21) gives a fairly accurate prediction over the 
entire transient period. However, it should be noted that the 
truncated expansion represented by equation (15) or (21) 
does not approach the steady-state value as equation (17) 
does for E + Y;. 

The success of Shanks transformation in the foregoing case 
encourages us to apply it to equations (lg)-(20). The results 
follow as 

m = 2 : Q Jn7 = ’ + o’2394181: 
1 + 0.0558011: 

(22) 

m=3: QJnz= 
1 + 0.2156791: 
_____ 
1 + 0.068426r: 

(23) 

m=4:QJns= 
1 + 0.180976~ 

1 + 0.0572 16r: 
(24) 

In order to assess the accuracy of equations (22))(24) a 
numerical solution of equations (1) and (2) had to be carried 
out on HP 3000 using an implicit finite difference scheme. 
These results are shown in Fig. 1 together with the results 
from equations (22)-(24). Also indicated are the steady-state 
values. Again, though equations (22))(24) do not approach 
Q., as E + 5, they cover the major portion of the transient 
accurately. In general, these equations are quite accurate up 
to the time when the transient heat flux is within about 7 U/, of 
the steady-state value. 

The response curves of Fig. 1 clearly show the influence of 
the exponent m. During the early part of the transient, m does 
not have much effect. This is understandable physically 
because initially the energy leaving the fin base contributes 
mainly to increase the internal energy of the fin, and the 
surface transfer mechanism exerts little influence. However, in 
the latter part of the transient the influence of m becomes 
quite significant. 

Regarding the assumption ofinfinite length, the analysis is 
quite appropriate for a finite fin when it is heated by laminar 
condensation or cooled by nucleate boiling because then a 
good fin design requires N > 4 as shown in [9, lo]. In any 
case, for N beyond 3 a finite fin rapidly approaches the 
behaviour of infinitely long fin, the results for N around 3 
would not be grossly in error and should be useful at least for 
preliminary calculations. In situations, where the values of N 
encountered do not justify the assumption. the present 

Table 1. Solutions for @i and 0, 

m=2 m=3 m=4 

rl e, x 10 e2 x lo2 er x 10 oz x lo2 8, x 10 8, x lo2 

0 0 0 
0.2 -0.273010 0.315857 
0.4 -0.338522 0.459346 
0.6 - 0.296490 0.440739 
0.8 -0.217648 0.340797 
1.0 -0.141389 0.227849 
1.4 -0.045014 0.074218 
1.8 -0.010389 0.017218 
2.0 - 0.004448 0.007378 
2.5 -0.000368 0.000611 
3.0 -O.OOOOOO O.OOOOOO 

0 0 0 0 
-0.194087 0.185854 -0.145910 0.120772 
-0.215816 0.236874 -0.148677 0.137742 
- 0.172802 0.200760 -0.112428 0.107797 
-0.118676 0.140994 -0.074876 0.072459 
- 0.073745 0.088315 -0.045903 0.044515 
- 0.022532 0.027072 -0.013935 0.013520 
-0.005146 0.006184 -0.003181 0.003087 
- 0.002201 0.002646 -0.001360 0.001320 
-0.000182 0.000219 -0.000112 0.000109 
-O.OOOOCCl O.OOOOOO - o.OOOOOo 0.000000 
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to deduce the corresponding results for the nonlinear cases. 
We have carried out this exercise and found that such 
estimates are fairly reasonable if not very accurate. 
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FIG. 1. Transient heat transfer rate. 

pattern of results can be used judiciously with results for finite 
convecting fins (available in [3] for N in the range 0.01 to 10) 
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