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Generalized site—bond percolation theory is utihized to provide an analog for a two-component liquid—vapor system in
the phase transition region. The percolation model exhibits a behaviour typical of a non-ideal real hiquid—vaper system with
features such as separate curves for the hquid and vapor phases, and mintmum and maximum azeotrope formation.

The analogy between phase transition processes and
percolation phenomena has been deterrined 1n recent
years. Kasteleyn and Fortuin [1] have shown that the
bond percolation model is a special case of the Ashkin—
Teller [2] and Potts [3] model for S-state atoms; thus
providing a theoretical foundation in utilizing the per-
colation model as an analog [4] for phase transition
phenomena. Recently Stauffer [5] has emphasized the
analogy between percolation, magnetization, hquid—
vapor transition and polymer gelation.

In this letter I would like to explore the analogy be-
tween the generalized site—bond problem [6] and a
two-component liquid—vapor system. In this system
the finite clusters and the infinite cluster provide the
vapor and the condensed phase analogs [5], respect:-
vely. The percolation threshold is reached when finite
clusters (““vapor’’) coalesce to form an infimte cluster
(“‘lhiqud™).

Let us now consider a percolation model for a binary
muxture of A and B atoms, randomly distributed over
a lattice. Each lattice site 1s cccupied with an A atom
or a B atom with a probability C, or Cy, respectively
such that C, + Cg = L. In a real hquid—vapor system
C4 and Cy would denote the mole fraction of the A
and B components.

Kasteleyn and Fortuin’s [1] prescription for the
bond probabilities can be extended to the generalized
site—bond problem. Thus, one could wnte the follow-
ing bond probabilities for the A and B atoms:
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Pap=1—exp(—pp/T), M)
pPag=1—exp(—Jg/T), (&)
ppg =1 —exp(—Jgg/T). (€))

Eqs.(1)—(3) correspond to the bond probabilities
between A—A, A—B and BB atoms, respectively.
JaA-JAp @nd Jgp are the corresponding interaction
parameters and 7 1s the temperature given in arbiirary
umits. There are several interesting limiting values for
eqs. (1)—(3). Setting J 5, p =Jgg =0, we get in the limit
as T—>0that pp 5> 1 and pog = ppp= 0 which corre-
spond to the pure site problem.

In the pure site (or pure bond) case the threshold
value C* defines a single point on the C axis for which
the percolation probability p(C) = 0. For all values
C> C*,p(C) > 0. In our site—bond case p is defined
by two independent variables C, and T thus, the per-
colation transition is defined by a curve p(C,, T) =0
which we named the critical percolation curve [6].

In an infinite percolating system the fraction of the
wfinite cluster, given by p, is a continuous function,
whereas at the critical points only the derivatives of p
are not continuous, implying that the percolation tran-
sition is second order. On the transition curve the com-
position of the “vapor™ coincides with the composi-
tion of the entire sample as the infinite cluster is pres-
ent in infinitestmal amount in the system. On the
other hand, the infinite cluster deviates from the system
composition. For a finite p, both the “liquid” and
“vapor” of the percolating system deviate from the
overall sample composition.

347



Volume 75, number 2

The binary percolation system is investigated by
utilizing the Monte Carlo method. A simple cubic crys-
tal (with cyclic boundary conditions} is simulated on
the computer. A and B atoms are generated at random
on the lattice sites. The bond formation for every two
nearest-neighbor atoms is determined by egs. (1)—~(3).
The system is then analyzed by utilizing the extended
[6] cluster multiple labeling technique {7] (ECMLT).
This method enables us to determine the number of
clusters and their sizes in the simulated lattice.

Simulating for a given set J5 4 ,Jop,and Jyp, One
starts at some C value and a temperature 7, high
enough, so that only small clusters are encountered in
the system. The system is then “cooled” until small
clusters condense to form a large percolating cluster*
at some threshold temperature 7. At the threshold
temperature the number of the A atoms is determined
for the large percolating cluster as well as for the re-
maining small clusters, Invoking the analogy between
percolation and the liquid—vapor system, we can now
determine the concentration of A atoms in the “liguid”
and “vapor” phases of the percolation model. Re-
peating the computer experiment for several values of
€, (and fixed J) we can determine the “liquid—vapor”
curves for the percolation model.

The results of the Monte Carlo simulation for three
sets of nearest-neighbor interactions J 5, Jop and Jgp
for simple cubic lattices containing 30° atoms are pre-
sented in figs. 1 and 2. Some interesting observations
for these curves can be made: (a) The “liquid™ and “va-
por” curves do not coincide for a given interaction
parameter set (except whenJy 4 =Jag=Jpp). (b) An
azeotrope Is formed at some concentration value €
for JAB >jAA andJAB >JBB, OIJAB <JAA and
I up <Jgp.{c) The “vapor™ curve for the A compo-
nent is essentially linear with the concentration for
Jap = T aa )2, In this case no azeotrope is
formed (see fig, 1),

It should be noted that in our computer experi-
ment the critical percolation curve {dashed line) which
represents the entire system composition does not
coincide with the sample “vapor” curve. This could be
attributed to the finite size of our sample. We expect
this deviation to decrease as we increase our sample

* Note that in the simulation we investigate a finite system for
which we have to define an “infinite” percolating cluster,
A practical solution to this prablem is described in ref. {7].
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Fig. 1. Percolation analog for a binary mixture (lattice size 30
% 30 % 30). (a) ‘,AA = (0.5, JAB = (.1, JBB = 0.4, “v” curve
denotes small cluster composition (*vapor’’) whereas 2" de-
notes the percolating cluster composition (*“liquid™). An azeo-
trope is formed at Cp = 0.45. The temperature T and the inter-
actions J aze given in arbitrary units, (8} J5 5 = 0.5, /g = 0.1,
Jap = (AA/BR)!/2. The dashed line denotes the critical per-
colation curve {6]. As expected, no azeotrope is formed for
this case. The linear behavior of the *v*’ curve is possibly due
to the geometric mean choice of JoR.

sizes. We hope also in the future to present data on
some of the critical exponents pertaining to our
“liquid—vapor” system.

At first glance the percolation model presented in
this letter seems to have a rather close resemblance to
the lattice gas model. However, it can be shown that
the two models are distinct. This distinction can be
best illustrated through the formalism presented in the
Kasteleyn—Fortuin [1] general cluster theory. In this
theory [1] the bond percolation problem corresponds
to a single-state atom whereas the Ising model, which
can be translated formally to the lattice gas models, is
based on two states per atom [8]. Hence the number
of possible lattice states is 1 and 27 for the percolation
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Fig. 2. Percolation analog for a binary mixture (lattice size

30 %X 30 X30) JpA = 045,74y = 0.6,/ = 0.1, Anazeo-
trope is formed at Ca = 0.75. (It should be noted that for

Ca > 0.7 the critical percolation cusve (dashed line) coincides
with the *v" curve.)

and the Ising models, respectively, at a given lattice con.
figuration where » is the number of atoms in the lattice,
Under these circumstances, there cannot be variation

in time for the percolation model. Monte Carlo time
evolution simulations {8--10] which proved to be use-
ful for the lattice gas model, are meaningless in the
framework of the percolation model. Metastable states
and supersaturation in finite systems [9] cannot be
described within the framework of the percolation
model, It should also be noted that the Kasteleyn—
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Fortuin cluster model [1] can be related to classical
thermodynamics which has been very useful in describ-
ing, among others, the macroscopic properties of binary
liquid—vapor systems {11},
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