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Generaked site-bond percolation theory is uttied to provide an analog for a two-component liquid-vapor system in 
the phase transltlon region. The percolation model exlubits a behaviour typical of a non-ideal real hqrud-vapor system with 
features such as separate curves for the hquld and vapor phases, and mimmum and mavrmum azeotrope formation. 

The analogy between phase transltion processes and 

percolation phenomena has been deternuned m recent 

years. Kasteleyn and Fortum [l] have shown that the 

bond percolation model is a special case of the Ashkin- 

Teller [2] and Potts [3] model for S-state atoms; thus 
provxhng a theoretical foundation in utlkzmg the per- 

colatlon model as an analog [4] for phase transition 

phenomena. Recently Stauffer [s] has emphasized the 

analogy between percolation, magnetization, hquld- 

vapor transItIon and polymer gelatlon. 
In this letter I would like to explore the analogy be- 

tween the generalized site-bond problem [6] and a 
two-component hquid-vapor system. In this system 
the fimte clusters and the mfiite cluster provide the 
vapor and the condensed phase analogs [S], respectx- 
vely. The percolatron threshold is reached when finite 
clusters (LLvapor”) coalesce to form an infmte cluster 
(“hquld”). 

Let us now consider a percolation model for a bmary 
rmxture of A and B atoms, randomly &stnbuted over 
a lattice. Each lattice site JS occupied with an A atom 

or a B atom with a probabtity CA or C,, respectively 
such that CA + CB = 1. In a real hquid-vapor system 
CA and C, would denote the mole fraction of the A 
and B components. 

Kasteleyn and Fortuin’s [1] prescription for the 
bond probabihties can be extended to the generalized 
site-bond problem. Thus, one could wnte the follow- 
ing bond probabihties for the A and B atoms: 
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(1) 

pm = I- exp(--JAB/T) , (3 

PBB = I- exp(-J&~ - (3) 

Eqs_(l)-(3) correspond to the bond probabdities 

between A-A, A-B and B-B atoms, respectively. 
JAA, Jm and JB~ are the corresponding interaction 
parameters and T IS the temperature given in arbitrary 
umts. There are several mterestmg limiting values for 
eqs. (L)-(3). Settmg JAB = JBB = 0, we get in the limit 

as T-t0 that pAA + 1 and pM =pBB = 0 which corre- 
spond to the pure site problem. 

In the pure sate (or pure bond) case the threshold 
value C* defies a smgle pomt on the Caxls for which 
the percolation probability p(C) = 0. For all values 
C> C*, p(C) > 0. In our We-bond case p is defined 
by two independent variables CA and TV thus, the per- 
colation transitron is defied by a curve p(C,, T) = 0 
which we named the critical percolation curve [6] _ 

In an infimte percohting system the fraction of the 
mfiite cluster, gwen by p, is a continuous function, 
whereas at the critical points only the derivatives ofp 
are not contmuous, Jmplymg that the percoliztiow trtztz- 
sition is second order. On the transition curve the com- 
posItion of the “vapor” coincides with the composi- 
tion of the entire sample as the infiiite cluster is pres- 
ent in inftitesunal amount in the system. On the 
other hand, the infinite cluster deviates from the system 
composition. For a finite p, both the “liquid” and 
“vapor” of the percolating system devlate from the 
overall sample composition. 
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The binary percolation system is investigated by 
utilizing the Monte CarJo method. A simpie cubic crys- 
tal (with cyclic boundary conditions) is simoJated on 
the computer. A and B atoms are generated at random 
on the lattice sites. The bond formation for every two 
nearest-neighbor atoms is determined by eqs. (J)-(3). 
The system is then analyzed by utilizing the extended 
f6] cluster multiple labeling technique [?J (ECMLT). 
TJsis method enables us to determine the number of 
clusters and their sizes in the sJmoJated Jrttice. 

Simulating for a gJven set JAA,JAB, and JBB, one 
starts at some CA value and a temperature T, high 
enough, so that only small clusters are encountered in 
the system. The system is then “cooled” until small 
clusters condense to form a large percolating cluster * 
at some threshold tem~eratore T,. At the threshoid 
temperature the number of the A atoms is determined 
for the large percolating cluster as well as for the re- 
maining small clusters. Invoking the analogy between 
percolation and the liquid-vapor system, we can now 
determine the concentration of A atoms in the “‘liquid” 
and “vapor” phases of the percolation model. Re- 
peating the cotnputer experiment for several values of 
CA (and fixed J) we can determine the “liquid-vapor” 
curves for the percolation model. 

The results of the Monte Carlo simulation for three 
sets of nearest-nejghbor interactions i 

4 
,+,JAB and JsB 

for simple cubic Jattices containing 30 atoms are pre- 
sented in figs. 1 and 2. Some interesting observations 
For these curves can be made: (a) The ‘liquid” and ‘Va- 
por” curves do not coincide for a given interaction 
parameter set (except when JAA =JAB =Jss). (b) An 
azeotropc is formed at some concentration value CA 
for JnR > JAA andJAB >$P, or JAB <JAA and 
$I*,u < .fPP. (c) The “vapor” curve for the A compo- 
nent is essentially linear with the concentration for 

JAB = tJAAJBBf i!2. In this case no azeotrope is 
formed (see fig. I). 

It should be noted that in our computer experi- 
ment the critical percolation curve (dashed line) whicfl 
represents the entire system composition does not 
coincide with the sample “vapor” curve. ‘This could be 
attributed to the finite size of our sample. We expect 
thjs deviation to decrease as we increase our sample 

’ Note that in the &mu&ion we investigate a finite system for 
which we have to define an “infinite” per~~tjng cIuster, 
A practioai %iuticn to this problem is described in ref. j7). 

0 0.25 OS 075 - 

cA 

Fig. 1. Percolation analog for a binary mixture (lattice size 30 
X 30 X 30). (a) JAA = O.$ JAB a 0.1, JBB = 0.4. V curve 
denotes small cluster ~m~s~tion (“vapor’l whereas ‘9” de- 
notes the percolating cluster camposition (“Jiquid”). An aeo- 
trope is formed at CA = 0.45. The temperature Tend the inter- 
actionsJar given in arbitrary units Q$ JAA = OS, $8~ = 0.1, 
JAB = (JAAJBB) In. The d&shed tine denotes the critical par- 
coiation curve fh]. As expected, no azeotrope is formed for 
this case. The linear behavior of the “v” curve is possibly due 
to the geometric mean choice Of JAB. 

sizes. We hope also in the future to present data on 
some of the critical exponents pedaling to our 
“liquid-vapor” system. 

At first glance the percolation model presented in 
this letter seems to have a rather close resemblance to 
the lattice gas model. However, it can be shown that 
the two models are distinct. This distinction can be 
best illustrated through the formalism presented in the 
~steleyn-F~uin f 11 general cluster theory. fn this 
theory [I] the bond percohtion problem corresponds 
to a single-state atom whereas the Ising model, which 
can be translated formally to the lattice gas models, is 
based on two states per atom [Sj. Hence the number 
of possjble lattice states is J and 2” for the percolation 
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Fle, 2. Percolation an&~ for a binary mkiture fIsttic@ size -. 
30 X 30 x 301. JAA = 0.45,JA3 a O.k.&B = 0.1. An aZe0” 

troue is formed nt CA = 0.75. {It should be noted that for 
CA‘> 0.7 the critic&erwlation curve (dashed line) coincides 
pith the “v”’ curve.) 

and the Ising models, respectively, at a given lattice con- 
figuration where n is the number of atoms in the lattice, 
Under these circumstances, there cannot be variation 
in time for the percolation model. Monte Carlo time 
evolution simulations [S-IO] which proved to be use- 
ful for the lattice gas model, are meanin~ess in the 
framework of the percolation model. Meta~sble states 
and supersaturation in finite systems 191 cannot be 
described within the framework of the percolation 
model. It should aiso be noted that the Kasteleyn- 

Fortuin cluster model [I ] cart be related to classicaJ 
thermodynamics which has been very useful in descrih- 
ing, among others, the macroscopic properties of binary 
squid-vapor systems [ 1 I 1. 
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