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The motions of a partial differential equation Lu = 0 are those changes of the 
independent variables that take solutions to solutions. The study of the motions 
can shed light on the structure of the equation and on its space of solutions. An 
extreme case is when there are no motions except the identity transformation, 
in which case we say that the equation is rigid. We show here that this extreme 
case can actually occur. Indeed, it appears from our methods that this is probably 
the generic situation. Let us be more precise. 

Let Lu = 0 be a partial differential equation satisfied by the function u = 

4% ,..., XJ in a region Q C Iw”. We say that a Cm map 9): Q --f Q is a P-motion 
of the equation Lu =: 0 if L(u) = 0 3 L(u 0 v) = 0. (It can be important to 
consider motions v that are not C”, but we do not treat this theme here.) The 
problem of analysis is to find all the motions-the problem of synthesis is to 
reconstruct L, as much as possible, from its motions. (See [2, 471). Such 
synthesis will be impossible if L is rigid, that is, has no motions except for the 
identity map. So it is natural to ask whether there exist any rigid partial differen- 
tial equations. There is a growing interest in questions of this kind. For a blanket 
reference, we give [l], which the interested reader may take as a starting point 
for investigating the literature. 

In this paper we provide a class of examples of linear partial differential 
equations with constant coefficients that are rigid on certain domains Q. By 
contrast, Laplace’s equation in two variables, for example, is far from rigid, 
allowing as motions any analytic (or conjugate analytic) map v from Q into Q. 

* The work of both authors was partially supported by separate research grants from 
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Our method gives some insight into the general problem of analysis in the con- 
stant-coefficient case on an arbitrary region C?. Perhaps, if pushed hard enough, 
it would enable the complete calculation of all the motions in this case. It shows 
that “in general,” the Jacobian matrix 9~ of any motion v must lie in a certain 
group of invariants of the homogeneous polynomial given by the highest order 
terms in L(i.e., the principal symbol of L). For Laplace’s equation, for example, 
this group is just the scalar multiples of the orthogonal transformations. Our 
main result is the following, in which we cannot yet handle the case n > 2 because 
of apparently technical difficulties. 

THEOREM. There is a constant-coeficient linear partial d$&rential equation 
Lu = 0 which is rigid on every bounded region in W, where n = 2. Further, if 
!J = W (again for n = 2), then the only motions of L are translations. 

Of course, each translation T(X) = x - 7, 7 E [w”, is a motion of any such 
equation, provided Sz is all of R”. Our proof proceeds by analyzing two semi- 
groups of invariants. 

DEFINITION. Let Q(t) =Q(& ,-.., 5,) be a homogeneous polynomial of 
degree m in n variables (real or complex). We let Go denote the class of all 
n x n matrices E such that for some scalar h # 0, Q(E[) = AQ(t) for all vectors 
6. The class SGo is defined the same way, except that we allow h = 0. 

Note that Go contains all scalar multiples of the identity. Further, unless Q 
is a function of fewer than n variables, Go consists only of nonsingular trans- 
formations-hence the letter “S” in “SGo” for “singular,” because SG, 
contains many singular transformations. For example if IQ(&) = 0 and if E is any 
map into the line joining 0 to &, , then Q(Ef) = 0 = 0 . Q(t), so that 
EESG,. 

DEFINITION. We say that Q is rigid when Go consists only of scalar multiples 
of the identity. 

For an n-tuple 01= (01~ ,..., a,) of integers, we write 1 01 1 = 1 4 / + ... + 1 01, I. 
Now let 

be a polynomial of degree m, and let 

be the principal symbol of P. We will consider the linear constant-coefficient 
operator L = P(D), where, as usual, 
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D = (& ,..., &) 

Da zzz 
p+...+rr, 

ax1a ... axn* . 

The main tool in our analysis of the motions is the following, which we will 
prove later. 

PROPOSITION 1. Let q~ !ZJ -+ 52 be a Cs motion of the equation P(D)u = 0. 
Then for every x E Q, (5$)(x) E SG, . Further, 

QG%J)W~) = fWQ(5), 
where His a Cm function on Sz. 

PROPOSITION 2. When n > 1, there exists a rigid homogeneous polynomial Q 
in 71 variables. 

Proof. Replacing E by AVinE, we see that it is enough to study the condition 
Q(E[) = Q(t). Each such condition gives an algebraic equation on the coefficients 
of Q and E. Hence, the condition that E must be the identity is generic. This 
means that either all homogeneous polynomials of degree m (for ?z fixed), with 
the exception of those whose coefficients lie in a proper algebraic variety in the 
space of coefficients, admit only E = ~1, where 01 is an nth root of unity, as a 
solution of Q(E[) = Q(e) for all .$, or else all homogeneous polynomials of this 
degree must admit a solution E f OJ. Thus, to prove that the generic Q of 
degree m is rigid, it suffices to exhibit one such Q. 

What is actually true is that in two variables, the generic Q of degree 34 is 
rigid, while those of degree 1, 2, 3 are not. This may be seen as follows. If 
Q(x, y) has degree m, then Q(x, y) is the product of m linear factors Zi(x, y) = 
six + biy . Any linear transformation E leaving Q invariant must permute the 
lines &(x, y) = 0. Thus, thinking of E as a transformation of the projective 
space P, we see that E must permute the points of Pi corresponding to the lines 
li . Now it is well known that any three points of P can be mapped to any other 
three points by a projective transformation, but for m > 4 this is no longer true, 
since the cross ratio of four points is preserved under a projective transformation. 
It follows that the generic polynomial Q(x, y) in two variables, of degree m 3 4, 
is rigid. 

We now state, without proofs, some relevant facts that are known to algebraic 
geometers. In n = 3 variables, no homogeneous polynomial of degree m ,< 3 is 
rigid. However, for degree m 3 4, the generic Q is rigid. An example is 

Q(x, y, z) = (9 + 2r” + 3z3)(x + y -t 4. 

A similar example works in n > 3 variables. In this case (n > 3), the generic Q 
of degree m > 3 is rigid. 
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We now use Propositions 1 and 2 to prove the theorem, keeping n = 2 
unspecified as long as possible. 

Proof of the Theorem. Let Q be a rigid homogeneous polynomial of degree m. 
We will find P in the form P = Q + R, where R f 0 is a polynomial of degree 
<m. If q~ is a Cm-motion of P(Du) = 0, then by Proposition 1, we have 
Q((Sp)(x)[) = H(x)Q((), where HE C”(sZ). Let 

u = {x E Q: H(x) i 0). 

We claim that U is open and closed in Sz. Since H is continuous, U is open. 
If x E U, then (BP))(X) = h(x)l. In particular, +,/ax, = 0 for i #j, and so 
cp(x) = (vi(xi),..., v,@,J), locally on U. Let us fix i. Now &/3xi = h(x), so that 
h(x) must be a function only of xi . Since KZ > 2, this implies that h is locally 
constant on U. Hence ~&c) = cxi + di for some constants c and di , locally on 
U. But the set of x E S;, on which vi(x) = wi + di is clearly closed, and (6+)(x) is 
constant on this set. Thus, we must have either U = Sz or U = D. This leads 
to two cases. 

If U = D (i.e., pi(X) = cxi + di for all x E Sz), then it is easy to complete the 
proof-we have to prove that c = 1. Suppose c # 1. Since R # 0, we can choose 
6 E @” so that P(f) = 0, but P(ct) $: 0. Then U(X) = e”” is a solution of 
P(D)(u) = 0. Hence also (U * v)(x) = const ecE.+ is a solution. But this implies 
P(ct) = 0, since P(D,) et’% = P(t) . eE.x, a contradiction which proves that 
c = 1 so that v is a translation. If Q is bounded then I+I must surely be the identity. 
This handles the first case. 

In the second case, we have 

for all x E Sz and all 5 E @“. Here is where technical troubles lead us to assume, 
from now on, that n = 2, so that Q is a product of linear functions. Let v, ,..., vk 
be unit vectors in @’ along the lines on which Q vanishes. Let ui ,..., ulc be their 
orthogonal unit vectors. We suppose now that R satisfies R(0) # 0, and that 
Q(f) + R(f) = J’(5) d oes not reduce to a constant on any of the lines {[ = tuj: 
t E C}. For example, the afline function 

will always have this property if fl and y are suitably chosen constants. Now if 
(5$1)(x) = 0 on Sz, then y is a constant map. Thus, if 6 is any zero of P(f) = 0, 
then U(X) = ee’” is a solution of P(D)u = 0, and so u 0 9 is constant. But P(0) # 
0, so the constant function is not a solution of P(D)u = 0. This rules out v = 
const. Thus (Bv)(x) must have rank 1 on an open set V in 52. From the equation 
Q(@J)(x)([)) = 0, we see that the range of 5@(x) must be contained in the union 
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of the lines that gives the zero set of Q. So, for some Vj , in terms of the ortho- 
normal basis uj , uj , we have 

(@J)(x) = (“!I “!‘). 

This implies that v(x) = A(x) zlj + CUj , on some open set V, where A(x) is a Cm 
function and c is a constant. 

Now the map t ti P(tuj) does not reduce to a constant, so we can find 5 = au, 
so that P(f) = 0. Hence, e *w+) is a constant on V, since uj is orthogonal to wj . 
But this is a contradiction because P(0) # 0 and thus P(D,)u = 0 has no solu- 
tion u = const on any open set. 

This proves the Theorem in the stated case n = 2. It would be good to find 
an argument that handles our second case (9~ is singular) for n > 2. 

It remains to prove Proposition 1, a “division lemma.” For this, we introduce 
what is essentially the symbol of P after the change of coordinates under v, 

F(x, 5) = e-~.~(5)P(D,) eC’pLG). 

Note that F: Sz x C” -+ @ is then a Cm map on G x C”, and a polynomial in 
f of degree <cm = deg P. 

LEMMA 1. IfP([) = 0, and ifg, is a C+notion of P(D)u = 0, thenF(x, [) = 
0 for all x E 9, even when multiplicities are taken into account. 

Proof. This means that for all x E Q 

-syf)=O, o<j 
a.$ 

<k> &F(s, 5) = 0, 
t3 

0 < j < k. (1) 

It is clear from the definition of F that F = 0 if f is chosen so that P(f) = 0. To 
handle higher multiplicities, we use the Leibnitz formula 

ai -- 
a&j 

(e~.~czc,F(x, 6)) = 1$’ (II) & [eJ.V’x)] -$$- [F(x, f)]. (2) 
1 

On the other hand, the left-hand side of (2) equals 

:f> P(D,)[e~‘~(5)] = P(D,) ($ ep.o-(x)) = P(D,)(uj(q(x))), (3) 

where 

z+(x) = 
aj 

- e”X = xijeP.s. 
afij 



RIGID PARTIAL DIFFERENTIAL EQUATION 131 

Next, recall the general Leibnitz formula (see [3, Eq. (1.4.12), p. lo]) that 

P(D,)[a(x) ef’z] = C (Dzya) 
Y 

where the sum is over all multi-indices y = (yr ,..., Y,J, and P(y)(s) = D,yP(&. 
Applying this formula with a(r) = xl, we see that the sum is only over those y 
of the form y = (0 ,..., 0, yi , 0 ,..., 0), with 0 < yi ,< j. Thus, 

~(D,)[u,(x)] = to $- &- [.q . Pco....,n.l,o....,o)(D,)[e&.~] 

(4) 

(The index vectors (0 ,..., 0, I, 0 ,..., 0), etc., have their non-zero entry in the 
ith place.) The assertion (1) follows from (2), (3), and (4). For if the condition on 
the left-hand side of (1) holds, then by (4), we have P(D.J[z+(x)] = 0 for 0 < j < 
k. Then because v is a motion, it follows from (3) that the left-hand side of (2) 
vanishes for all x E Q when 0 < j < k. Applying this successively for j = 0, 1, 
2 ,..., k - 1, we then obtain 

o=F(s,f)2!!p= . . . 
* = $F(X, c$) 1’ 

for 0 < j < k, which proves (1). 
As a corollary of Lemma 1, we have the following fact. 

LEMMA 2. If v is a Cm-motion of P(D,)u = 0, then 

F(T 4) = f4wf), 

where His a Cm function on G. 

Proof. The lemma is a standard “division lemma,” although we do not 
know an exact reference to this particular result. If F were analytic in X, then it 
would follow directly from, say, Theorem 9J, p. 29 of [8], and Lemma 1. A 
sketch of this kind of argument follows. First, use the Euclidean algorithm to 
divide F(x, 0 by P(e), F(x, 6) = H(x, &P(t) + +(x, 0, where r is a polynomial 
in 5 of smaller degree than P. However, because F and P vanish to the same order, 
it then follows that r(x, 5) must vanish to the same order as P, but this is impos- 
sible since it has smaller degree. Thus r(x, 5) = 0 so F(x, 5) = H(x, f)P(f). 
The fact that H(x, 6) = H(x) follows by comparing degrees. 

For the sake of completeness, we include a more detailed version of the argu- 
ment just outlined. 



132 RUBEL AND TAYLOR 

Let m = deg P. We shall prove that F has the form 

F(x, t) = f+, t)P(& (79 

where H is a C” function on !J x C” and P is a polynomial in 5 for each x E 9. 
Then because [++F(x, 6) is a polynomial of degree <m, it follows that the 
degree of 5 ++ H(x, 5) must be zero, and thus H(x, 4) = H(x). 

To prove (#), we make a choice of coordinates [ = ([i ,..., 5,) on @” such that 

m-1 

'(5) = '51)n + C cj(f, )..*y 6,) &j, c f 0, 
j=O 

(*) 

where co ,..., c,, -r are polynomials in f, ,..., 5, . Apply the Euclidean division 
algorithm to the polynomial 4, wF(x, 0 with divisor [i I+ P(f). We obtain 

F(x, 4) = ff(x, W’(E) + y(x, t), (A) 

where H, Y are polynomials in E1 , Y having degree <m. The coefficients of 
these polynomials are polynomials in the coefficients of [i H H(x, 5) and 
,$i H P(f). In particular, H is a C” function on 5? x PA and a polynomial in 5. 
We will prove that r vanishes identically by proving that for almost all choices of 
(& ,.‘.T [,), the polynomial of degree <m, given by [i H Y(X, [) has at least m 
zeros, counting multiplicity. 

Consider the factorization of P(t) as a product of prime powers, 

P(f) = n p,cyi, i=l (4 
where m = deg P = C m, di , df = deg Pi , and the Pi are distinct irreducible 
polynomials. Each Pi must also have the form (*) with m replaced by mi . For 
5’ = (5, ,..*, 5,) fixed, let olii = (~~~(0, for 1 <j < d, , denote the roots of 
.fl w Pi([) = P,(fl , f’). For almost all choices oft’, the roots {~ij: 1 <<i ,< di , 
1 ,< i < I} are distinct. (See [8, Theorem IOE, p. 3471). From the representation 
(cu), it is clear also that for such .$‘, with f = tij = (aij(c), E’), the polynomial 

must satisfy 

$P(O = 0 for 0 ,( k < mi . 
1 

Because of Lemma 1, the polynomial ti ++ F(x, 5) then also satisfies 

-$F(x,f) =0 for 0 < k < m, , 5 = &, 
1 
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so that by (A), [r t+ r(x, 5) has at least xi=1 mi di = m zeros (counting multi- 
plicities.) Hence r E 0, and the Lemma is proved. 

Proof of Proposition 1. (Now easy.) By the above Lemma, F(x, [) = 
H(x)P(s), and equating the terms of degree m yields the Proposition. 

We conclude the paper with some open problems. 

PROBLEM 1. What if we allow motions q that are continuous, but not Cm? 
For this we would count as solutions to Lu = 0 any function u that is the uni- 
form limit on compact sets of Cx solutions u, . Can L be rigid in this stronger 
sense ? One way to prove this would be to prove that every motion is the limit 
of C”-motions. This does not appear easy. 

PROBLEM 2. Classify, up to isomorphism, the semigroups S( L, Sz) of motions 
that arise for all choices of L and Q (see [4] for the case n = 1, where there are 
exactly nine isomorphic types possible). 

PROBLEM 3. Is every S(L, Q) isomorphic to an S(L’, Q’), where L’ has 
constant coefficients ? 
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