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The technique introduced here induces the organization of information in mem- 
ory from systematic inspection of regularities in free recall. The form of the 
representation of this organization is an “ordered tree.” The technique has the 
advantage of being based on a theory of the way in which the data were generated 
and can be shown to produce a unique structure that captures all the kinds of 
regularities the theory of recall prescribes. Also presented is a collateral technique 
for measuring the amount of organization evidenced in a struture, as well as a 
procedure for identifying errors. The experimental work shows the technique’s 
ability to recover the details of an organization presented to subjects and provides 
converging evidence for the particular structures induced from the pattern of 
recall pauses. In addition, the application of the technique to structures unknown 
a priori produced organizations that were easy to interpret and a second set of 
pauses that further confirmed the details of the induced structures. 

A number of contemporary topics in cognitive psychology involve in- 
vestigation of complexly organized knowledge bases and the mental pro- 
cesses that operate on them. For example, researchers in human factors 
engineering are concerned with building man-machine interfaces that are 
compatible with the knowledge the user brings to the situation. Research- 
ers in problem solving examine the changes in knowledge structures and 
mental operations that occur as one moves from the novice to the expert 
level. And, educators attempt to devise instructional programs that build 
complexly organized knowledge bases in the student. Essential to all of 
these investigations is a description of the form and the details of the 
psychological representation of the knowledge base. This paper intro- 
duces a technique that provides such a concrete representation of some 
aspects of the mental organization of complex categories, based on infer- 
ences from multitrial free recall. 

There are a number of other techniques that infer details of a subject’s 
mental organization. Selecting those that are appropriate for a particular 
investigation depends on a number of issues: the kind of behavior under 
investigation (e.g., similarity judgments, confusions, the order in which 
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items are recalled, recall pauses, etc.), the form that the inferred organi- 
zation is to take (e.g., a configuration in n-dimensional space, a rooted or 
unrooted tree, a set of overlapping clusters, etc.), and, most important, 
the kinds of questions one wants answered (e.g., questions about graded 
properties of the objects, about which items function together as a 
chunk, etc.). 

The technique most commonly used for inferring the mental organiza- 
tion of a set of items is multidimensional scaling (Shepard, 1962a, b; 
Kruskal, 1964a, b; Cunningham & Shepard, 1974). This technique begins 
with a matrix of psychological distances, which may be obtained from any 
one of a number of tasks: direct similarity judgments of all pairs of ob- 
jects, frequencies with which pairs of items are sorted into the same 
category, discriminative reaction times, confusion errors, or average 
number of items recalled between two items in a free recall task, to name 
a few. The result is a configuration of the objects in n-dimensional space 
that preserves individual pair-wise distances as closely as possible. The 
investigator’s task is to interpret the dimensions and to make inferences 
about the relative distances among the objects according to the purpose of 
the study, e.g., which of a set of animal names is most central to a 
particular cluster (most prototypical), or which vowel sound is most likely 
to be confused with what other sounds, etc. 

Because a multidimensional scaling configuration is located in a con- 
tinuous space, this technique best answers questions about graded prop- 
erties (e.g., prototypicality, strength of an association) of items, prop- 
erties that are expected to vary continuously. It easily represents judg- 
ments about physical dimensions such as brightness, shape, or numerical 
magnitude, but may not be as illuminating about objects that are expected 
to form discrete clusters. A good example of this point is shown in the 
work of Sattath and Tversky (1977), in which a multidimensional scaling 
configuration of animal names (well-organized taxonomic categories) had 
dimensions and distances that were difficult to interpret, whereas a hier- 
archical configuration had clusters and nestings that were easily identified 
from known relationships between the objects. In fact, Holman (1972) has 
made this dichotomy explicit, showing that if distances perfectly tit the 
assumptions of hierarchical clustering, they are necessarily incompatible 
with the assumptions of multidimensional scaling, and vice versa. 

A number of theoretical advances have provided analyses of distance 
matrices that result in more discrete configurations. To mention a few, 
Johnson’s (1967) hierarchical clustering scheme produces a tree with 
clustering level indicating distances between objects; Cunningham’s 
(Note 1) analysis produces a “weighted free tree,” a graph structure in 
which distances are proportional to the path length between two objects; 
and Shepard and Arabie’s method (1979) produces a configuration of 
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overlapping clusters that is typically represented by closed curves around 
items in a two-dimensional scaling solution. 

One clear advantage of all these techniques is that they start with an 
atheoretical distance matrix, a very rich set of data that can be derived 
from a number of tasks. There is, however, an attendant disadvantage to 
this generality of application. Often these techniques are applied mechani- 
cally, regardless of the origin of the psychological distances, whether they 
come from confusions or recall orders. Moreover, any analysis of a dis- 
tance matrix is already several steps away from the data and from 
regularities-perhaps inexpressible in a distance matrix-that might re- 
veal important properties of the mental processes that produced them. 

Two further problems plague analysis of distance matrices. First, dis- 
tances derived from direct similarity judgments are limited in reliability; 
they change with the context in which the particular items are judged 
(Arnold, 1971). Second, analyses of distance matrices usually require that 
the distances by symmetric. Yet, in some cases the psychological pro- 
cesses involved produce distances that are clearly asymmetric. The final 
configuration must then fail to capture the potentially important kind of 
regularity. 

The results from Friendly’s (1977) use of Johnson’s hierarchical clus- 
tering scheme on free recall data is such an example. Friendly filled a 
half-matrix with symmetric distances derived from multitrial free recall 
data, where distance was a function of the average number of items re- 
called between two items, regardless of the order of recall. But there is a 
lot of ordering in free recall. The recall processes that generate the data 
are likely to produce asymmetric distances. Given that some items in 
memory are organized as a list, a + b + c + d, the distance from an item 
outside this list to d is going to be large (in that the subject probably 
recalled a, b, and c before getting to d), but the distance from d to that 
outside item is going to be very short. Such directional organization in 
recall (recalling some items as short lists) is evidenced so often that early 
measures of the amount of subjective organization (e.g., Tulving, 1962) 
were based solely on them (see Shuell, 1969, for a review). Graesser 
(Note 3) and Jantz and Underwood (1958) have shown a second form of 
asymmetry in free recall: The ability of a cue to elicit recall of an item is 
not always the same as that of the item for the recall of the cue. Associa- 
tions are often asymmetric, .and an investigator who uses an analytical 
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further difficulty for the investigator trying to make reliable mferences 
about the “true” psychological representation. 

Recently, behaviors other than those easily converted to “distances” 
have been examined with an eye toward inducing the underlying organi- 
zation of information in memory. Since the order of recall seems clearly to 
reflect underlying organization (as in “free association”), many have fo- 
cused on regularities in recall. For example: (1) Because subjects often 
alternate series of correct responses and errors in learning a serial list, 
Bower and Winzenz (1969) and Martin and Noreen (1974) defined serial 
cluster (or chunk) boundaries as those points at which many anticipation 
errors occur during learning; (2) Because pauses in recall occur at bound- 
aries of experimenter-defined chunks (Bower & Springston, 1970; Mc- 
Lean & Gregg, 1967; Gelfand, Note 2), Chase and Simon (1973a, b) as- 
sociated chunk boundaries with long pauses; (3) Bushke (1976) developed 
a “2-D” recall method in which he asks each subject to indicate his 
introspecive organization by writing associated clusters of items near 
each other on a recall sheet; (4) Similarly, Reitman (1976) and Egan and 
Schwartz (1979) asked their subjects to reveal their organizations by 
drawing closed curves around those elements that they felt were function- 
ally related. 

Although these techniques use behaviors that are clearly related to the 
underlying organization, they have not evolved into the most useful kind 
of representation. The data are typically unreliable: Pauses are highly 
variable (see Reitman, 1976) and introspective reports can change with 
the subject’s perception of the intent of the inquiry. Furthermore, the 
representations typically include only one level of structure, although 
Reitman’s drawn enclosures technique did indicate some overlapping 
clusters and some nestings. 

Recently, more precise, sophisticated techniques specifically intended 
for free recall data have been developed. These techniques differ from 
those discussed since they scrutinize the set of recall orders itself, not a 
derived distance matrix. They differ from multidimensional scaling in 
particular on two important aspects as well: They produce a 
hierarchical-not spatial-representation, and thus answer questions 
about discrete-not graded-properties of the data, such as which items 
function together as a chunk in memory and perception. 

These techniques have also been developed by two investigators out- 
side our own laboratory: Monk (1976) and Vorberg (Note 5). All three 
techniques are based on the premise that subjects proceed very regularly 
when recalling complexly organized material, and recall all elements of 
one chunk before moving to the next. The techniques capitalize on this 
regularity by inspecting the strings of items produced in free recall for 
chunks, which are defined as sets of items that are consistently recalled 
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together without other items intervening. Although both the Monk and 
Vorberg algorithms share the spirit of our technique, they are deficient in 
subtle, but important, respects. Both analyze recall strings “bottom up.” 
Each chunk is identified and labelled by a symbol; the recall strings are 
rewritten with the symbols replacing the chunked elements, and then 
examined for second-level chunks. Again, these strings are rewritten with 
new symbols representing the second level chunks and are then reexam- 
ined for third-level chunks, and so on. Eventually, all strings will be 
rewritten as a single symbol. The process is then reversed to display a 
chunk hierarchy. 

Vorberg uses rewriting without regard for the items within a chunk,’ 
while Monk’s algorithm rightly recognizes two kinds of directionality in 
chunks. Distinctions are made between those chunks whose constituents 
(either items or other chunks) have always been recalled in the same order 
(unidirectional), those whose constituents were recalled in one order or its 
inverse (bidirectional), and those in which items were recalled in a variety 
of mixed orders (nondirectional). Monk’s algorithm is, in fact, the one we 
began our investigation with. Our subsequent mathematical investigation, 
involving the application of lattice theory to this problem, has shown that 
when chunks are identified “bottom up,” even with directionality incor- 
porated, the resulting tree may not be independent of the order of exami- 
nation of strings. Thus, even Monk’s algorithm may not find all the 
structure in the strings, since premature rewriting will prevent recognition 
of chunks at higher levels. Our algorithm proceeds “top down,” to pro- 
duce both a unique, complete solution and to identify higher order direc- 
tionality that Monk’s algorithm can miss. Monk claims that his algorithm 
captures all the regularities of chunking and directionality evidenced in 
the data (the “most parsimonious representation”) when in fact it does 
not.2 

In the following section, we introduce a technique for inducing the 
organization of discrete information in memory from a set of free recall 
orders. The technique, based on a theory of free recall, produces a unique 
structure that captures important regularities in the data-all those pre- 
dicted by the theory of recall. In addition, a measure of the amounf of 

1 Given the recall strings B-Q-M-C-J and C-J-M-Q-B, the Vorberg algorithm will 
induce (((BQ)M)(CJ)) if it searches the strings in the listed order and ((CJ)(MQ)B) if it 
searches them in the opposite order. The meaning of the parenthesis notation can be found 
later in this paper. 

* Given the same recall strings, B-Q-M-C-J and C-J-M-Q-B, the Monk algorithm 
designates the structure as ((BQM)[CJ]), and misses the chunks QMCJ and MCJ. Our 
algorithm finds (BQM[CJ]). The Monk structure has a PRO of ln(4), while ours has a PRO of 
ln(2). Premature rewriting of BQM in the first step of the Monk algorithm precluded recog- 
nition of the chunks QMCJ and MCJ. 
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structure in a hierarchy is introduced, along with an important procedure 
that allows detection of errors. Our experimental work focuses on valida- 
tion; the free recall strings of subjects taught a particular organization 
were analyzed, and their trees were compared with the structure pre- 
sented. These same subjects were tape recorded while they recalled, al- 
lowing us a look at the correspondence between the subjects’ induced 
structures and the pattern of pauses, and providing converging evidence 
for the veridicality of the induction technique. In addition, the technique 
was applied to information for which the organization was not known a 
priori, to show face validity in a more natural setting. 

The Technique 

An important part of the development of this technique involves 
theorizing about the processes that direct the subject’s free recall. The 
data are examined for the kind of regularities these processes would pro- 
duce, and the underlying structure is inferred from them. It is important to 
note at the outset that, regardless of the merits of our particular recall 
model, the technique produces a concise description of persistent chunk- 
like regularities in the data, regularities that must be explained by any 
theory of recall. 

The fundamental assumptions of our free recall model are that the items 
are organized into chunks and that the subject recalls chunks as units, 
recalling all of one chunk before proceeding to the next. This set of as- 
sumptions, more specifically, concerns the mental organization of these 
chunks and the mental processes that operate on their structure to pro- 
duce the chunk patterns observed in free recall strings.3 Following 
Johnson (1972), we assume the chunks are mentally organized into a 
hierarchical tree whose terminal nodes represent the to-be-recalled items 
and nonterminal nodes represent mental codes for their constituents. The 
recall process (described by a traversal rule) operates on this hierarchy to 
produce recall orders. We extend this tree model of recall by assuming 
that traversal of the structure can be constrained by directionality at the 
nodes; the mental structure is thus called an “ordered tree.” The con- 
stituents of some chunks (unidirectional chunks) can be accessed in only 
one order, as in reciting the alphabet. Others (bidirectional chunks) can be 
accessed in a single order or its reverse, as in counting up to or down from 
ten. Still others (nondirectional chunks) can be accessed in any order. As 
in the ordered tree of Fig. 1, unidirectional chunks are marked by single- 
headed arrows over the constituent links (as in node 3), bidirectional 
chunks by double-headed arrows (as in node l), and nondirectional 
chunks by the absence of an arrow of either kind (as in nodes 2,5, and 4). 

3 See Discussion section for an examination of the consequences if either or both of these 
basic assumptions is violated. 
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BC 
FIG. 1. An example of an ordered tree over the items labelled A through H. 

In free recall the subject traverses an ordered tree, beginning at the root 
node, and descends the nodes until a terminal item is reached. Upon 
recalling that item, he moves up to its immediate superior node and de- 
scends its constituent links until all of its descendent terminal items have 
been recalled. The order of processing of the constituents of any node 
must, of course, be consistent with its order type. Once all of that node’s 
descendents have been recalled, traversal is resumed at the immediately 
superior node, and each of its constituents are descended until alI of its 
terminal items have been output. Traversal continues in this fashion until 
all items of the required set have been recalled. There is only a limited 
number of recall orders that can be produced under these traversal con- 
straints, and the terminal items subsumed by any node will appear as a 
chunk in each of them. 

Consider the example tree shown in Fig. 1 that represents a subject’s 
presumed mental organization of items A-H. The recall rule prescribes 
that if the subject begins recall with item B, he will then recall C (com- 
pleting chunk 5), then item A (completing chunk 2), then D-E-F and 
G-H. Or if the subject begins with G, he will then recall H (completing 4), 
then D-E-F (completing 3) then either A then B and C, or B and C then 
A (completing 5 before 2). There are exactly 16 linear orders of the 
objects that can be produced by such traversals, and they all preserve the 
essential chunk structure inherent in the tree. 

The technique is applied to data in the form of a set of complete recall 
orders.4 To collect appropriate data, subjects are asked to recall a large, 

* Completeness of trials is crucial for this technique. When data are missing the inves- 
tigator has several choices. One is to look at only those items that are recalled on all trials, 
appending incompletely recalled items to the resulting structure as “leaves” at points where 
the data indicate. Another is to modify the algorithm’s search for chunks so that omissions 
are simply ignored rather than considered as chunk-violations. The former choice is prefer- 
able because the second is extremely expensive (the number of candidate chunks to be tested 
grows enormously) and there is no guarantee that the solution obtained is unique (i.e., it may 
depend on the order in which candidate groups are tested). 
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well-learned set of items many times from many different starting points. 
It is important that the data include no omissions or intrusions, and that 
the subject give us a sample of the variety of orders he can produce. To 
induce variety, on some trials the subject is asked to recall freely (i.e., 
start with any item he chooses) and on other trials he is required to start 
with a “cue” item and those that “go with it.” This cueing breaks any 
recall stereotypy that may build up in a session, and encourages variety. 

From this set of cued and noncued recall strings, the algorithm effi- 
ciently finds the set of all chunks and represents this set as an ordered 
tree. In particular, the algorithm recursively examines the strings “top 
down” for chunks. The set of all such chunks forms a lattice which is then 
converted to a tree, with directionality indicated where appropriate.5 
Equivalently, it can be written in the form of an expression with par- 
entheses designating nondirectional chunks, square brackets unidirec- 
tional chunks, and angle brackets bidirectional chunks. 

An important detail of this technique involves appropriate analysis of 
the cued trials. Since the cue item may be part of a chunk whose traversal 
is disrupted by the cueing process (directional chunks are particularly 
vulnerable), only that part of a cued trial that is assumed undisrupted 
should be analyzed. The disrupted and undisrupted segments of recall 
strings are identified in an initial step of the algorithm. First, the highest- 
level disjoint chunks-formed by the subtrees of the root of the tree 
induced by all recall orders, without regard for cueing-are identified. 
Second, in each string the effects of cueing are assumed to be limited to 
the highest-level chunk that contains the cue item. As a result, the part of 
each cued trial that involves traversal of the cued subtree is not used in 
the search for structure; only the latter parts, those involving natural 
traversal of the noncued subtrees, are used to build a second tree whose 
subtrees have the detailed structure induced from the noncued traversals. 
It follows that only noncued trials may be examined for the directionality 
of the root.6 

5 An ordered tree is selected as the primary representation of a chunk lattice because it fits 
some current ideas about chunk structures and the way they might be traversed to produce 
the order of recall. There are, of course, other ways to represent the chunking patterns 
revealed by our analysis, such as the set of rewriting rules, or productions, of a formal 
grammar. The program that embodies our algorithm can be obtained from the authors, in 
either RATFOR or FORTRAN versions. 

6 Cued trials are additionally used to indicate further partitioning of unidirectional chunks 
where appropriate. Undisrupted (noncued) recall of unidirectional chunks provides no in- 
formation about where internal chunk boundaries are; we cannot infer boundaries without 
differences in recall order. However, we can (and do) induce further partitioning of uni- 
directional chunks from the regularities in the cued portions. Thus, final ordered tree 
representations are constructed by joining inferences about nested unidirectional chunks 
from cued portions to normal inferences about structure and directionality from noncued 
portions. 
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As an example of the operation of this algorithm, assume that the fol- 
lowing strings represent five trials of a subject’s recall of the items A-H, 
organized in an unknown ordered tree. Though not illustrated here, every 
item should be used as a cue at least once, and a number of noncued trials 
should be interspersed. In this brief example, the italicized items indicate 
the cue on a cued trial: 

1. ABCDEFGH 
2. FDEHGACB 
3. HGCBADEF 
4. GHDEFBCA 
5. CBADEFHG 

In these strings, the largest nonoverlapping chunks (the subtrees of the 
root) are ABC, DEF, and GH. That is, the tree induced by all five trials, 
ignoring cueing, has the structure ((A(BC))((DE)F)(GH)). Having iden- 
tified the subtrees of the root, we assume the effect of cueing to be limited 
to the traversal of the cued subtree, and use only undisrupted traversals to 
build tine structure for each subtree. To further analyze ABC, we look 
only at Trials 2-5, since Trial I was cued with a member of the ABC 
subtree. In these trials, we find chunks BC, A, B, and C. To further 
partition DEF, we ignore Trial 2 (since it contains a cued instance of this 
chunk), and find DE, EF, D, E, and F. Examining Trials 1,2,4, and 5, we 
find GH partitioned simply into G and H. The complete lattice for these 
chunks is shown in Fig. 2. 

Converting this lattice to an ordered tree illustrates the correspondence 
that can be shown to exist between chunk lattices and ordered trees. After 
deleting the empty chunk we can see that, although parts of this lattice 
already have the form of a tree, it also contains cycles formed by overlap- 
ping chunks, such as DE and EF. However, the common inclusion of E in 
both DE and EF simply indicates that E must lie between D and F in 
every recall order. Likewise, the inclusion of DEF in both ABCDEF and 
DEFGH implies that DEF always occurs between ABC and GH. Exami- 
nation of the actual recall strings reveals the kind of directionality: DEF is 

The subtrees of the root. 

FIG. 2. Lattice display of the chunks found in the example recall strings. 
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unidirectional, while the root node is bidirectional. The resulting ordered 
tree is that shown in Fig. 1. The expression for the tree of Fig. 1 is 
(GWQWWW-O) . 

The amount of organization. Accompanying this initial work was the 
development of a measure of the amount of organization in an ordered 
tree. Previous efforts to attach a number to the amount of organization in 
free recall have typically considered only the number of strictly ordered 
groups occurring over trials, and thus have ignored the multilevel nature 
of the structure and the variety of ordered regularities possible (e.g., 
Tulving, 1962; reviewed by Shuell, 1969; but see Pellegrino, 1971, who 
recognizes the variety of directionality possible). Obviously, many as- 
pects of an ordered tree may be used to describe its organization: its 
depth, the average size of the lowest level chunks, the average number of 
branchings at each level, to name a few. Moreover, different aspects may 
predict different behaviors related to organization (e.g., learning diffi- 
culty, long-term retention). At the outset, however, we have adopted a 
measure that seems to describe at least one important aspect of an or- 
dered tree: the amount of variety the tree allows in the production of 
recall orders. The more structure there is, the less variation the subject 
has shown in recall, and the smaller is the set of recall strings that follow 
from that structure. 

Our measure of the amount of organization in an ordered tree is the 
PRO, or “possible recall orders.” It is the natural logarithm of the number 
of different recall orders that can be obtained by traversal of a given 
structure, or, alternatively, of the number of recah orders that contain its 
chunks. The extreme range of the untransformed values makes logarithms 
convenient. If n items are completely unstructured, the PRO is In (n !). If 
they are completely organized into a single, unidirectional chunk, the 
PRO is ln( 1). In calculating the PRO, each node of the tree is examined in 
turn, and a count is taken of the number of different ways its constituents 
can be ordered. The PRO is then the natural logarithm of the product of 
the counts from all the nodes. For example, the tree of Fig. 1 has two 
possible orders from the top node, 2! from node 2, 2! from node 5, one 
from node 3, and 2! from node 4. The PRO of this tree is 
ln(2x2!x2!xlx2!) = ln(16), i.e., there are exactly 16 strings over the 
items A-H that contain the chunks of the lattice of Fig. 2. We use the 
PRO both as a descriptor of ordered trees and as an essential tool in the 
procedure we use to identify errors, described next. 

Detecting errors. Our algorithm is extremely sensitive to errors, such as 
might occur when a subject intends to recall a particular item next, but 
temporarily forgetting it, continues his recall omitting that item, then later 
tacks it on to the end of the recall string. Just one inadvertent change in 
the position of an item will prevent the algorithm from detecting its true 
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association to a chunk. Since people do occasionally make such errors, 
and since we wish to accurately represent structure in the face of errors, 
some procedure is necessary for detecting the rare misplacement of items. 

The goal is to identify any recall trial that is very unlike the others, in 
the sense of implying a structure very different from that induced from the 
others-an “outlier” recall string. The procedure we have adopted is a 
variant of the general data-analysis procedure called “jackknifing” 
(Mosteller & Tukey, 1977), which involves systematic repeated analyses 
of a data set in which one element is left out at a time. To understand our 
use of this procedure, imagine that in a set of trials, one trial includes the 
misplacement of an item or group of items. If the algorithm induces a tree 
from all trials, that anomalous trial will prevent the identification of the 
chunk or chunks that it alone does not contain. Suppose, then, that a tree 
is induced for each subset of the recall trials, excluding one trial at a time. 
The tree that is induced when the error trial is excluded will be much more 
structured than the others. The chunk that was hidden by the error will 
now appear, and the resulting tree will have a PRO that is markedly lower 
than the PRO of the other trees (those that result from the deletion of 
other trials). Thus, if the PRO of a tree induced in the absence of a 
particular trial is significantly lower than that of the others, that trial is 
identified as atypical and excluded from further analysis. As is usual in 
jackknifing, significance is determined by assuming that the PROS of all 
such subset trees are random and independent events, and using a t- 
distribution to determine confidence limits for the mean PRO value. 

This procedure is very efficient for finding errors that occur only once, 
and can find all one-trial aberrations. Though it will not label as an error 
any anomaly that characterizes more than one trial, we considered this a 
small fault. If an error occurs twice, perhaps it should not be labelled an 
“error.” 

Validation 

Three steps have been taken toward validating this technique for in- 
ducing ordered trees from free recall: In Experiment I, subjects were 
taught a particular organization of 24 words. From their free recall orders, 
the tree for each subject was induced and compared to the organization 
taught. In the same experiment, the time at which each item was recalled 
was recorded and then examined for correspondence to predictions from 
a simple model of recall timing from the tree. And, in Experiments II and 
III, free recall data were analyzed in domains in which there was no 
experimenter-defined organization, and the resulting trees were examined 
for face validity. In Experiment II psychology undergraduates and their 
instructor recalled course keywords, and in Experiment III computer 
experts and novices recalled computer language keywords. 
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FIG. 3. Hierarchical arrangements of words from Experiment I. 

EXPERIMENT I 

Comparing the Induced Structures to a Structure Known a Priori 

To assess the validity of this technique, we examined the free recall 
data from 20 subjects who were taught a particular organization of 24 
words, an organization in which the words were grouped into three- 
tuples, and the three-tuples into six-tuples. The words were displayed to 
the subject as shown in Fig. 3. Subjects were told to learn only the words 
at the bottom of the hierarchy, and that the labels at the nonterminal 
nodes were presented only for clarity. Subjects were asked to learn the 
words at their own pace, alternating study-test trials at will. When they 
had successfully recalled the 24 words correctly on two trials in a row, the 
formal part of the data collection began. At this point, subjects were asked 
to recall the 24 items 24 times, beginning each trial with the cue word and 
those that “go with it.” 

Each word in the set served as the cue word on one trial; on each trial a 
different word in the set served as the cue word. In this experiment, no 
noncued trials were given, so there is no direct evidence for directionality 
at the root of the induced trees. For this reason, all structures in Experi- 
ment I are conservatively represented with nondirectional roots. The 
vocal responses were tape-recorded for later transcription of both recall 
strings and interresponse times. 

The recall strings from each subject were first “jackknifed” to elimi- 
nate errors, then analyzed into an ordered tree. For these 20 subjects, 
jackknifing revealed an average of 2.4 trials per subject (a range of O-4) 
that were significantly unlike the rest, indicating an error. 

The 20 induced structures correspond remarkably well to the structure 
presented, with two common, minor kinds of variations: Some of the 
structures show that presented three-tuples were not combined into six- 
tuples (i.e., subjects were not using the “material” dimension-wood, 
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Prnmtd Structurr 

FIG. 4. Four subjects’ organizations and the presented organization in Experiment I. 

cloth, metal, or paper), and many included additional directionality where 
the presented organization was, of course, not explicitly directional. The 
presented structure, and the induced trees of four representative subjects 
are shown in Fig. 4. The structures are displayed here without labeling the 
terminal items, since the correspondence among trees was so high that the 
terminals on the induced trees could be ordered as in Fig. 3. Occasional 
exceptions involve only idiosyncratic ordering within unidirectional 
three-tuples , 

The four trees shown represent the range of structures obtained. Sub- 
ject 13 is typical of 7 of the 20 subjects; his structure corresponds to the 
presented organization with the addition of some directionality and 
further chunking within three-tuples. The other three trees span the vari- 
ety of trees of the other 13 subjects. Subject 5 organized the items into 
three-tuples, but systematically avoided joining them into six-tuples. 
(Ovals in these figures indicate the “joins” that are missing.) Subject 15, 
on the other hand, organized some items into the six-tuples, but did not 
chunk within the six-tuples. Subject 8, our worst subject, showed a mix- 
ture of extra partitioning, some directionality, a loss of six-tuple joins, and 
a complete “bushing” of one six-tuple. The PRO of the presented struc- 
ture is 20.3; those for the 20 induced trees ranged from 0.7 to 27.8, with a 
median of 13.3. 
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The correspondence between the presented tree and those induced for 
the subjects was assessed in two ways. The first involved simply counting 
the number of chunks in common. That is, if one subject grouped items 
A-F as ((AB)[CDE]F) and the presented structure had been 
([AB](CF(DE))), then chunks AB and DE are shared, but not CD, CDE, 
or CDEF. The presented tree has 12 nontrivial chunks (four 6-tuples and 
eight 3-tuples). The subjects’ trees shared on average 10 of these (both 
mean and median) with a range of 6 to 12. In a second assessment of 
structural correspondence, we counted the number of each subject’s re- 
call trials that could have been produced by traversal of the presented 
hierarchy. For seven subjects, all the recall trials tit the presented struc- 
ture. For the remaining subjects, 46% of the trials could not have been 
produced by traversal of the presented structure, but, of these, 82% broke 
only a single six-tuple join. The others broke individual three-tuples. 

Converging evidence from recall timing. A commonly held view about 
how the structure of information affects the timing is that the time be- 
tween recall of items within the same chunk should be shorter than the 
recall of items that are separated by chunk boundaries. This hypothesis is 
the basis of the Chase and Simon (1973a, b) technique for partitioning 
recall into chunks, and has been shown to be a strong correlate of orga- 
nized recall in the work of Kellas, Ashcraft, Johnson, and Needham 
(1973); Murdock and Okada (1970); Patterson, Meltzer, and Mandler 
(1971); Pollio, Richards, and Lucas (1969); Pollio, Kasschau, and DeNise 
(1968); and Gelfand (Note 2). It seemed appropriate in this investigation, 
therefore, to examine interresponse times in recall to see if the induced 
hierarchical structure could account for systematic variations in the 
pauses in recall. 

The timing of recall from these subjects was determined from the tape 
recording of the recall sessions. The two-track tape was slowed to half- 
speed, and monitored by an assistant who then manually recorded a sharp 
tone on the second track whenever a word was uttered. This tape was 
then played at normal speed to a PDP-1 computer that measured the time 
in milliseconds between the tones on the second track. Since the times 
between recalls ranged from 300 msec to 9 set, the variability introduced 
by the assistant’s reaction time in this transcription procedure was con- 
sidered negligible. Because of the large range of times, we report times in 
centiseconds. 

Figure 5 shows the mean interresponse times between successive re- 
calls for each recall position. It is clear that subjects recalled items in 
three-tuples, pausing on average an additional full second between each 
three-tuple. This sort of summary description, however, averages over all 
the variety of structures the individual subjects produced, and gives no 
strong support for our particular technique. 
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OUTPUT POSITION RECALL 
FIG. 5. Interresponse times at each output position in the recall strings. 

Previous analyses of the pauses in free recall have typically compared 
only pauses between items within a chunk to pauses between items in 
different chunks. Our structures, however, are much richer and allow a 
much more detailed analysis. We can correlate times with the number of 
chunks boundaries crossed and the directionality of the chunks involved. 

To examine pauses for our trees, we used a simple timing model. We 
posited that the greater the distance traversed in accessing the next item 
in the tree, the more time should be required for its recall. The distance 
between the two items was obtained by counting the number of nodes in 
the tree that separate them. For example, in the hierarchy in Fig. 1, B to C 
involves a distance of one, C to A two, and C to D four. Defining distance 
in this way allows a partition of all the interresponse times produced in the 
experiment (N = 7500) into categories that reflect the individual subjects’ 
trees. The relationship between this measure of distance and average 
pause length is shown in Fig. 6. In general, as distance increases, pauses 
get longer. To assess the significance of this relationship, we fit a regres- 
sion line to each subject’s mean interresponse times as a function of the 
associated distances in his tree. The mean of the slopes of these regres- 
sion lines over the 18 subjects having more than one distance is 18.6 
csec/unit distance, a value significantly larger than zero, t(17) = 4.76, 
p < .Ol. 
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FIG. 6. Interresponse times as a function of distance traversed in the induced tree, dis- 
tance being a count of the number of intervening nodes. 

This significant increase in response time with simple tree distances, 
though encouraging, does not show the full extent of the relationship 
between the structure induced for an individual subject and that same 
subject’s pattern of recall pauses. Figure 7 shows four trees with the 
average interresponse times written at the nodes. The numbers in the 
nodes are the averages of the interresponse times between items for which 
that node is the highest node to be traversed between them. For example, 
Subject 8 took on average 45 csec in recalling C after B, 70 csec recalling 
B after A, 86 csec recalling D after C, and 116 csec recalling J after C. This 
figure shows the structures and times for the four subjects described 
earlier. In general, it demonstrates a good (but not perfect) corre- 
spondence between structure and time: the larger the distance between 
two items, the longer the pause separating them. 

To analyze the significance of the correspondence between these inter- 
response times and tree structures, we first annotated each subject’s tree 
with the times, as shown in Fig. 7. If times are related to these structures 
as predicted, then there should be an order relationship between the times 
at the various nodes. For example, for Subject 8, the node representing 
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FIG. 7. Interresponse times superimposed on four subjects’ ordered trees. Each time 

listed is the average of those times between items for which that node is the highest node 
traversed between them. 

recall from B to C has, as predicted, a smaller mean interresponse time 
than that from B to A, which involves traversal through more nodes. 
Thus, the order relation between the times shown at these two nodes fits 
the prediction. We counted the number of such order relations that fit the 
order relation predicted by the structure, including both adjacent and 
distant relations. To assess the significance of this statistic (called “Ord”) 
within each subject, we estimated the underlying distribution by cal- 
culating Ord for 10,000 random assignments of the set of a subject’s actual 
times to the nodes of his structure. The probability of the obtained Ords 
appearing by chance was estimated to be less than .05 for 16 of the 20 
subjects (less than .Ol for 9 of these) and less than .10 for the remaining 4. 

One central feature of the technique is the identification of consistent 
recall directionality. The question arose in the analysis of pauses, then, 
whether that directionality had any corresponding evidence in timing. 
Because directionality is found at widely different points in the 20 sub- 
jects’ structures, the analysis reported here is restricted to pauses only 
within the kind of substructure that every subject had, an induced three- 
tuple. Table 1 lists the average pauses within induced three-tuples for the 
different kinds of three-tuple organization evidenced. Subjects are slower 
in recalling from a nondirectional three-tuple than from a unidirectional 
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TABLE 1 
Pause Length as a Function of the Kind of Partitioning Within a Three-Tuple 

Kind of three-tuple Average pause PRO 

Nondirectional: 
Three-tuple 
Subpartitioned 

Unidirectional: 
Partitioned with 
nondirectional 

Partitioned with 
nested unidirectional 

Not partitioned 

(XXX) 
(ww) 

([xxlw 

rwwl 
G=m 

Pwx11 
[[xxlw 
[x=1 

(74) 1.8 
((6W2) 1.4 

Wl67) .7 

[63(65)1 
WWI 

.7 

.7 

W’Wl1 
[[4W'l 
[491 

0 
0 
0 

one, t (22) = 4.19,~ < .005, where the data for the 1 test were the means of 
interresponse times for particular three-tuples for particular subjects. Di- 
rectionality does have a correlate in timing. 

EXPERIMENT II 

Structures of Course Keywords for Students and the Instructor 

This experiment and the next demonstrate the face validity of the in- 
duced trees, and illustrate the variety of materials that can be accommo- 
dated by the technique. 

On the first day of an introductory psychology class, students and the 
instructor were given a list of 16 words to memorize in any order they 
wished. The words were psychology keywords that had technical mean- 
ing for the instructor, but had either a normal, nontechnical meaning (e.g., 
“staircase”) or no meaning (e.g., “Mach”) for the students. After the 
subjects had memorized the list, they produced one complete, noncued 
recall each day for 10 days (illustrating a second way to induce variety, or 
reduce stereotypy). Figs. 8, 9, and 10 show three illustrative trees from 
the 20 class members. The instructor’s organization (Fig. 8) appears to be 
based on the terms’ underlying technical meanings. For example, “hue” 
and “saturation” are dimensions of color, “rank” and “mode” are 
statistical terms, etc. Subject 3’s structure (Fig. 9) is an example of a 
loosely alphabetic organization; it is similar to those of about half the 20 
students. Alphabetizing is an appropriate mnemonic strategy for unorga- 
nized items, and indicates that while these students are sophisticated 
learners, they know little about the words’ underlying organization. It is 
also evident that the degree of organization, per se, is not to be equated 
with expertise, since some of these Naive subjects have highly structured 
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FIG. 8. Instructor’s organization of psychology course keywords. 

trees. Subject 8 (Fig. 10) illustrates the unorganized “bushiness” of most 
of the remaining trees, with one striking exception. Ths student appears to 
know something about both the Pandemonium model of pattern recogni- 
tion (“Pandemonium,” “feature,” and “demon” cluster) and lateral in- 
hibition as an explanation of Mach bands (“Mach” and “lateral” cluster). 

EXPERIMENT III 

Structures of Computer Reserved Words for Expert and Novice 
Programmers 

This study, part of the work of McKeithen (Note 4), illustrates an 
application of this technique to characterizing differences in ex- 
pert-novice knowledge structures. 
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FIG. 9. Student’s alphabetic organization of psychology course keywords. 

McKeithen was concerned with the differences between expert and 
novice programmers, and focused on the way they use their knowledge to 
understand an unfamiliar program. She asked ALGOL W Experts, 
Novices (students just finishing their first ALGOL W course), and Naives 
(students enrolled in an ALGOL W course, but tested on the first week of 
class) to reproduce a short program after a series of 2-min presentations. 
Experts not only did better than the others, as expected from past work 
on chess, Go, and electronics experts (Chase & Simon, 1973a, b; de- 
Groot, 1966; Reitman, 1976; Egan dz Schwartz, 1979), but also organized 
their recall around lines of the program that contained related ALGOL W 
keywords. To further examine the structure of the associations among 
these keywords, McKeithen had her 22 subjects repeatedly recall 21 of 
ALGOL W’s keywords (the “reserved words,” those that cannot be used 
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Mach 
FIG. 10. Student’s bush-like organization with clustering of words related to Pan- 

demonium and Mach bands. 

by a programmer as variable names).’ Each subject recalled the 21 items 
25 times. Four of the trials were not cued, and each keyword served as a 
cue on one trial, as in Experiment I. Each subject’s recall strings were 
then converted into an ordered tree. 

The trees of one Naive subject and one Expert subject are shown in 
Figs. 11 and 12. They illustrate the general pattern of results: Experts tend 

’ Since interresponse times were to be measured, only the one-syllable reserved words 
were used. Four other words, ABS, DIV, SHL, and SHR, which might be considered 
one-syllable, were not included in the set because pronunciation difficulties might have 
adversely affected the times. As a result, such chunkable words as END appear unas- 
sociated with any chunk because their natural chunk-mates, e.g., BEGIN, were eliminated 
from the set as two-syllable words. 
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FIG. 11. Expert’s organization of ALGOL W reserved words with inter-response 
noted at each node. 

times 

to organize keywords according to their functional meaning, for example, 
grouping related concepts like WHILE-DO and FOR-STEP accord- 
ing to their function in iterations. Naives, on the other hand, though 
they have as many groups as Experts (the mean PRO for Experts is 6.79; 
for Naives it is 7.92) seem to base them on common-language associations 
rather than on computer functions. Furthermore, Experts were similar in 
their patterns of organization, while the Novices and Naives organized 
the words more idiosyncratically. One way to see this is to count the 
number of chunks in common for all members of a skill level, as in Ex- 
periment I. Neither Naives nor Novices shared any chunks. The Experts, 
on the other hand, all produced chunks containing TRUE-FALSE, 
CASE-OF, and THEN-ELSE. Since there were no commonalities 
within either the Novice or Naive groups, there could be none across 
groups. 

Though there were no chunks common to all subjects, there were some 
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FIG. 12. Naive subject’s organization of ALGOL W reserved words with interresponse 
times noted at each node. 

common to many subjects. Common language associations led many of 
the subjects, regardless of level, to cluster LONG-SHORT and 
TRUE-FALSE. Associations specific to ALGOL W, such as 
STEP-FOR and CASE-OF, were clustered by most of the Experts and 
Novices, but never by the Naives. 

This study also provided additional evidence for a relationship between 
structure and interresponse times. As in Experiment I, recall was tape 
recorded and transcribed into pauses. The structures in Figs. 11 and 12 
are annotated with the average pauses at the nodes, using the procedure 
described in Experiment I. Inspection of these figures shows an excellent 
correspondence between the pauses and the induced structures. Of the 15 
subjects whose times were collected and whose structures were neither 
wholly bushes nor single unidirectional chunks, four had Ords significant 
at less than .05, and six more with too few nodes to possibly reach signifi- 
cance had all order relations in the predicted direction. Of the remaining 
five subjects, three were close to significance, having only one violation 
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of the predicted order (Ords were 4/5, 7/8, and 7/8), and two were not 
significant (12/17 and 2/5). In general, as in Experiment I, interresponse 
times were clearly correlated with distance in the induced trees. 

DISCUSSION AND SUMMARY 

This work shows that the task of recalling known items many times 
from many different starting points can reveal meaningful facets of the 
underlying organization. Since the task of recalling a large number of 
items is difficult, people are impelled to use any underlying associations 
they may have to aid them. And, the resulting recall regularities reveal 
some of that organization of information. Moreover, as these two latter 
studies show, this technique has the potential for diagnosing the kinds of 
organization of knowledge students have when they enter a field of study, 
and might be useful in assessing the growth of their knowledge as they 
progress toward the expert level. 

One unique aspect of this technique is its identification of directionality 
between chunks at all levels in a hierarchy. The value of this identification 
appeared at three points in the studies presented here. First, pauses were 
significantly shorter for ordered as opposed to unordered three-tuples 
(Experiment I). Second, without knowledge of directionality, it would 
have been impossible to label the students’ organizations in Experiment II 
as “loosely alphabetical.” Third, in Experiment III both Expert and 
Naive computer programmers chunked DO and WHILE, but differed in 
the order in which they were recalled. For Naive subjects, the order [DO 
WHILE] reflects common language usage, whereas the Expert order, 
[WHILE DO], is clearly based on the natural order in ALGOL W itera- 
tion statements. Directionality appears frequently in free recall; our or- 
dered trees capture and display it at many levels. 

One limitation of this technique involves directionality. Though we can 
correctly identify chunk directionality, we do not identify more general 
precedence relationships. For example, in our analysis, the recall orders 
ABC, ACB, and CAB produce a bush, (ABC), that does not reveal that A 
always preceded B. Our algorithm ascribes directionality only to contigu- 
ous chunks and ignores such loose precedence relationships. 

A second unique aspect of the technique is that it produces detailed 
organization that is highly reliable. Any chunking or ordering identified is 
present in the noncued portion of all trials. There are, of course, draw- 
backs to this requirement of explicit reliability. Though jackknifing can 
identify single-trial errors, it cannot identify pairs of identically erring 
trials (unless one also systematically deleted all pairs of trials, etc.). And, 
one should not infer from a bush that there is no organization. Bushes 
could result from either a different kind of recall rule or a different kind of 
memory structure, as described below. 
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We have shown here that our technique provides reliable, interesting 
descriptions of some of the regularities in recall and represents them as an 
ordered tree. The conclusions that could follow from this work are at two 
levels: The first conclusion involves the technique only as a descriptor of 
recall regularities; the second involves inferences about the true underly- 
ing mental representation of organized information and the recall pro- 
cesses that operate on it. 

The technique does describe regularities that appear in multitrial free 
recall. The description involves specification of the chunk contents, their 
hierarchical nature, and directionality of recall where appropriate. Is an 
ordered tree a useful representation of these kinds of regularities in recall? 
First, we have achieved success in applying this technique to recall; we 
revealed a great deal of structure. This supports the common conception 
that information is stored in some format akin to chunks and that people 
recall them with some regularity. This regularity must be explained by 
whatever theory of recall and memory that we end up with. 

Second, a description of this kind lends itself well to the examination of 
questions relating to other measurable aspects of recall. For example, 
what recall process produces the distribution of pauses in recall of orga- 
nized material? What determines the ease of learning another related 
organization? And, how are judgments of similarities affected by different 
kinds of underlying organization? Having reliable, detailed descriptions 
provided by ordered trees serves as a platform from which to begin to ask 
these specific questions. 

The second conclusion, dealing with whether the true underlying or- 
ganization is an ordered tree or not, is tenuous at this stage of our investi- 
gation. That we found a great deal of the kind of structure we were looking 
for does not confirm our model of recall. Some other kind of process 
operating on another kind of structure might produce the orders of recall 
and the kinds of regularities that our ordered trees summarize. A prob- 
abilistic grammar is an example, albeit one that is so closely related to tree 
traversal as to be almost indistinguishable. Or, recall could be produced 
by some kind of regular retrieval process operating on a matrix (Broad- 
bent, Cooper, & Broadbent, 1978) or a network. We rely on converging 
evidence (e.g., pauses, ease of transfer to a new structure, etc.) to test the 
reality of this kind of representation, and will continue with ordered trees 
until we can find another model of recall on another memory structure 
that accounts for the regularities observed here and more (e.g., account- 
ing not only for chunks, directionality, and hierarchical inclusion, but 
loose precedence relationships as well). 

As a descriptor, this technique has application to tasks and topics out- 
side those of recall from memory, most notably to topics in decision 
making and perception. It can summarize regularities in a set of linear 
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strings of any objects. In the work reported here, these strings are as- 
sumed to be generated in recall by traversal of a hierarchy in memory. 
But, any time a set of items is repeatedly ordered (by either a single 
subject or many subjects), and the chunking and ordering of these data are 
of theoretical interest, the technique is applicable. For example, within 
the area of decision making, when people rank their preferences for a set 
of objects, they typically are inconsistent. This inconsistency suggests 
that the underlying representation of these preferences is not a linear 
order, but an ordering on equivalence classes. (For the classic exploration 
of preference orders, see Coombs, 1964.) If we ask a subject to produce a 
set of preference orders and the orders differ from each other, an ordered 
tree of preference classes could be induced. 

Similarly, in perception, the strings could be derived from reproduction 
of a visual pattern (much like the “Perception task” of Chase & Simon, 
1973a, b; and Reitman, 1976; in their examinations of perception of game 
positions). From the orders in which the constituents of the pattern are 
produced, it would be possible to induce the structure of the perceptual 
chunks. 

In summary, the technique introduced here induces the organization of 
information in memory from systematic inspection of regularities in or- 
dered strings, here the order in which items are produced in free recall. 
The representation of this organization takes the form of an ordered tree. 
The technique has the advantage of being based on a theory of the way in 
which the data were generated, and can be shown to produce a unique 
structure that captures all of the kinds of regularities the theory of recall 
prescribes. Also presented is a collateral technique for measuring the 
amount of organization evidenced in a structure, together with a proce- 
dure for identifying errors. The experimental work has demonstrated (1) 
an ability to recover the details of an organization presented to subjects 
and (2) converging evidence for the structures induced from the pattern of 
recall pauses. In addition, the technique’s application to structure un- 
known a priori was shown to produce organizations that were easy to 
interpret and pauses that further confirmed the details of the induced 
structures. 
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