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Radiative corrections to the two-gamma decay of parapositronium are examined. Special 
care is taken in the handling of the so-called binding diagram; in particular, the limiting 
procedure related to the infrared divergence is considered carefully. The general covariant 
gauges and the Fried-Yennie gauge are used in the computation to see that gauge invariance 
is accounted for. The order 01 correction of Harris and Brown is confirmed. In addition, 
from a sharp peak of the matrix element at low momentum and the low-momentum correc- 
tion to the wave function, an ae In M-I correction is derived. 

I. INTRODUCTION 

The decay rate of parapositronium into two gammas was calculated to order 01 by 
Harris and Brown [l] on the basis of an earlier calculation of Compton scattering [2]. 
While the experimental measurement [3] made so far is not accurate enough to test 
the theoretical prediction, an ongoing precision measurement of the Michigan group 
is expected to test the result of Harris and Brown. 

The development of the study of the orthopositronium decay into three gammas is 
more of a zigzag story. Although earlier experiments [4] agree with the order 01 
calculation of Stroscio and co-workers [5], recent experiments of the Michigan 
group [6] indicate a significant discrepancy with the theoretical result as well as the 
earlier experiments. A subsequent calculation [7] give a result which was in dis- 
agreement with the previous calculation, and was consistent with the Michigan 
experiments [6] within 2 standard deviation. A more recent experiment [8] confirmed 
the result of the Michigan experiment. 

In theoretical calculations of positronium decay, the treatment of the binding 
diagram has been the most subtle part. In earlier work [l], dropping the Sommerfeld 
factor was the key to eliminate double counting of the binding force and the radiative 
correction. A considerable refinement of the argument was attained in more recent 
work [7], but the limiting procedure related to the infrared divergence and the low- 
momentum expansion of the matrix element is less than clear cut. 

In this article, we present a calculation of the order 01 correction to paraposi- 
tronium decay, in order to clarify the subtlety of the binding diagram treatment. In 
order to see that gauge invariance is accounted for, we have used the general co- 
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variant gauge in the computation. Although the positronium decay matrix element 
should be infrared divergence free to order ty, the usual procedure of on-mass-shell 
renormalization introduces artificial infrared divergences for individual diagrams. 
This makes some complication in the binding diagram in particular. We have used the 
Fried-Yennie gauge [9], too, since this gauge eliminates the infrared divergence from 
the individual diagrams. 

The plan of the articIe is the following. Section II gives the order a: correction to 
parapositronium decay and Section III derives an 01~ In 01-l correction. A discussion is 
given in Section IV and the Appendix shows the details of the computation and 
relevant formulae [7]. 

II. RADIATIVE CORRECTIONS OF ORDER 01 

The amplitude for parapositronium decay into two gammas can be written 

A = --i (&3,2 s %a(~; k, k’) ~,dp) d4p8(4)(K - k - k’) (2.1) 

with 

WP; k k’) = (Cc’y) MP; k, k’)(v) + (; z ;:) , (2.2) 

where (k, , EJ and (k: , EL) are the momentum and polarization vectors of the two 
photons, the momenta p1 and p2 of the electron and positron pair are related to 
K = p1 + p2, p = (pl - p,)/2 which, in the c.m. system, gives 

K” - = k = m - ; = m - & + o(mo14), 
2 

with 
y = ma/2. 

The Bethe-Salpeter wave function for positronium is expressed as 

(2.3) 

to the order required [lo]. The 4 x 4 matrix C is the charge conjugation matrix and 
is given by 

C= -Lx,. 

The zeroth-order amplitude is obtained by using the lowest-order matrix element 

WP; k U = WY(P, - W + 4, (2.4) 



PARAPOSITRONIUM DECAY 465 

and computing at p = 0. We thus get 

tr {(a,(od)(ak)(ae) - o,(ae)(ak)(cse’)) $1 d4plY4)(K - k - k’) 

=- (21T)4 21’2e2 (k . E x E’) &4’(K - k _ k’), 
2m3(%-a3)1 JZ 

where the singlet wave function is defined by 

s tr(u2&# dp, = 2~9sW1~2i 
and the Schrodinger wave function for the singlet state 

with 

a = 2/m& = l/y (2.8) 

(2.5) 

(2.6) 

(2.7) 

is used. The decay rate computed from Eq. (2.5) gives 

po, 
lso+zv = mct5/2. (2.9) 

The diagrams contributing radiative corrections of order 01 are given in Fig. 1. They 
are (a) the self-energy correction, (b) the vertex correction, and (c) the binding dia- 
gram, in which the wavy line represents the photon propagator. From (c), the contri- 

(ai (b) 
III - 

(cl Cd) 

‘p 1 x j cp 
(4,) (d’) 

FIG. 1. Diagrams which contribute order 01 corrections to parapositronium decay. (Crossed 
photon diagrams are not shown.) 

595/=8/2-15 
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+I-- ---I-=- 

FIG. 2. Diagrams which are incorporated to eliminate the ultraviolet divergence and to give 
coupling constant renormalization. (Crossed photon diagrams and diagrams for bound-state wave 
function renormalization are not shown.) 

bution of diagram (d) in which the dotted line stands for the Coulomb interaction 
yc , must be subtracted, since the Coulomb interaction is already included in the 
Bethe-Salpeter wave function. On the other hand, the Bethe-Salpeter equation 
enables us to write down the contribution from (the lowest order matrix element) x 
(wave function) as (d’). The reason for using the form (d’), instead of (d,,) is to avoid 
computing the correction to the wave function which would give an order 01 correction 
for the decay rate. In other words, using the diagram (d’), instead of (d,) is equivalent 
to including the correction to the wave function in the computation. The total contri- 
bution to the decay amplitude is then symbolically expressed as 

(a> + @I + (4 - (4 + (0. (2.10) 

To these, the diagrams of Fig. 2 should be added. But this addition is equivalent to 
absorbing the ultraviolet divergences into the Z renormalization constants and 
replacing the coupling constant by the renormalized one. (Wave function renormaliza- 
tion of the bound state is also necessary.) 

One may think that the contributions of(d) and (d’) in Eq. (2.10) cancel each other 
exactly. This is not the case in a guage where an infrared divergence is artificially 
introduced by the on-mass-shell renormalization procedure. In fact, all diagrams 
(a)-(d) contain infrared divergences, which disappear in the sum. Obviously, diagram 
(d’) is infrared divergence free, so that (d) # (d’). This is due to the way the limit is 
taken in the computation of(d) and (d’): In (d), the limit v = mv2/me2 # 0, 1 p 1 = 0 
is taken, while in (d’), the limit v = 0, 1 p 1 # 0 is considered, where m, is the photon 
mass. An exception occurs in the Fried-Yennie gauge, in which all the diagrams are 
infrared divergence free so that (d) = (d’). 

Summing the contributions of all the diagrams, the amplitude A is written as 

A = _ 21/2(2~)4 e2 
2m3 (k . e x 4 J?(P) +S(P> & Y (2.11) 
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where, to order CX, 4,(p) can be approximated by the nonrelativistic ground-state wave 
function 

w-4 = 4%) = (y2 (p2yy.)2 (2.12) 

and f(p) stands for the contribution from the diagrams (a), (b), (c), (d) and (d’). In 
Eq. (2.1 l), we used the transverse gauge for the external photons, since the gauge of 
the external photon can be chosen arbitrarily and independently from the gauge of 
the internal photon. This is a result of charge conservation. 

The value of f(p) for each diagram is given in Table I for the covariant gauge, 
where the photon propagator is given by 

-#L-I-s*,, 
and for the Fried-Yennie gauge, where the photon propagator is 

- & (8,” + 2 +, . 

(2.13) 

(2.14) 

In the table, we notice that the case of the Fried-Yennie gauge is not equal to the 
limit 5 + 2 in the general covariant gauge. The details of this account are given 
elsewhere [II]. The computation which leads to the result of Table I is given in the 
Appendix. 

The final result forf(p) can be read off from Table I, 

f(p) = - s (5 - $) + F tan-l $ 

and hence 

s f(P) 4?(P) ($3 - = (f)“’ (1 - 2 (5 - $)) . 

This leads to the decay rate 

r 
lS@Y 

=!?g(1 2(5-f)) 

(2.15) 

(2.16) 

(2.17) 

which is the result of Harris and Brown [l]. 
The second term of Eq. (2.15) is responsible for producing the zeroth-order ampli- 

tude, the first term of the r.h.s. of Eq. (2.16). In fact, the relevant integral 

s 87ry d3p 8 m x tan-’ x dx = 1 
y (p” + y2)2 (2743 = T- I (2.18) 

o (x2 + 1)2 
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proves this assertion. If, however, one takes the limit y -+ 0 in Eq. (2.15), one obtains 

$f(p) = - $&- (5 - ;, + y. 

The last term of Eq. (2.19), 

a md _ 7~0~ rry --- 
P 25- P -2v’ 

is precisely half of the Sommerfeld factor for the Compton scattering cross section. 
The integration 

s STY d3p -z 
y (p” + y2)2 (243 4 s ow @2 ; I)2 dx = 2 (2.21) 

indicates that the limit (2.19) should not be taken. As a matter of fact, Eq. (2.15) is, 
though sharply peaked, finite at p = 0 as long as y # 0. 

It is the sharp peak at p = 0 of the function (27/P) tan-l (ply) as well as that of the 
bound-state wave function which gives the zeroth-order amplitude by integration, 
despite the fact that it originates from a diagram of order 01. (See especially the case of 
the Fried-Yennie gauge.) This is similar to the mechanism of reproducing the non- 
relativistic wave function by iteration in the Bethe-Salpeter equation. It may also 
suggest that a correction to the wave function should lead to a quantity larger than 
the order 01~ correction. That this is indeed the case will be shown in the next section. 

Before closing this section, let us comment on the calculation of the binding dia- 
gram in Refs. [5, 71. They obtained a singular term 42~ which is half that of Eq. 
(2.20), so that the correct zeroth-order term is obtained by integration. However, that 
involves a separation of an infrared divergent term and l/p singular term starting 
with an integral which is infrared divergent but p finite, or l/p singular (in the limit 
y + 0) but infrared convergent. As is shown clearly in Table 1, in particular for the 
Fried-Yennie gauge, our computation gives Eq. (2.15) without any ambiguity. This 
indicates that the procedure in Refs. [5, 71 may be sensitive. Certainly, it does not 
give any result different from ours to order a!, but it definitely leads to a different 
prediction in the order a2 In 01-l calculation, as we see in the next section. 

III. A CORRECTION OF ORDER a2 In 01-l 

A correction to the bound-state wave function of the B.S. equation is obtained by 
iteration of the nonrelativistic wave function as the zeroth-order approximation. For 
the Coulomb kernel 

(3.1) 
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Karplus and Klein derived the solution 

d(P) = (p” +mmz)lle ’ + 2m I( 
c!E)( 1 - z!!!J + A!& &O’(p). 

For the large-large component &(p), we have 

AI(P) = &QP)( I - $ + 0 ((5)‘) j . 

(3.2) 

(3.3) 

The author proved that the solution (3.2) or (3.3) is, in fact, the exact solution of the 
B.S. equation to the order p2/4m2, provided a term of order 01~ is neglected. This is 
proved by showing that its form is invariant under further iteration [12]. 

The integral 

I n 2Y p tan-l I!- 87~ 2 d3p o 
y (p” + y2)2 4fzFw = - $ In y + O(y2) (3.4) 

or 

I m 2y tan-l 1)_ 8v 2 d3p 
0 P y (p2 + y2)2 4m2 T Ap2 (27~)~ 

2 
=-- 

E2 [ (1 - Ab2/4m2)2 In 2rn/A:F + y 
1 1 -- 
4 1 - Ay2/m2 I 

r- 
f$ In Y + O(y2) (3.5) 

shows that the last term of Eq. (2.15) and the corrected wave function (3.5) give a 
correction to the decay amplitude. 

6A = (-(a2/4) In 01-r + O(or2)) A(O). (3.6) 

Note that the integral in Eq. (3.4) or (3.5) can be replaced by 

I “v- f37r~ 2 d3p 
p (p”+ y+&z$ 

A2 + y2 
o = & In y2 + O(y4) 

Hence, if we use the expression of Refs. [5, 71, 7ry/2p for the singular part of Eq. 
(2.15), then we would have obtained one half of Eq. (3.6) for the 01~ In C& correction. 

We have obtained an a2 In LX--~ term from the binding diagram singularity and the 
p2/4m2 correction to the bound-state wave function. However, similar terms can be 
obtained also from p2 corrections to the matrix element and the small-small com- 
ponent of the positronium wave function. The details of that calculation will be 
reported elsewhere. 
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IV. DISCUSSION 

We have presented a careful treatment of the radiative correction to paraposi- 
tronium decay, in particular of the binding diagram. Because of the sensitivity of the 
limiting procedure involving the infrared divergence, we kept the infrared parameter 
finite for the binding diagram. The p singular term which corresponds to the 
Sommerfeld factor appears from the subtraction of the Coulomb kernel for the 
general covariant gauge. A logically simpler argument was given in the Fried-Yennie 
gauge where there is no infrared divergence. 

Additional 2 In 01-l corrections to the positronium decay rate and hfs were obtained 
in Ref. [ 141. Those authors use a formalism different from ours, and we think it would 
be useful to derive such corrections by an independent method. In a forthcoming 
paper, we will compare our result for the cy2 In K-* corrections and those of earlier 
works. 

APPENDIX A: SELF ENERGY 

(i) Renormalization 

The self energy is given by [l l] 

s 
1 6 

3/L& 
iy(p - k) + m - ie yy k2 + $ - ir + (k2 +!yL ie)2 

= AC + B&p + m> + Wyp + rnY, (A.1) 

where 

A, = Z(30 + 4), 

B, = -& [D + 4 + 2 In v + ((0 - In v)], 

+22- 1- [ 
2 - 3p 

4rrm 1 -p (1 - p)" Inp 

+(-iYP+m) -4+3P +4-4P-P21nP-21nv 
Pm I 1-P (1 - P)2 

++++(g-jy+ (1 Pp)e)lnP 

+ (-iw + m> 
pm I -*- 

2 - 2p + p2 In p + In v 
(1 - P)" III . 
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Here 

D = & + #(l) + ln+$ 64.3) 

represents the ultraviolet divergence in the dimensional regularization method [ 131, 
t,&l) = -y = -0.57721..., p is a quantity of the dimension of mass, h is the photon 
mass and 

v = ha/ma. (~4.4) 

Whenever permissible, the limits w  + 2 and v -+ 0 are taken. 
In the Fried-Yennie gauge ([ = 2), the infrared-divergent terms disappear. In 

Ref. [I l] we noted the facts 

BF~ = Bt,, - oi/2~, 

c,, = CC& + -z l 
2~ iyp f m 

because of the on-mass-shell expansion of the renormalization and the infrared 
divergence thus introduced. In fact, the self energy in the Fried-Yennie gauge is given 
by 

&Y(P) = AFY + &(iYp + m) + C&iyp + m)‘, 64.5) 

where 

AFY = z (30 + 4), 

64.6) 

(ii) Contribution to the Decay Amplitude 

The contribution to the decay amplitude for parapositronium due to the self- 
energy diagram, Fig. la, can be expressed in terms of M defined in Eq. (2.1) and (2.2), 

M(p; k, k’) = iy(p, -‘k) + m (-izf(pl - k)) iycp, z:, + m (A.71 

= -C,(PI - k) for the general covariant gauge 

= -cFY(Pl - k) for the Fried-Yennie gauge, 

where Z, stands for the third term of Eq. (A.l) or (A.5). Since p1 = K/2 + p = p and 
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we need to evaluate the amplitude for p = 0, the parameter p in C&I, - k) or 
CFy(p, - k) is given by 

k2 + m2 
p = m2 r2, ( 

Y2 jkI=m-- . 
2m 1 (A.81 

For 

we obtain 

G(P) = a, + iyh, s = &‘ or FY, G4.9) 

I Tr(Ce’y(-a, - iy(p, - k) b,)(cy) t,h(p)) d4p8c4)(K - k - k’) 

(A.lO) 

Using 

Tr(CE’yJ.--a, - hOI - k) b,l y,h 

=Tr ’ ( 
-ia, 0 

--iu, 0 I( iad 
-F’)(-as - b, (o”, -,“))(i!E -r)(t 8, 

= ib, Tr(oz(aE’)(ok)(crE) #JJ 

and 

(A.1 1) 

(d)(ak)(ac) - (ae)(ok)(a’) = 2ik . (EXE’). (A.12) 

We get 

A, = - f$$$ k . (c x E’) Ac4)(K - k - k’) * (2bsm2), (A.13) 

where 2bgn2 can be computed from the coefficients of iyp in C, and Cr, (Eqs. (A.2) 
and (A.6)) for p = 2, 

26,mZ=$-~1+41n2+1nv+5.(-1+1n2---~1n~)~ (A.14) 

and 

2bFym2 = 5 (-3 + 6 In 2). (A.15) 

These are the entries (a) in Table I. 
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APPENDIX B: VERTEX CORRECTION 

(i) Renormalization 

The vector correction is expressed as 

rAf,P) = ie J (*T):;;y4 (Y” 1 
iy(p’ - q) + m - ir Yl.s iy(p - q)‘+ m - is y’) 

( 
6 x &WY 

q2 + hK2y - i6 + (q2 + X2 - ic)2 ) (B-1) 

where 

with 

F = m2 {x2 + ~(1 - x) (x - y) + p’y(l - X) + Ky(X - y) + ~(1 - x)}, 

p=P2+m2 pr = pf2 i- m2 k2 A2 
y&K--’ m2 ’ 

K=-, 
m2 

y=----- 
m2 (B.3) 

and 

The numerators in the integrands NF’ are 

N,“’ = y,(-iy(p’ - q - PX + kv) + m) y,(-iy(P - q - PX + ky) + m) K (B.5) 

and 

N,‘2’ = y(q + px - @I(--iy(p’ - q - px + ky> + m) 

x y,(--iy(p - q - PX + kr) + m) y(q + PX - kh 

Expanding 

r;‘(p’, p) = L(i)y, + ngi: (P’, P) (i= 1,2) 

for the general covariant gauge and 

TFY(p’ , p) = LpyyjA + II’FY’(P’ p) rrf 9 

03.6) 

(B.7) 

03.8) 
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for the Fried-Yennie gauge, we obtain the Ward identity 

03.9) 

L 
a! 

py =BFY =%D. 

(ii) Contribution to the Decay Amplitude 

The vertex corrections contribute to the decay amplitude in the following form 

Abl = &$;1,2 I 1 Tr C(E’~) iy(pl -lk) + nl 4uh - k PI) #(PI/ 

x d4pSt4)(K - k - k’) + (5 z 5:) . (B.lO) 

If 

&(PI - k, PI) = yUa + iP,b + Gy(pl - k) + ml Y,F 

+ (iy(pl - k) + m> P,d 

+ Uipl + m>f 

+ k,g> f’s = (2~,- k),, (B.11) 

we can easily conclude that only the first term contributes to the decay amplitude: 
First, Ek = 0 eliminates g. Furthermore the relationships 

8, = 0, (B.12) 

(B.13) 

(B.14) 

ensure the validity of our statement. (Here we have taken the limitp,, = p = 0). Hence 
if we find the coefficient of the yp term in Eq. (B.l I), we can obtain the contribution to 
the decay amplitude by 

Abl = _ c2d4 21’2e2 k 
2m3(7ra3)1/2 

* E x e’2Y4)(K - k - k’) . a. 

Further, the values of p, p’ = ((pl - k)2 + m2)/m2 in a are given by 

p = 0, p’ = 2. 

(B.15) 

(B.16) 
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The a terms in Eqs. (B.3) and (B.4) are obtained by replacing yp on the right and yp’ 
on the left by im, and dropping the k, , plu terms. Performing the q integration (see 
the formula in Appendix E), we obtain 

aE = a(‘) + tat2), 

where 

a(l) = 2 D - 2 - 2 

1 s J dx - 5 dy 2m2 (2 - 2x - x2) - ~(1 - x + y)( 1 - X) - 
0 0 F I --p’(l - x)(1 - y) - 2x(1 - x) II 

-s[D+4+2Inv] (8.17) 

a(2) =-.?& D -; - 6 
I s s 

l dx + dy(1 - 
0 0 

x) In $ 

- 6 k1 dx lo’ dy(1 - x) $ &l,;~l;~! 1 
,&I + 6x - 6x2 + y(6x - 3)) 
3y(l - 2x)) I 

p2x(l - x)(x - y)(l - x + Y)\ 

- 6 ,,’ dx Jo’ dy( 1 - x) $ 

--$(D-1”“) (B.18) 

for the general covariant gauge and 

aFy = a(l) + 2af2’ + cy/‘rr (B.19) 

for the Fried-Yennie gauge. The last terms of Eqs. (B. 17) and (B.18) are to subtract - - 
the renormalization constant and the last term of Eq. (B.19) is to 
discrepancy between the renormalization constants in the general 
(.$ = 2) and the Fried-Yennie gauge [1 I]. 

By putting p = 0 and p’ = 2, K = 0 we obtain 

;ake care of the 
covariant gauge 

~‘1’ = -& E D - 2 - 2 s I ‘dx ’ ln(x2 + 2y(l - x)) 
0 0 

I 
(B.20) 

=- 
2 

[-4+;-2lnv-4ln2] 
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and 

u(Z) = 5 D _ ; _ (j 
s I 

‘dx = dy(1 - x) ln(x2 + 2y(l 
0 0 

Jo1 dx lo’ 44 - 41 
6(-x + x2 + y(1 - 2x)) - 

x2 + 2y(l - x) 

and 

+ (2x3 - x4 + 2xy(-3x + 2x2 + 2~41 - x))) ) 
(x2 + 2Y(l - 4)” i 

= 5 (2 + In v - 2 In 2). 

+y = - 4t (4 + T - 8 In 2) . 

477 

4) - 

D+lnv I 

(B.21) 

(B-22) 

Twice a(l) + (a(2) and +y are the entries (b) in Table I (there are two vertex correc- 
tions). 

APPENDIX C: THE BINDING DIAGRAM 

The binding diagram (Fig. lc) gives the decay amplitude 

X 
!I 

CYU 
iy(q + i2) + m (“‘I iyh - ql- k) + m (“) iy(pl 2 q) + m yy . 

6 
’ ( q2 + $ - ie 

&tJTY 
+ (q2 + A2 - ic)2 ) 1 & aB L(P) dW4W - k - k’) 

- ’ (2ko&12 s Tr(CGuy#(p)) d4p6(4)(K - k - k’) E;Ev 

where 

Gwy = G:’ + .$Gz (C.2) 
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where 

H = (PI2 + mw - 2) + (pa2 + mw - x) + ((PI - k)2 + myx - y) + x22 
- (pdz - 4 f P,(l - x) + k(x - y))", (C.4) 

Muv = i((~Qd Y~YP t rhQ2) yv  - YJ~YQA (C. 5) 

L,, = 4m36,, 

+ 2~~Y-yvy,(yQ~) + yv(yQ2) yu -t (rQ3 YJJ 

+ 24r,(rQz) rv(rQd + (red rvCrQz> mu + y~4yQdyQ3 
+ (rQd(rQJ yvyu - W2) ~v(rQa) yu 

- YAYQJ r,(yQz)f CC.61 

+ N--Y,(YQTJ rvbQ&rQd + (rQd<rQJ rv(rQs) yu 
-t <rQd YJYQCJ ~v(yQ2)) 

with 

Q1 = p& - 4 -t P,X + WY - x) = ~2 - Q, 
Q, = pl(l - x + z) + p2(1 - x) - k(1 - s + v) = pl - k + Q, 

(C.7) 
Q3=pz(l -x+t)+p,(l -xj+k(x--v)=pl+Q, 

Q = pl(z - x) -t pz(l - x> + k(x - Y> 
and 

. (~4 - yQ)(iyq + iyQ, -t m) y&q - iye2 + 4 ~~(kq - &Qa + m)(~q - rQ) 

where 

&$? = yQ(fyQl + m) ywC-iyQ2 + 4 yd-iyQs + m)(rQh 

N,‘5’ = 4iy,(-iyQ2 + m) y&-&Q, + m)(--yQ) 

+ ir,(~rQ1 + 4 w~~v~-i~Q2 + m>(-rQ) 
+ ~rAW1 + ml y,(--iyQz + m> r.rA-rQ) 

+ yA~yQl + ~4 rA--bQ2 + 4 Y~(-&Q~ + 4 Ye 

+ 2(rQ) Y,A-~YQ~ + m)(rQ) 
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Using the expressions 

pz=G--p=(-p,i+), 

k=(k,i$), 
2 

Ikl =+m-&, 

(C.9) 

(C.10) 

we get 

R z -$ = pz(1 - z) - 2pWzt + 2t - t2 + (1 - s + z)” 

+ cr(1 - 2t - z + t2 - (1 - S + z)2) + YZ, (C. 11) 

where 

p2 = m2p, y2 = m%, c = cos(Cp), (C.12) 

t=x-y, s=x+y. (C.13) 

Here we can set c = 0, since the answer does not depend on the direction of k. The 
R can be rewritten as 

where 
R = R + (s - 1 - z)2, (C. 14) 

A = pz(1 - 2) + 2t - t2 + vz + a((1 - t)” - z). (C.15) 

In the numerator, we may set p = 0. Thus 

Q1 = (-tk, im(s - z)), 

Q2 = (-(I - t) k, im(1 - s + z)), 
Q2 = (tk, im(2 - s + z), 
Q = (tk, im(1 - s + z)). 

(C.16) 
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Performing the trace calculation in Eq. (C.2) with 

we obtain 

A 
e 

= _ (27r)4 2%?2 
2m3(7ra3)lf2 

k . 6 x &Y4)(K - k - k’) . (1(l) + EIc2’), 

where 

'II);$q&l"&(~ gt j 21-t2-t3+(~1)(S-----I)2) 

and 

~~~)=~~dxso”dys,“dz12z(~+~{l -3(1 -s+zy 

+ t(- 1 + 4(1 - s + z)“) + 3t2 - 4t3} + k2-g ((1 - s + z>* - 2(1 

x (2 + t2) + tq 

With the change of variables 

and performing the s integration, we obtain 

- s + 4” 

(C.19) 

(C.20) 

(C.17) 

(C.18) 

and 

+ 2 + t2 - t3 - (1 + t) XZ 1 -z-t 
n (1 - z - t)” + R 

(C.21) 

1'2' = 2 lo1 z dz 101-z dt I[ 15GIi5t + $L$ + 3(l~L) “1 tan-’ ’ -kfiF ’ 

+ (I-! ;: a; x ( 
7- 1lt 5t2 - 7t3 

4 + 2A + & (1 - 0 t4) 

+ ((1 _’ yyzj “i- q2 If 2 - 2 + t2 - t3 + R(1 - t) + (1 - t) t” 
2 24 )I 

. (C22) 

Note that 

R + (1 - t - z)” = pz(l - z) + (1 - z)” + 2tz + vz + a(1 - 2). 
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In order to evaluate the integral in Eq. (C.21), we perform a partial integration of the 
first term, obtaining 

1”’ = $ l dz I I[ -5@z(l - z) + vz + a(1 - Z))l/a 
0 

+ (pz(1 - z) + U;l - z) + vz)1/2 1 . tan-l l-z 
Wl - z) + o(1 - z) + vz)l/2 

+ [o1-z dt I(- ; + 3 + -)(I - z - zt) + 2 + ; - ‘a 

- (1 + ON - z - t)) R + (1 _t z _ t)2j * 

For p --f 0, (T + 0, the single integral in Eq. (C.23) gives 

2 s 01(Vz;,2 

1-Z 
tan-l (41/2 = g $2 ( 

-++nv--2), 

(C.23) 

(C.24) 

while the double integral becomes zero (we can put v = 0 in this integral): 

$--s,‘dz]ol-Zdt/ ~z~~~~M4$} =G[dz(2(1 -z)-zln%) =(225) 

A similar calculation for P2) gives 

- &z( 1 - z) + u( 1 - z) + vz)lj2 tan-l l-z 
(pz(1 - z) + u(l- z) + VZ)1/2 

+ sb-z dt (1 - t J z)” + R [( 
15 4 
4 

(C.26) 

Assume that p = u = 0. The single integral of (C.26) vanishes in the limit v -+ 0. The 
only singular term comes from the first term of the last bracket, 

,=?-s,‘zdzj-ol-z 2(1 -‘I 
((1 - 2)” + vz + 2tz)2 dt 

a 
Sldz(l - z)((* - z;e + VZ - 

1 =- 
277 0 (1 - z”) + vz * (C.27) 

a 
=- 

2rl ( 
- i In v - In 2) . 

595/128/z-16 
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For the rest of the integral, the limit v + 0 can be taken 

+ (1 - t - z)( ’ -4llt -L+ (1 - t) t2 
2-t 2(2 - t)2 )I + ((1 - 2,: + 2zty 

x [(l - t - z)(-2t + t2 - t3 + (2t - t”)(l - t) + (1 - t) t* 
2 2(1 - t) ) II _ 2t 

* 
(C.28) 

After a lengthy and tedious calculation, we obtain 

P - J = (01/27~)(- 1 + 2 In 2). (C.29) 

Collecting the results of Eqs. (C.24), (C.25) (C.27), and (C.29), we obtain the entry 
(c) for the general gauge in Table I. 

For the Fried-Yennie gauge, we have to take the limit v -+ 0 first; then we have 

IFY = 5 s: dz (pz(1 - 2) : a(1 - z))1/2 tan-1 (pz(1 
1-Z 

- 2) + a(1 - z))liZ 

+ 2 * EL1 z dzJ1-’ dt ((1 - z)” + pz(1 - y-2+ a(* - t)” + 2&y 0 

+-$-(-I +2*n2)/ (C.30) 

The single integral of Eq. (C.30) is estimated in Appendix E, and is given by 

a 

( 

2rr _- 
2?r p112 

tan-l p ( 1 U 
l” - 4 + 2 ln(p + U) + O(u)) (C.31) 

for small u but for arbitrary values of p/a = p/y, while the double integral is easily 
evaluated, 

1 
I-z+pz+u i = $ {-- In 2 - ln(p + 0) + O(a, y, p)}. 

(C.32) 

Hence, we obtain 

&y = 2 ($ tan-l (c)1’2 - 6 + 2 In 2) 

2Y = 7 tan- 1$+$(-6+21n2), 

(C.33) 

which is the entry for case (c) of the Fried-Yennie gauge in Table I. 
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APPENDIX D: THE BINDING DIAGRAM FOR THE COULOMB KERNEL 

e4 
Ad = -’ (2k02k;)1/2 s Tr(CG‘,,$(p)) d4@Y4)(K - k - k’) G;E, 

CD.11 

“’ = ’ (zj4 y4 iy(q + i2) + nz y” iy(p, - ,’ k) + vf yy i& .-‘q) + ,?I 
1 ___- 

x y4 (q2 + P) 

. yM4 + &J + 112) y,t--iA- 4” + Q2) + m> yy(-iy(- p + Q3) + UZ) y4 . 

Here we introduce the notation P.2) 

P = ( 93 (1 ‘4;)q2 7 1 

Qi = (Q~@&-) 
P.3) 

and 
xi _ = pz(1 - 2) + 2t - 22 + (1 - s + 2)” 
?n2 1-z 

+ 0 ((1 - t)2 - z - cl ; “I “j2) - 2pezt + vz. P.4) 

As we have done before, we can drop ~(1 - s + ~)~/(l - z) + 2p112czt from Eq. 
(D.4). The factor l/(1 - z)l12 is introduced by the change of integration variable 
q. 3. q&l - z)lj2. Using 

and 
r = (Y, Y4/(1 - zY2) 

Yp” = f4 
CD. 5) 

we can perform the q integration in Eq. (D.2) 

- cfrQ1 i- ml ~,hxyv~iu) - %,,,(-[y&2 + m) yvp~ 

+ -% k4WQ1 + 4 ~,k+&, + m) yv<-iyQ, + m) y,~/ . 6H2 VW 
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The repeated use of 

and 
w& = -yIG - %/(l - z) 

‘YaYe% = (-3 + l/(1 - z)) y4 (D. 7) 

and the trace calculation of Eq. (D.1) enable us to write down the corresponding 
amplitude in the following way, 

tD.8) 

where 

x [(1 - t)(1 - z)” - (1 + t)(s - 1 - 2)” + (1 - 2)2(3 + t - t2 + r3)]/ . 

(D.9) 
Since 

where 

(1 - z) A = (1 - s + z)” + A, (D. 10) 

?t = (1 - z) h, 

the integration of the s variable can be done easily: 

I~u1=~J’,‘d~~-zd~([~+4-~3~~fa]tan-1((:7:~):/2 

+( 

(1 - z)l/Z (4 - t2 + P) + 1 + t 
> 

l--t-z 
A (1 - z)W (1 - t - z)2 + A(1 - z) I * 

Denoting 
(D.11) 

A, = pz(1 - z) + vz + o(1 - z) 

we perform a partial integration in Eq. (D. 1 1), 

I COUl -3(2t - t2 + Ao)llz 

4(1 - t) - t2 - 
(2t - t2 + A,)‘/2 1 l--t-z 

tan-1 ((1 - 2)(2t - t2 + &))“2 I 

1-Z 

0 

+ I,‘” dt [ (I -Jz’1’2 (-8~ + 4zP + 2t3 - t4) 
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+ (1 - w2 (-2 + t + 3zu - t) - ,:‘:;,:‘;2 ] zt2 + (1 L z)2 + /j 
0 

) 

= --&j-l dz (3Q2 + 
0 

+) tan-1 ($y2 

+ (nonsingular term). 

The singular part of ICoUl is given by 

(D.12) 

J(p, (3, v) = 25 97 s ‘dt o (pz(l - z) + vi + a(1 - z))1/2 tan-1 

( l-2 
1 
l/2 

x pz(1 - z) + vz + a(1 - 2) * 

As is shown in Appendix E, 

2Y J(p, u, 0) - J(0, 0, V) = p tan-l $- - --$ . 

(D.13) 

(D.14) 

This is the entry for (-d) + (d’) in Table I. 

APPENDIX E: FORMULAS AND INTEGRALS 

We list some of useful formulae and integrals which were used in the text. 

{YUYJ = 2L 

YWY& = 2w 

YUYAY” = --2hJ - 1) YA 

YYYAYWYY = 4&L, + 2(w - 2) YAYU 

YYYAYUYOY” = --2Y,YeYd - &J - 2) YAYJbYr, 

YVYAYUYPYOY” = 2Y,Yc7YDYU + 2YUYPYOYA + 2&J - 2) YAYUYDYO 

YvYAYuYPYoYrY” = -2YAYuYcYJ, - 2YhYPYOYEYU + 2Yu%YciY,Yh - x0 - 2) yAy@ypyL7y~ 

1 
AB= 0 I 

‘dx 
(A(1 - i) + Bx)2 

1 
_I_ = 2 s1 dx foZ dy (A(1 - x) + Bix - y) + cyy ABC 0 

& =6j.01dx~oxdy~Qvdz 
Ml - 4 + B(x - y; + C(y - z) + Dz]* 
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s q4d2”q l-(a - w  - 2) 
W + HP’ 

= i&w + 1) +~Hw-a+z 
Qo1) 

i(p + P’>, = g&J - p’>, + (iyp’ + m) yu + y,(iyp + ~2) - 2ffly,, 

s 
l In(l t s) 

0 .Y dx =; 

I 
l ln(l - x) 

0 I 
& = - ; 

=; 

s 

1 + x lln-iydx =2ln2 
0 

I 
1 xln l +*x 

0 
-dx=l 

P(2 - w) = + w  + Ifi(l) 

R = a it bx + cx2 A = 4ac - b2 

1 * @/” = -& ln(2 + (cR)l12 + 2&x + b) c>o 

= -!- arc sinh 2cx + b 
cl/Z 4112 c>O,A>O 

= -__1_ sin-1 2cx + b 
(-c)l/2 (-A)l12 c<O,A<O 

= -& ln(2cx + b) c>O,A=O 
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s x dx RV2 b dx 
-iv=--- c s- 2c R1fi 

s 
dx 2(2cx + b) 

R31”= AW 

J 
x dx 
R3/2= 

-2(2a + bx) 
AR’J2 

s 

dx X 
(1 - x2)3/2 = (1 - x2)1/2 

s 

1 dx 1 

0 x+p(l-xx)= l-p 
--lnp 

I 
1 X I 

=- 
0 x + p(1 - x) 1-P + (1 P p)2 ln P 

s 

1 X2 1 1 -- 
0 x + p(l - x) dx=z lvp (1” p)” - (1 $)” ‘n P 

s 1 x + X3 - 1 - 1 0 P(l 4 &‘51wp - 5 1 (1 ” p)” + P 2 -f- (1 p)3 P 3 *np (1 /94 

s 1 x4 dx -- 1 1 - 

o”+p(l-x)=4l-p 

3 1 (1” 

p)” 

+ z 1 (1” 2 - 

p)” (] p)” (111 

P 3 - 4 

p)5 

s 
‘ln(x+p(l-x))dx=-1-e 

x Inp 

In P 
0 P 

IO1 x ln(x + p( 1 - x)) dx = - 1 (i - e - 
P (1$)2 *n P) 

~01x21n(x+p(l -x))dx=-i(+--&-$+ 
(1 f/q + (1 p”py Iv) 

(a) A singular integral for the binding diagram. 

I@, 0, 4 = s ,’ (pz(l - 4 + ut-1 - z) + vzp tan-1 (pz(l - z) :, ” z) + vzy/2 
W4 0,~) = 2 (+)l” tan-l -&f& 1: + s,’ t1 f z; “+ vz dz 

= Jj In v + -$ tan-l y + --j$ tan-l -& 

= 1 In v + -$ - I + O(V). 

s 

&la 

&-h u, 0) = 2 
tan-l u du, 

0 1 + u”p 
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where the change of variable 

(1 - z)‘/2/(pz + a)]/2 = u 

is used. 
Using the notation 

a2 = p/o, h = l/&2, 

I(p, a, 0) = 2h 
I 

l tan-l At dt 
o 1 + a2t2 

= 2h 
( 
d tan-l a tan-l A - $44) , 

where 

J(a) = L1 (tan-l) at 1 +AhPt2 dt 

Then J(0) = 0 and 

h 
J’(a) = lo1 1 +ta2p 1 + jyQ2 dt 

x 
= 2(aa - P) 

In (+-$$- 1 

=~ln(l+aa)+&InXP+~~~O(-5$-), 

where an expansion in the large parameter X is performed. 

In X 
J(a) = - & [a In(l + a”) - 2a + 2 tan-l a] + x a + . . . . 

Hence 

I@, U, 0) = 2 [& tan-l $ ( 1 
1’2- 1 +iln(l +:)--In-&] +O(olnu) 

= -$ tan-l p ( 1 
I” - 2 + In(p + 0) + O(a In 0). 

(b) Singular part of the binding diagram with the Coulomb kernel 

J(p, CT, v) = 2 77 s ’ dz o (pz(l - 2) + vi + o(l - 2))1’2 
( I-Z 

> 

112 
x tan-l pz(I - z) + vz + a(1 - z) ’ 
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J(0, 0, V) = 5 l1 dz & tan-l (G)“’ 

= $ (2 (y2tan-' (!g2 1: + jold' 1 _ (;- ")z (1 _',,,) 

201 1 
I 

du 2 =- 
rr 0 vi-(1 -v)u2 

=~mtan-l$ 

=:&2-g 
and 

.+,a,O) =$/‘dz 
1 

0 ((1 - z)(;z + up tan-1 (pz + up2 

a! l zz- 
s 7.r 0 ( + - tan-l& + 41i2 1 

s 

1 

o 

01 
=- 

( 
25 tan-1 (li)1’2 - 2) 

7r p1J2 

2Y =- tan-1 55 - 2 !T.. 
P Y 7r 
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