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Abstract: A classification of nuclear states according to the non-compact Lie algebra Sp(4, R) is in- 
vestigated. This model strikes a compromise between the Sp(6, R) and Sp(2, R) models and 
furnishes a practical, yet algebraically simple means for selecting those shell-model core excitations 
which are needed for the development of quadrupole collectivity in rotational bands of deformed 
nuclei. Applications to rotational bands in 24Mg and 160 including shell-model excitations with , 

excitation energies up to IOho, show that the core excitations needed to fit observed E2 rates in 

these nuclei are too large to be treated by perturbation theory. Despite this, a definite symplectic 
band structure emerges. The nature of the core excitations is very simple, so that it may be feasible 
to incorporate such symplectic excitation structures into more detailed shell-model calculations. 

I. Introduction 

Although there exists a highly successful phenomenological picture of collective 
excitations in nuclei ‘), a truly satisfactory microscopic description has not yet been 
obtained. The strong correlations needed to build up the collective features of 
nuclear spectra seem to defy a description in the framework of the nuclear shell model 
since they seem to imply the need for shell-model matrices of enormous dimensions. 
The recent work of Rosensteel and Rowe 2* 3), however, shows that the non-compact 
algebra Sp(6, R) furnishes a natural algebraic tool for incorporating the core excita- 
tions associated with the nuclear quadrupole degree of freedom into the shell-model 
picture. Unlike earlier algebraic models of nuclear collective motion 4-6), the 
symplectic Lie algebra Sp(6, R) contains the U(3) algebra of the harmonic oscillator 
shell model as a subalgebra. It is thus the natural generalization of the Elliott SU(3) 
model 7, to include the effects of core excitations. Sp(6, R) symmetry provides a 
practical means for selecting those shell-model core excitations which are needed 
for the development of nuclear rotational spectra and may be a particularly powerful 
tool in those nuclei in the A = 8-28 mass range in which conventional shell-model 
calculations indicate a high degree of SU(3) symmetry. 

Although the Sp(6, R) algebra has long been known as the spectrum generating 
algebra for the 3-dimensional harmonic oscillator ‘), earlier applications of this 
algebra have led either to highly schematic models 9, or have been used to derive 
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results for harmonic oscillator functions in a single 3-dimensional variable lo). 
The important implications of Sp(6, R) symmetry for nuclear many-body systems 
have been realized only recently by Rosensteel and Rowe ‘3 3); [these authors use 
the notation Sp(3, R)]. Independently, Arickx 1 ‘) showed that the subalgebra Sp(2, R) 
led to a classification of states with a high degree of overlap with an earlier configura- 
tion interaction calculation 12) for *Be. This calculation attempted to extend the 
rotational band in *Be beyond the SU(3) limited maximum L-value and to build 
up the quadrupole collectivity of this band by the inclusion of core excitations. In 
this calculation the shell-model basis was restricted to SU(3) representations of 
maximum intrinsic deformation, with (@) = (n +4,0), for core excitations with 
excitation energies nho, (n = 0,2,4). Since only oscillator excitations in 1 dimension, 
the direction of the intrinsic symmetry axis, were included, the subgroup Sp(2, R) 
was sufficient for the group. theoretical interpretation of this new symmetry. 

Matrix elements for the physically relevant discrete series of the non-compact 
group Sp(2, R) follow from simple generalizations of ordinary angular momentum 
theory i3-15). Matrix elements for the generators of the non-compact Sp(6, R) 
algebra, in a basis symmetry-adapted to the U(3) subalgebra, are complicated by 
the problem of missing quantum numbers. The resultant inner multiplicity problem 
makes it impossible to give closed algebraic expressions for these matrix elements. 
A recursive procedure for the calculation of these matrix elements has recently been 
given by Rosensteel 16). It involves an orthogonalization procedure for states with 
inner multiplicity [multiple occurences of U(3) irreducible representations in a given 
symplectic irrep]. The computational difliculties associated with this recursive 
calculation are sufficient that detailed applications of the symplectic shell model of 
collective motion are only just beginning to be realized for very simple nuclear 
systems I’). 

The physics of the Sp(6, R) 2 U(3) shell model of collective excitations suggests 
a possible simplification. The most important SU(3) core excitations in a given 
symplectic band, [co-dimensional irrep of Sp(6, R)], may be those corresponding to 
excitations of largest intrinsic deformation, with large values of the Elliott quantum 
numbers ,J and ,u. The SU(3) representations of these excitations correspond to Young 
tableaux in which the added squares, induced by the symplectic excitation operators, 
increment only the 1st and 2nd rows of the tableaux. These oscillator excitations in 
2 dimensions lead to SU(3) irreps which can be generated by the Sp(4, R) subalgebra 
of the full Sp(6, R) algebra. The group chain Sp(4, R) 1 Sp(2, R) x Sp(2, R) leads to 
a complete set of quantum numbers for this symmetry and makes possible the use 
of simple and elegant algebraic techniques for constructing the irreducible represen- 
tations. Neither SU(3) nor the ordinary 3-dimensional angular momentum subgroup 
are contained in the Sp(4, R) group. However, a simple algorithm can be set up for 
the construction of states of good SU(3) symmetry in the Cartesian oscillator basis 
in terms of the eigenvectors of Sp(4, R) 1 Sp(2, R) x Sp(2, R) symmetry. From these, 
SU(3) reduced matrix elements can then be combined with readily available 
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SU(3) 1 0: Wigner coefficients ‘*) to construct the matrix elements of the Sp(6, R) 
generators in a basis with good SU(3) symmetry and orbital angular momentum. 

It is the aim of this work to investigate the validity of this Sp(4, R) model. For this 
purpose an attempt is made to account for the experimentally observed E2 transition 
strengths in the rotational bands ofdeformed light nuclei without resorting to effective 
charges. In the conventional shell-model treatment of nuclear spectra the effect of 
excitations out of the closed-shell core and out of the valence shell into empty shells 
is treated by a renormalization of the residual interaction and other observables. 
These are replaced by effective operators acting in the space of the valence shells 
only 19). The convergence difficulties associated with a perturbative treatment of 
this renormalization procedure are particularly marked in nuclei in which strongly 
deformed core-excited states sink down in energy to intrude into the region of normal 
shell-model states. The symplectic shell model of rotational bands is not dependent 
on such a perturbation approach. By explicitly building the quadrupole core excita- 
tions into the shell-model space, the symplectic model can account for the observed 
E2 transition rates without a renormalization of the E2 operator, that is without 
the introduction of effective (renormalized) charges. It is the aim of this work to 
investigate the nature and extent of the core excitations which are required to account 
for the observed quadrupole collectivity in light nuclei. 

In sect. 2 a brief review is given of the Sp(6, R) algebra to establish notation and 
phase conventions; and the restricted classification according to its Sp(4, R) sub- 
algebra is motivated further. The Sp(4, R) classification is developed in detail in 
sect. 3, in which algebraic expressions are given for the matrix elements of the Sp(4. R) 
generators. The symplectic shell model based on this subalgebra is described in 
sect. 4, in which matrix elements of the quadrupole operator and a model hamiltonian 
are derived in a basis symmetry adapted to the desired SU(3) 3 0: subgroup chain, 
Sect. 5 gives detailed applications to rotational bands with large observed E2 rates 
in the S = 0, T = 0 nuclei i60, 20Ne, and 24Mg. 

2. The Sp(6, R) model 

The symplectic shell model as formulated by Rosensteel and Rowe 2.3) is generated 
by the Sp(6, R) Lie algebra which is formed by the 21 one-body operators 

(1) 
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given in terms of harmonic oscillator creation and annihilation operators; (h = 1) 

a@) = Jfmo(x,(sc)- i/mwpi(~)), 

a#) = (a/(z))+, 
(2) 

with i, j = x, 13, z; r = particle index. 

The 21 Sp(6, R) generators can also be expressed in terms of the operators 

A 

Qij = i (x,(sc)xj(a)), (3) 

Here, L, = $sij,Jij is the total orbital angular momentum operator of the A-particle 

system. The 6 operators Qij can be decomposed into an L = 0 tensor (monopole 

mass tensor) and a spherical tensor of rank L = 2, the mass quadrupole operator. 

This is the real quadrupole operator, in contrast to the Elliott quadrupole operator 

Qrrriott = Qij + Kij, (4) 

which is diagonal in the major oscillator quantum number and can not induce core 

excitations. The six Qij(Elliott), together with the three L,,, constitute the nine opera- 

tors A,, which generate the subgroup U(3). The operators Sij are the so-called shear 

stress tensors which generate the monopole and quadrupole deformations. 

Contamination with spurious center of mass excitations can be eliminated [see 

ref. I’)] by replacing the oscillator creation and annihilation operators in the defining 

eqs. (1) by 

u$) + a$!)- f c a!(B). (5) 
P 

The desired realization of Sp(6, R) is then 

A, = aij-$4 ; {a~(cr)aj(~)+uj(~)a~(cc)), 
o.ll 

(6) 
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The operators A,,, B& B, are mixed one- and two-body operators. However, they 
satisfy the same commutator algebra as the one-body operators Aij, BF Bij of eq. (1). 

Even though the nuclear states possess good angular momentum,.it is more conve- 
nient to construct the representations of Sp(6, R) by classifying states via the chain 

Sp(6, R) =I U(3) ZJ SU(3) I SU(2) x U(1). 

SU(3) reduced matrix elements are calculated more easily in this chain. These reduced 
matrix elelements can then be combined with SU(3) 2 0: Wigner coefficients to 
regain good angular momentum via the Wigner-Eckart theorem. The oscillator 
creation operators have the following SU(3) 13 U( 1) x SU(2) irreducible tensor 
character 

.t = p’o’ ,t = plo’ ,t = y-(10’ 
* 200’ x -I++’ Y - 1+-+9 (7) 

where Tzi,- is a tensor operator transforming according to (Lp) under SU(3), while 
EAM;I are the Elliott U( 1) x SU(2) subgroup labels ‘). (A tilde is used for the Elliott 
quantum numbers ;i to distinguish these from the bare n which will have a different 
significance in sect. 3.) The phase convention under hermitian conjugation is 

(K&)t = (- 1) 1/3V-~)+M~-e/67-7(1~ 
-E -MJi R (8) 

By coupling the fundamental tensors, (7) with their hermitian conjugates, the Sp(6, R) 
generators can be expressed in terms of definite SU(3) irreducible tensor character 

[7-(&M) x T(12a2’]$&“~ = 1 <@,P&~~,; (~,~~)~,~,llW+, 

~l~,M~, 
whiz2 

x (;i,M,,;i,M,-l(;lM~)~~~~~~,~~~~~*. (9) 

Here <(~,P~)E,~,; (~,~,)~,~,ll(&4&~ is a reduced SU(3) Wigner coefficient, where 
p labels the outer multiplicity for the coupling (LIpI) x (A& + (np). The 
SU(3) I U(1) x SU(2) irreducible tensor character of the Sp(6, R) generators is 
shown explicitly in table 1. The Sp(6, R) generators can also be subdivided into nine 
Cartan-Weyl raising operators 

T’20’ 7 A XZ’ A 
YZ’ 

A 
YX’ WW 

nine lowering operators 

T’o2’ A 2.X’ A 24“ A 
XY’ UW 

and the three operators 

Hi = Aii = $ a$$@)+$(A - 1) - f (i +& a#?)), (104 
01 a B 

which determine the weights of the Sp(6, R) representation. Every SU(3) highest 
weight state for a closed shell-model core+valence shell configuration, (with Oho 



366 D. R. Peterson, K. T. Hecht 1 Sp(4, R) symmetry 

TABLE IA 

SU(3) 3 W(2) x U(1) tensor character of U(3) subalgebra 

P” = \~:A,,+A,,+A~,} 

(5) = (II) 

TABLE 1B 

SU(3) = SU(2) x U(1) tensor character of B,tj and Bi, 

excitation energy) is automatically annihilated by the nine lowering operators. Such 

a state can be described by a 3-rowed tableau with A,, +pLo+vO squares in the 1st 

row (maximum possible number of z quanta), ,nO + vO squares in the 2nd row (maxi- 

mum number of x quanta in the state with a maximum n=), and v,, squares in the 

3rd row, and will be denoted by 

It forms the band head for the a-dimensional Sp(6, R) representations, (discrete 

positive series). It is more convenient to use the simple labels A,, p. and v. in place 

of the band-head eigenvalues of H,, H, and H,. The raising operators generate the 

states 

I j~o~“o\‘o)(~LL)\‘E;iM;ly), (114 

with SU(3) quantum numbers (A/L), carrying I + 2~ + 3v = i,, + 2,u,, + 3~1, + 2N 
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oscillator quanta, (N = integer), Elliott U(1) x SU(2) subgroup labels ~..&f;j, and 
an additional label 7 to distinguish states with the same (j+p) in the case of multiple 
occurences. [r carries the burden of the 3 missing quantum numbers in the 
Sp(6, R) 2 U(3) 3 U(1) x SU(2) group chain). Such a state can be generated by the 
action of N raising operators PO’ 

!(~o~o\‘o)(j.l”)vF.;iMnY) 

= [[T”” x . . . x T(20)](Z~’ x ~(i.,~,r,)(i.,~c,)~,)]~~~~ (lib) 

where the square bracket denotes SU(3) coupling, and where the possible (Z$ 
follow from the simple rule 20): Construct all possible 3-rowed tableaux consisting 
of N squares with ji = number of squares in the ith row, xi,/; = N. Then 

(Z) = c2r; - 2f,, ?I, -2jJ. 

The spectrum of SU(3) irreps for a given symplectic band is then given by 

;(;.r_I); = z ((Z) 0 (ioPo)). (13) 
(i. 1) d 

In general, a raising operator, P”‘, when acting on a state of definite (i,/+~ will 
lead to a linear combination of six states (i.‘lc’)r’ with i,’ + 2~’ + 3~’ = i. + 2/1+ 319+ 2. 
Note, however, that the operator, Tao0 (20t, ladders between SU(3) highest weight (HW) 
states only : 

T~~~‘j(i.l()\~HW) = const I(i.+2, ~)vHW). (14) 

It is desirable to construct six independent operators from the Sp(6, R) algebra 
which have this simple property. Such operators, Q& follow from the three equations 

&4,X?,’ = AzZO; = A.~sO~~l(~~)~HW) = 0. (15) 

For example, 

0;: = $B:;, 

Ot = B,t,W, - Ii, + 2) - 2As_O;_, “1 
(16) 

o.:, = $B;J(H,H, + l)(H, -H2)-A,rOrs(H,-H2+1)(H,-H,+2)-’ 

-AX;Px;O~_(~I -H,)(H, -H,+2)-‘, 

where these ladder between states J(iL&HW> and l~~‘~‘)HW) with (,Z’$) = (6+2, cl), 
(i, p + I), and (i, - 2, p + 2). respectively. (For normalization factors, and for the more 
complicated operators, O:j, which add quanta in the y-direction, see ref. 21). Although 
the complete set of states for a symplectic band can, in principle, be constructed by 
successive application of these operators; in practice this constructive process is 
complicated by the multiplicity problem. E.g., there are two independent states with 
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(ip) = (i,, pO+2)y0 in the Sp(6, R) band {QL~~~). Two independent states of this 
type can be constructed by the action of the operators O~ZO~, and O,t,OiX; but 
these states are not orthogonal. Although a Grahm-Schmidt procedure can be used 
to construct an orthonormal basis, the combination of laddering and orthogonaliza- 
tion steps becomes more and more complicated for higher excitations and is not 
amenable to a solution in closed algebraic form. 

The physics of quadrupole collectivity suggests a possible simplification. The 
most important SU(3) core excitations in a given Sp(6, R) band are those with largest 
intrinsic deformation, that is those with large values of 1 and ~1. States which are 
energetically favored by an attractive quadrupole-quadrupole interaction are those 
characterized by a large eigenvalue of the SU(3) Casimir invariant 

2; 
W(3) 

= ;{~2+$+~~+3~+3/_Lf. (17) 

The effect of an O!j on csuf3, is given by dcij = Z’,,,,,(n’~~)-C,,,,,(~cc). E.g., 

There is thus a hierarchy for determining the most important states for a structure 
calculation. This can be summarized symbolically by 

OiY < O$ < oy, < OJX < OiX < or=. (19) 

The most important core excitations are thus generated by the operators OL,, Oi, 
and OZ, which are constructed from operators of the subalgebra Sp(4, R); (II;, 
B,, and Aij with i,j = z, x). The success of the Sp(2, R) model ofcollective motion 1 l, 22) 

as applied to *Be, with its large prolate intrinsic deformation, lends further support 
to a truncation employing the Sp(4, R) algebra. The Sp(4, R) model strikes a com- 
promise between the two extreme models, Sp(2, R) and Sp(6, R), and avoids most of 
the computational complexities associated with the full Sp(6, R) model. By excluding 
excitations in the intrinsic y-direction from the model space, but allowing excitations 
in both x- and z-directions, core excitations with large values of both SU(3) quantum 
numbers il and p are included in the model space. This may be particularly impor- 
tant in nuclei such as 24Mg with relatively large values for both Lo and pO, and in 
nuclei such as ‘?Si where there may be competition between prolate deformations 
(large I, small p) and oblate deformations (small /2, large 11). 

3. The Sp(4, R) classification 

Since the group chain Sp(4, R) I Sp(2, R) x Sp(2, R) leads to a complete set of 
commuting operators, it is possible to construct states of the physically relevant 
discrete positive series of this noncompact group by algebraic techniques. The 
SU(3) irreps contained in this construction can be made manifest in this mathemati- 
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tally natural basis for Sp(4, R), so that a simple algorithm can be constructed for 
projecting out states of good SU(3) 3 SU(2) x U( 1) symmetry. From the latter it is 
then straightforward to evaluate the SU(3) reduced matrix elements needed for 
applications of the Sp(4, R) model of collective excitations. 

By restricting the oscillator excitations to the z- and s-directions the following 
non-compact Sp(4, R) Lie algebra is obtained 23). (The symbols A, M,, should not 
be confused with the SU(3) subgroup labels 2, M,- introduced in sect. 2.) 

Sp(2, R);: 

A + = $ J+B;t,, “o = $,, A_ = -+J$B=~ Wa) 

Sp(2, q: 

c + = :J+B;~, c, = $H2' Z- = -;J+B.\-,. WW 

T AX M,rMr: 

Brx = Tf :, Bzx = T-i_:. 

-Ax = T;_:, -Axz = T-1;. 
WC) 

The operators A+, A_, A, generate the Sp(2, R)= subalgebra. Note that the phases 
are chosen so that these satisfy the usual angular momentum commutation relations 
(including signs). Therefore n + and A_ are M, raising and lowering operators for 
states with eigenvalues M, for /i,. However, nt, = -A_. The extra minus sign 
changes the form of the Casimir operator, when expressed in terms of the three 
hermitian operators /i,, A?, A,, with ,4 + = J+I~ + in,,,). 

CL2' = n+l,+2n+n_ = nf-(nf+Q. (21) 

As a result 13- ls), (i) the M, ladd ers are co-dimensional, (ii) there is a lowest M,, 
value, /i, for which A_(C',M, = A) = 0, (iii) Cy’ has the eigenvalue C, = n(n- 1) 
and (iv) M, = A, A + 1, n+2, . . . for the discrete + series, (the only series needed 
for the harmonic oscillator excitation problem). The operators Z+, I_, 1, generate 
Sp(2, R)X which commutes with Sp(2, R), and leads to the discrete + series with 
M, = C, Z+ 1, I:+ 2, . . ., with C, = ,X(.X-- 1). The four operators A,, Cy’, C,, C’y’ 
form a complete set of commuting operators for the subgroup lables of the lo- 
parameter, rank-2 Sp(4, R) algebra. The 2 quantum numbers needed to label the 
unitary irreps of Sp(4, R) are taken to be the eigenvalues of A, and 1, when acting 
on a Sp(4, R) lowest weight state. This state, to be denoted by IO), is just the Sp(6, R) 
lowest weight state, the symplectic band head I~~o~‘o’lo)(i~,~,)V,HW) introduced in 
sect. 2. Noting that A, = $H, = $tZz, C, = :H, = $Axx, [see eq. (IOc)], 

/1,(O) = ?ilO>, ;i = ~j;lo+~o+“o+$‘t- l)), 

&JO) = z-lo>, z = +{&)+Vo++(A- l,], 

{A_ = Z_ = AZX = B;JO) = 0. 

(22a) 

(22b) 

(2-w 
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The discrete series D”(;i, E) can thus be characterized by the quantum numbers - - 
A, Z;, and the basis vectors can be denoted by l;iE4M,CM,). These are simultaneous 
eigenstates of ,4,, Cy), C, and Cy) and thus form an orthogonal basis. The Sp(4, R) 

------ 
lowest weight state IO) z lA_EA,4ZZ). Note that ;I, C will be a integral for even 
nuclei. [These are not faithful irreps of Sp(4, R), see refs. ** 13). Since finite trans- 
formations of Sp(4, R) play no role in what follows, it will be sufficient to construct 
the eigenstates of the non-compact’ Lie algebra Sp(4, R).] Starting with an Sp(2, 
R), x Sp(2, R)X lowest weight state (M, = A, M, = C), A, and Z, can be applied 
an arbitrary number of times to yield 

-- 
lACAM,CM,) = N(n+)M”-“(~+)Mz-*I;i~~/lCC), (23) 

where N is a normalization factor. The four operators BLx, Bzx, A,, and AX. transform 
according to 2-dimensional (non-unitary) representations of the subgroups Sp(2, R)= 
and Sp(2, R),. They can thus be characterized as tensor operators Td,!b ,, with 
A” = f and Z” = 4. When acting on a state (,k%lM,CM,) they will genkate a 
linear combination of four vectors l;i&l’M”C’M~) with A’ = A +$, C’ = Z+-$ but 
with fixed ML = M, + Mz and M:, = M, + My. These operators can be used to 
construct A and Z raising and lowering operators. The construction of the general 

-- 
state IA,ZAM,CM,) will proceed in two steps. The 1st step consists of constructing 

--- 
an Sp(2, R)= x Sp(2, R), lowest weight state l?iGl,4ZZ), starting with l~,EiAZZ). 
In the 2nd step states with M, > A, M, > C are then constructed by the M-raising 
operators A, and Z,, through eq. (23). The 1st step is accomplished by operators 
Oa, with the property 

O&EAAZZ) = const lZ4 + aA + aZ + PZ + /?), 

where a, j3 = +i. Such operators must obey the relations 

CA,, Oasl = aOcs9 
-- 

A_O&ZAAZZ) = Z_O&i~AAZZ) = 0. 

These relations lead to 

O-+ = A,(.&&)-@+B,,, 

0 + _ = A&,, - t) - &I + B,,, 

0 ++ = Bf,(A, - $o(, - $) - ,/$A+ Ax&, - $) 

-~~+A,x(Ao-~)+~A+t;+Blx, 

0 BZX. = -- 

The possible A, Z values in the representation ;I2 are given by ‘l, 23) 

A = Ji++(m-n), c = Z+$(m+n), 

(24) 

(25a) 

(25b) 

(26a) 

(26b) 

(26~) 

(26d) 

(27a) 



D. R. Peterson, K. T. Hechi / Sp(4, R) symmerry 371 

I 
Compact Usph 

( 

+I- 
Fig. I. Weight space, (M,, M,). for various classes of irreps. 

with 

m=O,1,2,3 ,..., 0 5 n 5 2(A-C) = I,. (2%) 

With MA = A + k, Mr = ,z+ I; k, I = 0, 1, 2, 3, . . ., the general state is given by 

-- 
\AZA M,ZM,) E \;iZklmn) 

_-_--- 
= N(ii, C, k, I, m, n)(~+)~(C+)1(0+ +)“(O_ +J”lnZAAZZ>. (28) 

In fig. 1 the action of the operators A +, Z+, 0, +, 0 _ + are indicated in the 2-dimen- 
sional weight space M,, M, of a general irrep D”(?iZ). Since 0, + and O_ + 
commute, when acting on a state with M, = A, M, = Z, the order of 0, +, O_ + 
in eq. (28) is unimportant. Since B,,10) = 0, and [Bz,, A,,] = -2&4_, (O_ +)“lO) 
reduces to (Z-f)“A,zJO>. The generator A,= is an SU(3) lowering operator and can 
be applied to IO> = ~(A,~,v,}(lO~,,)voHW) at most ,I0 times ‘9 24). Thus, 0 s n 5 1,. 
However, the + integers m, k, I can be arbitrarily large. 

The norm factor N(k, 1, m, n) of eq. (28) is conveniently expressed in factored form 

N(k I, m, n) = N(k, m, n)N(I, m, W(m, 4 (2% 
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where the norm factor for states with k = 6 = 0 has been evaluated by a recursive 
process 2 “) 

Nm, 4 = 
24~iz~(2~-~-2)!(2~+~-2)!(2~~2~-3)! 

.--.. .___ 
m!n!(2;i+m-n-2)!(2~+m++--2)!(2;i+2~fm-3)! 

(2if-1)!(2,L2)!(2;i-2,Cn)![(2Z-2)!]2 4 

x (ZGr- 1)~(2~~~.~2)!(2~-2~)![(2~+~-2)!]2 ’ I 
(30) 

where X! = T(x+ l)/F{$) when x = $-integral. The Sp(2, R) norm factors are given 

by 21) 

Nk,m> n) = 
2k(2n- I)! 

k!(2A+k-1)! 1 + , n=Yi+@?w& 
I 2’(2C- I)! f 

~(~~~?~) = Q2E‘+1__1)! ’ 
c‘= iT+gFz+n). 

(31) 

(32) 

With these norm factors the matrix elements of the Sp(4, R) generators can be given 
in general algebraic form. The matrix elements of the Sp(2, R) generators are we11 
known 

-- -_.- 
(;32’/1M,+lCM,(/1*InZl/lnlP,CM,) = &,&/%#4,fl)-n(n-l) (33) 

and similarly for C,. 
By inverting eqs. (26), the four operators BL, B,,, AzX and AXz can be expressed 

in terms of 0, +, n+O_ +, C,O+ _, ,4,X+0_ _, . . . . From these expressions their 
matrix elements follow. These matrix elements are written most economically in 
terms of a generalized Wigner-Eckart theorem 25) for Sp(4, R) by using their T*+ 
tensor property, [see eqs. (20)] 

-- 
{~~~~~~~~~~I~~~~= I~~~~“~~~} = (~~~‘~~~~~~~~~~~~) 

x (nlw,jllll,ln’~:,>,p(Z.R)(CME~~,I~~~),pt,* a)’ (34) 

where n’(Z) = /1 _t@C+i). The Sp(2, R) Wigner coefficients involve the coupling 
of a non-unitary (finite-dimensional) irrep with one that is unitary to make another 
unitary representation. These coupling coefficients are found to be equal {up to 
phase) to the ones derived by IJi * ‘) for the isomorphic algebra SU( 1,l). The results 
are summarized in tables 2 and 3. It is interesting to compare these results with those 
for the compact case. The Sp(2, R) Wigner coefficients for the coupling J @ $ can 
be obtained from those for SU(2) by making the replacement J + -J; along with 
appropriate changes in overall phase. A similar correspondence exists for the reduced 
matrix elements 26) for the camp act unitary symplectic group USP4 3 USPz x USP2. 

The matrix elements of A,,, A,= are vital in constructing states of good 
SU(3) 3 SU(2) x U(l) symmetry in terms of linear combinations of the states 
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TABLE 2 

Reduced matrix elements of T”’ “’ 
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A’ C’ (;irA’c’(lTt +(l?irAZ) 

A++ z++ 
(n+ii+z-~_Hn-ji+z+~-1~n-ii+~-~+1~n+;i+~+~-2) t 

(2AW2Z) 1 
/I-+ Z++ [ (;i-A+xY-~+l)(;T+A-Z+%-2)(;i+A-Z-~)(;i-A+Z+~-l) * 

(2A- 2)(2Z) 1 
A++ Z-f 

(ii-A+Z-r)(H;i+A-.Z+r-l)(A+ii-Z-r+l)(;i-A+C+Z-2) + 

[ (2A3(2Z - 2) I 

A-t Z-; 
(A--;i+Z-~)(A+ji+Z+~-3)(A-;i+Z+~-2~A+?i+Z-~-l) + 

(2A-2)(2Z-2) 1 
TABLE 3 

Sp(2, R) Wigner coefficients for J @ f 

J++ f 

J++ -f 

J-f Ji 
J 

M,-Jfl 

2J-1 

J-i 1 
2 

J+M,-1 J 25-l 

j;i,LtM,CMZ) z ILXklmn) = Iklmn) of eq. (28). The SU(3) ladder operators A_,, 
AxY automatically annihilate the states Iklmn). An SU(3) highest weight state is 
therefore obtained from the condition 

Q(MHW) = 1 Azxlklmn)(klmnl(l~)HW) = 0. 
klmn 

(35) 

The number of terms in the sum of eq. (39, and consequently the number of coefti- 
cients (klmnlHW), is equal to the degeneracy of the weight (MA, M,) with 

M,-;i = t[NZ+~A-l)]-t[~g+~o+Vo+~A-l)] = $(I+/4()-~J, 

M,-r = +[N,+&t-l)]-$&+v~++(A-I)] = +(,LP~,,), 
(36) 

where NZ = A+ P + v, Nx = /J + v, the number of squares in the 1st and 2nd rows of 
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the tableau for (j&p), respectively, and v = vO. The degeneracy of the weight (M,, AI,), 
to be denoted by p,(M,, M,), is equal to the number of solutions (k, 1, m, n) to the 
two equations 

M, = ;i+k+$(m-n), (374 

M, = T+++$m+n). (W 

Since the SU(3) ladder operator, AZ,, increases MA by +t and decreases M, by -$, 
the vector (AJ(i~)HW)) of eq. (35) can be expressed as a linear combination of 
p,( M, + 4, M, - $) = p,(ii + $2 + p - i,, - p. + l), ,Z + $(p - p0 - 1)) independent vec- 
tors and thus leads to a number of conditions which is equal to this p,. The number 
of independent states (Ap), i.e., the number of independent solutions to eq. (35), is 
to be denoted by y,(+), (the maximum value of the label y of eq. (11); y = 1, 2, . . ., 
y,) . . . . Thus 

r,(G) = P,( 7f ++Q. + P - & - &)I x+ +(P -PJ) 

-p,(~++(~+~-&-vo+l), z+$k-/+A)). (38) 

The weight space diagram with the degeneracies of (M,, Mr) fully displayed are 
thus ofcentral importance. Fig. 2 shows such a weight space diagram for the symplectic 
irrep most relevant for the ground-state rotational band in 24Mg as well as the rota- 
tional band based on the 6.05 MeV O+ state in 160. Both of these are dominated by 
SU(3) irreps with (A,u) = (84) and lead to symplectic irreps with (;l,~OvO} = (840) 
for I60 and (844) for 24Mg Fig 2 is a magnification of fig. 1 for this special case, . . 

where the origin has been shifted to the point (M,, M,) = (A, Z). States on the solid 
- - 

lines, with M, + M, = constant, correspond to shell-model core excitations with an 
excitation energy of 2Nho, with N = k+ l+m; see eq. (28). The weights (M,, Mt.) 

are labeled with the symbols (&)i,m, where (2~) are related to M, - ?i, M, - if? by eq. 
(36). E.g., the weight point M, -?i = 2, M,-2 = 1, is labeled by (10,6): in fig. 2. 
This point can be reached from the state M, -A = 0, M, - ,Z = 0, by 4 independent 
operators with (k, 1, m, n) = (3,0,0,2), (2,0, 1, l), (2, 1, 0,O) and (1, 0,2,0), so that the 
degeneracy for this weight is p, = 4. The HW state for N = 3, (,$A) = (10,6) must 
be constructed from a linear combination of these 4 states. Note also that the 
degeneracy of the weight point M, -A = 2, M,-,T = f is 2, corresponding to 
(k, I, m, n) = (3, 0, 0, l), (2, 0, 1, 0) so that y, = 2 (= 4-2). There are therefore two 
independent states with (1~) = (10, 6) in the irreps (84~~). 

The simplest states are those with M, = 41 = m = n = 0), which are reached 
by k = N actions of the operator A +. Since _4+ is proportional to the operator Orz 
of eq. (16), the states with M, = E satisfy eq. (35) automatically and are SU(3) 
highest weight states 

(RsGT(M, = A+ N)E) = I(l,/~,v,j(i,+2N, @J&~W) (39) 
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2’Mg: (644). ir+, L= F 

Fig. 2. Weight space diagram for (84) bands in “‘0 and 24Mg. 

Note that p,,,(M, = ?I + N, M, = E) = y,(l,+2N, cc,) = 1; and that these states 
along the M, axis, labeled (,I,, + 2N, p&i, constitute the Sp(2, R), model of Arickx ’ ‘). 

Now consider the weights (M,, M,) = (;i + N -$, E+f), with degeneracy p, = 2. 
The two states possessing this weight are Ik, 1, m, n) = IN - 1, 0, 1,0) and (N, 0, 0, 1). 
One linear combination of these two states is the state 

I(il,+2N4& = 2(1,+2N)+~~-33, M,- = ii = p,,++) 

= [&, + 2N] -+J$&, + 2N, P&W> (40) 

reached by the SU(3) lowering operator A,, with norm factor 7*24) [il,+2N)-*. 
The matrix elements of A,, can be read from tables 2 and 3. The linear combination 
of~N-1,0,1,0)=(;i~,;,;i+~,?I+N-~,~+~,~+~)andJN,O,0,1)=(;i~,~-~, 
jI+ N -$, e+$, C+$), orthogonal to the state of eq. @IO), is the solution to eq. (35) 
which gives the HW state for (Lp) = @,+2N -2, p,,+ 1). From tables 2 and 3 this 
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state is given by 
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I(& + 2N - 2, /Q, + l)v,HW) = 

The SU(3) reduced matrix elements of the Sp(6, R) raising operators, PO’, between 
the two classes of states given by eqs. (39) and (41) follow from eq. (33) tables 2 and 
3, and some simple SU(3) 2 SU(2) x U( 1) Wigner coefficients 24) to yield 

((10+2N+2,~o)~olJ~‘20’Il(~o+2N,~o)vo) = [2(N+l)(N+2;i)]+, 

((2, + 2N, p. + 1)voIIT’20’II(~o + 2N, po)\lo) = 
2(;i-Z)(;i+Z- 1) 1 f 

(;i-Z+N) ’ 
((&, + 2N7 p. + l)voll~‘20’lI(~o + 2N - 2, p. + 1 )\I,> 

= 2N(2;i+ N- l)(?i-z+N+ 1) 

[_------- 

+ 

(;i-Z+iv) 1 (42) 

A straightforward generalization of this procedure can be used to construct the 
states with I(i,+2N -2n, p,+n)HW), II = 2, 3, . ., and the SU(3) lower weight 
states reached by acting on such highest weight states with p SU(3) lowering opera- 
tors, Ax*. These (normalized) states will be denoted by ~~E,o~o~~o~(~~)~~op;‘). With 
the construction of these states, the operator, 7’,‘,$ = 2~ +, is sufficient to calculate 
SU(3) reduced matrix elements via the Wigner-Eckart theorem and eq. (33): 

~~~o~o~o)~~~‘Cc’~~oP’1”II~‘20’II(~OC(O~’0, Yi.ph,p;‘) x ((20)40; (i.~c)E(p);i(p)IJ(E.‘~c’)e’(p’);i(p’)) 

= 1 w#o~~#‘~‘) vop’y’lk + 1 Imn)(klmn)~E,,~,~~,)(E.~)v,~~) 

x [2(k+1)(2;i+m-n+k)]+. (43) 

Here the (klmnl . . .) are the expansion coefficients of the states with good SU(3) 
quantum numbers, see eq. (35); and ( 1) > is an SU(3) 3 SU(2) x U( 1) Wigner coeffi- 
cient ‘8,24), with E(P) = 2i+p-33p, A(p) = $/it-p). 

4. The Sp(4, R) model of collective motion 

As a prelude to more realistic structure studies it is instructive to examine the 
idealization in which Sp(6, R) is treated as an exact symmetry by restricting the mode1 
space to a single unitary irreducible representation of this algebra. This may be a 
good approximation in nuclei such as 24Mg where conventional shell-model studies 
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[re fs. 27, ““)I indicate that the ground-state rotational band is dominated by a single 

SU(3) representation, with (2~) = (84). The symplectic band {l,~,v,} = (844) 
built on this particular shell-model state should thus give a good description of the 
core excitations required to account for the observed quadrupole collectivity in this 
nucleus. Since symplectic symmetry will not be broken, the hamiltonian, (constructed 
from the bare G-matrix elements, e.g.), can be projected onto a symmetry-preserving 
hamiltonian. Such a hamiltonian can be constructed from the generators of the 
svmplectic algebra. We therefore follow Rosensteel and Rowe ‘3 3* “) and use the 
symmetry-preserving hamiltonian 

H collective = H, + V[Q’2’]), (44 

(45) 

with 

LJ([Q’2’]) = A, Tr (Q2) + A, Tr (Q3) + A,(Tr (Q2))‘, 

Tr (Q2) = !J$[Q(‘) x Q(2)](0), 

(47) 

Tr (Q3) = -$$&z[Q(~) x Qc2) x Q(Z)](O)_ (48) 

The square brackets denote angular momentum coupling. Q(‘) is given in spherical 
tensor form by 

(49) 

r’(a) = r(a)-&.,., (50) 

The three terms in the potential, U, are the shell model analog of a collective potential 
given in terms of Bohr-Mottelson ‘) deformation parameters fi and y 

V(/% y) = c2p2 + C3p3 cos 3y + C&$/3”. (51) 

To evaluate the matrix elements of this hamiltonian it is important to expand 
V(Q”)) in terms of coupled SU(3) irreducible tensor operators. The operator Q(‘) 
can be written in terms of Sp(6, R) generators as 

Q$ = (i)2+M~~((h/2moo){ T$z +2T:$ + Tr?$}, (52) 

where the spherical tensor operators are related to those in the SU(2) x U(1) basis 
by the transformation coefficients of Akiyama and Draayer r8); 

Before proceeding it is convenrent to introduce the following notation. Let r denote 
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the Sp(6, R) and SU(3) irrep labels; while 9” and qc are to refer to the 0: ZJ 0: 
and SU(2) x U( 1) subgroup labels respectively 

r = (~~,clOvO}(i.~)‘l q” = KLM, rf = dMx, (54) 

so that a general symplectic state is denoted by JTvqy), cf. eq. (11). In this notation, 
the Wigner-Eckart theorem can be used to define the SU(3) reduced matrix elements 

Note the unconventional ordering in the Wigner coefficient. This order has been 
chosen to simplify expressions for the reduced matrix elements of coupled tensor 
operators. The more common choice would have been (T$-qlT’rl’),. The sum over 
multiplicity labels p is not needed for the matrix elements of Sp(6, R) generators. 
With i= = (20) or (02), the products are multiplicity-free. The T’“’ tensors are SU(3) 
generators. These have the property 24) ( IIT” “11 )p=2 = 0. The reduced matrix 
element of a T”” generator is given by 

= hrl$F.ySY.J -+J$2i. +P)]((l l)OO(j.C1)EHW;iHWIl(~~)&“~~“~)~~l. (56) 

The reduced matrix eleements of TC2” operators in the Sp(4, R) model have been 
given by eq. (43). Finally, using the conjugation property, eq. (8) and symmetry 
relations for the SU(3) Wigner coefficients i8) 

<T’v,Y’llT’02’II&Y) 
_;- 

= (- l)e’r’-B’r”Jdim (T)/dim (T’)(J’v,~~(T’~~‘((T’v,~‘), (57) 

where 0(r) 3 ,?+p. With these SU(3) reduced matrix elements, the matrix elements 
of U(Q”‘) can be calculated by SU(3) recoupling techniques. However, it is important 
to “normal-order” the SU(3) tensors in the operators Tr (Q”), c( = 2, 3, 4. 

Tr(Q') = n,m;3n4 f (58) 

n:+...+n;<z 

In applications restricted to the Sp(4, R) model it is important that the action of the 
operators Po2’ precede that of the raising operators T”“. An operator TCo2’ acting 
on an excited state of a symplectic band will in general create states J{l,~,v,}(l~)v~y) 
with v # vo, i.e., states outside the Sp(4, R) model space. However, TCo2’ annihilates 
the states ~{io~ovo)(~o~o)vo~l), so that the action of the operators (58) preserve 
the Sp(4, R) symmetry. 

To evaluate matrix elements of Tr (Q”) it is convenient to express these in terms 
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of SU{3) coupled tensors 

Tr (Q’) = 2,/5 c C(T,)C(I’,)(Z’,12; ZY212j11-10)[Tr’ x Tr2]& 
rlfzr 

(59) 

where the square bracket denotes SU(3) coupling, where C(F) z (1 +&r t,) accounts 
for the factor 2 in eq. (52), and where (Tr~rL1; f,tc,L,l\I’~L)~ is an SU(3) =) 0: 
Wigner coefficient 18). For the operator, quadratic in Q, only the label p = 1 is 
needed. The coupled operators in eq. (59) can be put into “normal-ordered form” 
with the use of commutators [Tqy’, T,:], where needed. Finally defining 

Tr(Q”) = %(Q”)+(%-(Q”))t (60) 

the quadratic term can be put in the desired form 

%(Q2) = ~J~SI:~~(20)+~Sl~~~f20)+ 8JSS~~$, 1,-t-fJ3GS{t&z, 

-+spf6_R)f 17Cj;2:,,,+~lv”-L2-~~~T~~~~, (61) 40 (25 

where 

(62) 

+ c’ 4~,WW~,2+ )IW-V’~~,, (63 

rlrzrp r 

where the primes on the summation signs indicate only normal-ordered combina- 
tionsofT,T,... are included. Also 

R;:;;f;lrT;P = [[T’I x T’“]‘jI:; x Tr3]&, (64) 

A3(~l~2&;r,2~,2;0) = ~C(T,)C(T,)C(T,)B,(T,T,T,) 

x 1 (I-, 12~~12~~~,2~2),~;?(~,2~2~~12~~f10~p. (65) 
K 

e3(~,~2~~)isequal to thenumberofwaysofpermuting~,,r~,f~. E.g., ~~((20)(20~11)) 
= 3. Iftheproduct is hermitian, however, {rlI’zr3)+ = {I’,I”,Z”,); wemust multiply 
by a factor off. E.g., ~,((ll)(ll)(ll)) = $ The coefficients A,(r,r,, Tp) and d,(r) 
are obtained in the normal ordering process, and have a form similar to A,. The 
cubic term is summarized in table 4. The Casimir operators in eq. (61) and table 4 
have eigenvalues given by eq. (17) and by 

C’3’ 
SlJ(3k.v. = (~-~)[~2a.+~)(n+2~)+1,+~+ 11, (66) 

C’2’ 
sH6. R) = &{h,(h, -2)fh,(h,-4)+h,(h,-6)t, (67) 
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TABLE 4 

SU(3) tensor expansion of Tr( Q ‘) 

Tensor Coefficient Tensor Coefficient 

R’40”60’ 
~20~I20lI20l 

R’oz”22 
l20)~20~~20~ 

R’02”00’ 
~20l~201~20l 

R”O,,lO, 
,20,,201,1I, 

R’02”02’ 
,20,,20,11L, 

R’40”42’ 
(2Ol~20)102I 

R”0”20’ 
~2Ol~20)1021 

R’O2”04’ 
~2Ol(2Ol~O2) 

R’02”20’ 
,20,,201,02~ 

R’3”‘42’ 
,20,,111,1I, 

R”2”20’ 
,20,,1II,LI, 

R’20”20’ 
,20,,1II,III 

R’22”22IP=2 
l20~102ll111 

R” I,t22) 
t20~,02,,11, 

R”‘I’OO’ 
1201~02ll11, 

R’22”22’“=2 
,IL,,II,,II, 

R”“P=2,22’ 
,I1,,11,,11, 

C?’ sldt31 

S’40’ 
l2olt201 

yo21 
l201120) 

LgZO’ 
l2Oll111 

C’Z’ 
SU~.l, 

L2 
jP’20’ 

N 

where h, = I,+,L+,+v,+~A-~), h, = h,-E.,, h, = A,-p,, and also: 

N e v. = iL+2~+3v+$(d- 1). (68) 

The matrix elements of the quartic term can be evaluated from the matrix elements 
of the quadratic terms via 

(ccl(Tr (QZ))%O = c(A Tr (Q2)I~><A Tr (Q2W. (69) 

In the full Sp(6, R) model this expression is exact; the states 17) range over all sub- 
group labels of {&~ovo). In the Sp(4, R) model the sum has to be restricted to those 
states 1~) with 11 = 1~~. With this restriction, eq. (69) is an approximation, since the 
sum no longer ranges over a complete set. Considerations involving sum rules ‘l) 
and the detailed examination of special cases 21) show that this is a very good approx- 
imation in practical calculations (at a large saving of computer time). In all final 
computations this approximation has therefore been made. 

Matrix elements of the operators, Tr (Q”), can be evaluated with the use of the 
Wigner-Eckart theorem, eq. (55), with 11 = q” = rcLA4. The SU(3) reduced matrix 
elements of the coupled operators S,‘f,, and Ri:;;;;ycan be related to those for 

the generators Trl by straightforward SU(3) recoupling tedchniques; [detailed deriva- 
tions are given in ref. *l)] 

(T’t$ll[7+ x P];= I Ilf vol’), 
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The U-coefficients are SU(3) Racah coefficients is), with r = (1~). 

5. Applications 

With the technology developed in sect. 4, matrix elements of the quadrupole 
operator and the model hamiltonian, (44) can be evaluated in the Sp(4, R) basis 
symmetry-adapted to the physically relevant SU(3) 3 0: subgroup chain. The 
new symplectic symmetry can be expected to be closest to an exact symmetry in 
those nuclei in which conventional shell-model calculations predict rotational bands 
dominated by a single SU(3) representation. Of these, the best candidates are found 
in nuclei in the A = 8-28 mass range, with A = 4n, and ground-state wave functions 

dominated by states of [4”] space symmetry and S = 0 = T. The ground-state 
rotational bands in 24Mg and 20Ne, and the rotational band built on the 6.05 MeV 
Of state in 160 all show observed E2 rates in the 20-30 W.U. range. Shell-model 
calculations indicate that these rotational bands can be expected to be dominated 
by states of the symplectic bands {~o~ovo} = (844) for 24Mg, {804} for “Ne, and 
(840) for 160(6.05 MeV band). For the latter the symplectic band head is a 4p-4h 
state. Our aim is not to carry out a detailed spectroscopic study but to focus attention 
on the quadrupole collectivity in these bands. For an accurate fit of excitation ener- 
gies and other nuclear properties the small admixtures of lower symmetries may be 
important. In 24Mg, e.g., conventional shell-model calculations 27*28) predict a 
high percentage of SU(3) (&L) = (84) symmetry. These shell-model calculations also 
predict smaller co.mponents with (2~) = (46), (08), (62) . . . in the highest space 
symmetry [46], and (2~) = (65), . . . with lower space symmetry [4531]. In the sym- 
plectic shell model each one of these can be expected to carry its own symplectic 
superstructure with built-in core excitations. A detailed description of the 24Mg 
ground-state rotational band can thus be expected to involve a dominant (rococo} = 
(844) symplectic component with small admixtures of {464}, {084}, {624}, . . ., {654}, 
. . . bands. However, our aim is to investigate the nature and the extent of the core 
excitations with are required to account for the observed quadrupole collectivity in 
such a band, using only the bare proton charge. For this purpose the idealized pure 

~~occovol = (844) model is sufficient. The quadrupole operator can not connect 
states with different {~o~ovo). Admixtures with different {~o~ovo} thus contribute 
incoherently to the E2 rates. In addition, the intrinsic quadrupole moments 7, are 
proportional to (2A, f ~1~). Admixtures with {~o~ovo) values less than the dominant 
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TABLE 5 

B(E2; KiLi -+ &L,) values for the (8, 4) ground-state band in 24Mg t 

Ki Li 4 Lf SU(3) 1cJfiw “) Exp. “) 

0 2 0 

0 4 0 

0 6 0 

0 8 0 

0 10 0 

2 4 2 

2 5 2 

2 6 2 

2 7 2 

2 8 2 

2 9 2 

2 2 0 

2 4 0 

2 6 0 

2 8 0 

0 10 2 

4.9 

9.5 

9.7 

9.0 

7.2 

3.6 1.2.2 8.2 

5.7 21.1 16.1 

5.6 18.2 12.8 

6.7 26.1 19.6 

4.3 16.9 7.6 

5.7 25.6 17.4 

2.5 4.6 2.4 

1.3 0.5 0.1 

0.8 < 0.1 0.3 

0.4 < 0.1 < 0.1 

2.0 < 0.1 < 0.1 

1’) II d) 
26.3 20.5 

36.5 28.0 

39.3 30.4 

39.6 29.4 

36.1 25.0 

20.5+6 

23 f4 

34 2;; 

16 +;” 

16 +3 

31 2s 

23 +;” 

r3 

1.4io.3 

1.0+0.2 

0.8+“.** -0.3 

’ B(E2) strengths are given in Weisskopf units, where I W.U. = 4.1 12e2 ’ fm4. 
*) hw = 12.6 MeV. 
b, Ref. 3’). 
‘) Case I: A, = -0.10, A, = -0.00065, A, = 0.~~06. 
d, Case II: A, = -0.06, A, = -0.00025, A, = 0.~5. 

(844) can thus be expected to decrease the predicted E2 rates. To get a realistic 
measure of the amount of core excitation needed to account for observed E2 rates 
the idealized pure (l,~OvO) = (844) model can be used. If this model fits the observed 
E2 rates, the components with smaller symplectic quantum numbers ~~~~~v~~ in a 
more detailed model can only be expected to decrease the predicted E2 rates. For 
this reason, two types of fits have generally been carried out, one in which the observed 
2; * 0; B(E2) value is fitted exactly by the idealized (dO~OvO> symplectic model, 
and another in which this model gives a slight overprediction for this B(E2) value. 
Results for the ground-state band in ‘“Mg are shown in table 5 and fig. 3. The three 
parameters A,, A,, A, af the model hamiltonian, (44), were adjusted to give an 
approximate fit to the excitation energies and the desired fit to the observed 2: --, 0: 
B(E2) values. The energy diagonalizations were carried out in the restricted Sp(4, R) 
model basis, truncated to include core excitations with excitation energy s N,,hw. 
Usually Nmax = 10 was sufficient to insure convergence. Although quite different 
parameter sets could give comparable fits to the energy spectra, two different param- 
eter sets which gave identical B(E2) fits always led to wave functions of ~orn~rab~e 
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Fig. 3. Spectra of K = 0 and K = 2 rotational bands in *“Mg built on the ground state, (8.4) symplectic 
band head. 

character, so that the nature and extent of the core excitations needed to fit observed 
E2 rates do not seem to be dependent on the precise values of the model parameters 
A,, A,, A,. In table 5 the predicted B(E2) values for two calculations with N,,_ = 10 
are compared with the experimental B(E2) values for 24Mg. The column marked 
SU(3) gives the B(E2) values predicted by the SU(3) shell model, (iv,., = 0). For 
E2 transitions between T = 0 states, only the isoscalar part of the EZ‘operator can 
make a contribution, so that 

&Z(E2; CL) = $eQf’ for ITi’ = Tf = 0. (72) 

We stress again the absence of any effective charges in this equation; e is the bare 
proton charge. The oscillator length parameter for 24Mg was chosen as (h/2mo)* = 
1.28 fm, corresponding to 30) an hw = (45/A*-25/A*) = 12.6 MeV. Table 5 shows 
the parameters A,, A, and A, for the two calculations, in MeV. Fig. 3 shows the 
energy spectra for the set I for two different truncations, with N,_ = 4 and 10. 
Although the full calculation (N,,, = 10) pushes the K = 2 band up relative to the 
K = 0 band, these calculations share a feature of many conventional sd-shell model 
calculations 2 ’ - 29 ): the predicted K = 2 band head lies too low in energy. However, 
we stress again the fact that the idealized pure {~o~ovo) model can not be expected 
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TABLE 6 

Wave functions of the ground state (8, 4) band in the 24Mg, 1Oho calculation + 

(&) K Y 0: 2: 4: 6: 8: 10: 

(&4) 1 1 -0.562 0.558 0.522 0.477 0.469 0.503 
(894) 2 1 0.050 0.185 0.260 0.237 -0.004 

(10,4) 1 1 0.587 -0.582 -0.542 - 0.489 - 0.474 - 0.482 
(10,4) 2 1 - 0.057 -0.212 -0.310 -0.318 -0.277 

(8, 5) 1 1 0.047 0.063 0.061 0.067 0.105 
(l&4) 1 1 -0.471 0.466 0.433 0.389 0.374 0.381 
(12, 4) 2 1 0.048 0. I79 0.266 0.286 0.274 
(10, 5) 1 1 -0.062 -0.081 - 0.074 - 0.073 - 0.083 
(14,4) 1 1 0.293 - 0.289 - 0.270 - 0.244 -0.237 - 0.245 
(14,4) 2 1 -0.031 -0.115 -0.175 -0.195 -0.198 
(12, 5) 1 1 0.048 0.062 0.056 0.053 0.057 
(16, 4) 1 1 -0.133 0.133 0.125 0.115 0.115 0.123 
(16,4) 2 I 0.014 0.054 0.085 0.098 0.106 
(14, 5) 1 1 -0.026 -0.034 - 0.030 - 0.029 - 0.030 
(18,4) 1 1 0.034 - 0.035 - 0.034 - 0.033 - 0.035 - 0.040 
(18, 4) 2 1 -0.004 -0.015 -0.024 -0.031 - 0.036 
(16, 5) 1 1 0.008 0.011 0.010 0.010 0.011 

Cl<. .lL”>12 0.99 0.99 0.99 0.98 0.96 0.93 

+ A, -0.06, = A, = -0.00025, A, = 0.000005. 

to give accurate predictions for excitation energies. Our aim is to examine the nature 
of the core excitations. These are shown in table 6 which gives the amplitudes of the 
most important components of the wave functions of the ground state rotational 
band. We choose the parameter set II which fits the 2: + 0: B(E2) value exactly. 
[In 24Mg the admixtures of smaller {Ao~ovo} in a more detailed symplectic-symmetry 
breaking model can be expected to have relatively large values of (2A,+pJ; and 
in 24Mg an admixture of {&~,,vO} = (14, 2, 4}, a symplectic band based on the 
(s4pi2sd6pf2) 2p-2h shell-model configuration may, e.g., compensate for the lowering 
of the B(E2) values due to admixtures of smaller {&+,v,,).] 

We note the following about the nature of these wave functions: 
(i) To fit the observed 2: + 0: E2 rate exactly, large core excitations are required. 

States with 2hw excitation energy and (Ap) = (10,4), and 4hco excitation energy and 
(1~) = (12,4) have amplitudes comparable to that of the “shell-model state” with 
(1~) = (84). The admixtures of core excited states are too large to be treated by 
conventional perturbation theory. 

(ii) The truncation of the Sp(4, R) model space with excitation energies 5 Nmaxho 
converges relatively rapidly beyond Nma, = 6. The components with Nmax = 10 in 
table 6 contribute less than 0.15 “/, of the intensity of the total wave functions. 

(iii) Despite the large amount of core excitation, the similarities in the wave func- 
tions for the O:, 2:, 4:, . . ., 10: states are apparent. These clearly form a band of 
states, the symplectic rotational band (844). (States with K = 1 are pure Elliott 
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K = 0 states, those with K = 2 predominantly K = 2 states “). This lowest rota- 
tional band is predominantly K = 0, with non-negligible K = 2 admixtures in the 
higher members of the band). 

(iv) The major part of the core excitations is carried by a few very simple states. 
Table 6 lists only the dominant components of the wave functions. For Nmax = 10, 

the dimension of the Sp(4, R) model space ranges from 33 for O+ states to 186 for 
8+ states; yet 99 “/, of the intensity of the 0: state comes from 6 Sp(4, R) states, and 
96 “/, of the intensity of the 8: state from 17 Sp(4, R) states. Comparison with fig. 2 
shows that all of the (Lp) listed in table 6 fall on two vertical lines of fig. 2, the z or 
(M,) axis, and the nearest line which parallels the z axis. Clearly states along the 
z-ladder are by far the most important, carrying more than 94 0/0 of the intensity of 
all states. The Sp(4, R) model space could have been truncated further to states along 
the z-ladder plus those with 1 or at most 2 excitation quanta in the x-direction. 
This result certainly supports the original truncation from D+({&,~Ov,}) to 0’ ‘(AZ), 
since y-excitations are even less important, as also observed directly for “Ne by 
Rosensteel and Rowe “). Even more, the Sp(2, R)Z symmetry of Arickx is a relatively 
good symmetry for this band despite the fact that p. = 4 is relatively large. 

Very similar conclusions can be reached from calculations ‘l) for the (8043 band 
in 20Ne. In this reg ard there is some qualitative difference with the results for “Ne 
of ref. i’) which seems to indicate that the core excitations in 20Ne can be treated by 
perturbation theory. It should be pointed out, however, that the 20Ne wave functions 
exhibited in ref. “) account for only 7G80 “/, of the observed E2 rates. In view of 
the expected admixtures of smaller (Lope) shell-model components 32), a 100 “/, or 
a slight overprediction is needed for the idealized pure { 804) model to gain a realistic 
view of the actual quadrupole core excitations. In this regard our 20Ne results agree 
with those of Arickx et al. 22 for *Be for the co-dimensional Sp(2, R)= symplectic ) 

model, which again shows that states with core excitation energies of Oho, 2ho 
and 4fiw are of comparable importance. 

Results for the rotational band based on the 6.05 MeV O+ state in 160 are very 
similar to those for the 24Mg ground-state rotational band. The symplectic band 

{&~ovo) = (8401 b d ase on the dominant 4p-4h shell-model state consists of the 
irrep D++(A = y', r = y) in the Sp(4, R) model subspace. (In contrast, the appro- 
priate Sp(4, R) space for the (844) symplectic band of 24Mg was D' ‘(A = y, 
,I?? = y).) A calculation which tits the observed 33) 2+(6.92 MeV) --f O’(6.05 MeV) 
B(E2) value of 17 W.U. leads to wave functions of structure almost identical to those 
exhibited in table 6. In this calculation, A, = -0.08, A, = -0.0009, A, = O.OOOOO6 
MeV. The 2: state, e.g., has the structure 

12;) = 0X1(8,4)) - O.SS((lO, 4)) +‘0.471(12,4)) 

-0.291(14,4))+0.13((16,4))-0.031(18,4))+. . . . (73) 

Since the 6.05 MeV rotational band in 160 is expected 34) to have components based 
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TABLE 7 

Wave functions of the Op-Oh, (00) band in the 160, IOhw calculation ’ 

2: 

(0, 0) 1 
(270) 1 
(4,O) 1 
(0,2) 1 
(6,O) 1 
(2, 2) 1 
c&2) 2 
@,O) 1 
(4, 2) 1 
(472) 2 

(094) 1 
(1070) 1 
(62) 1 
(62) 2 
(2,4) 1 
c-44) 2 

Cl.. .lL”>? 

-0.957 

0.150 
-0.187 

0.153 

0.011 

-0.005 

-0.026 

- 0.029 

-0.031 

<o.oot 

-0.001 

<O.OOl 

1.0 

-0.918 
- 0.086 
-0.171 
-0.201 
- 0.225 

0.129 
-0.046 
-0.U46 
-0.019 

0.033 
- 0.036 
- 0.046 

0.015 
- 0.008 
- 0.057 

1.0 

-0.869 

- 0.259 
-0.203 

-0.217 
- 0.233 

0.132 
- 0.060 
- 0.074 
-0.078 
- 0.002 

0.019 
0.049 

1.0 

0.864 

0.315 -0.915 
0.181 

0.205 -0.334 1.0 
0.232 - 0.225 

-0.151 
0.057 

I.0 1.0 1.0 

+ A, = -0.085, A, = -0.0009, A, = 0.000006. 

TABLE 8 

Wave functions of the 2p-2h, (42) band in the 160, IOhw calculation 1 

(4,2) 1 1 - 0.873 0.879 0.844 

(4,2) 2 1 0.079 0.322 

(fi2) 1 1 -0.370 0.354 0.292 

(6, 2) 2 1 0.041 0.154 
(4, 3) 1 1 - 0.028 -0.040 

(8, 2) 1 1 -0.240 0.223 0.171 

t&2) 2 1 0.029 0.099 

(6, 3) 1 1 -0.053 - 0.055 
(10, 2) I 1 -0.132 0.121 0.089 
(IO, 2) 2 1 0.016 0.052 

(8, 3) 1 1 - 0.025 - 0.024 
(12,2) 1 1 - 0.072 0.065 0.047 
(12, 2) 2 1 0.009 0.027 
(10,3) 1 1 -0.015 -0.013 
(14, 2) 1 1 - 0.032 0.029 0.020 
(14, 2) 2 1 0.004 0.012 
(12, 3) 1 1 - 0.006 - 0.006 

0.936 

0.219 
0.167 

- 0.052 
0.109 

- 0.099 
- 0.035 

0.053 
- 0.049 
-0.013 

0.123 
0.025 

-0.007 
0.015 
0.001 

- 0.003 

0.810 

0.384 
0.235 

- 0.057 
0.235 
0.172 

- 0.046 
0.132 
0.102 

- 0.025 
0.062 
0.049 

-0.013 

0.724 

0.482 
0.251 

- 0.054 
0.305 
0.195 

- 0.047 
0.152 
0.104 

- 0.027 

Cl<. .lL?12 0.98 0.98 0.98 0.98 0.98 0.98 

+ A, = -0.06, A, = -0.00045, A, = 0.000003. 
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on Op-Oh and 2p-2h shell-model states with low &, cl,, values, the results of a second 
calculation with a predicted 2+(6.92 MeV) + O’(6.05 MeV) B(E2) value of 25.7 W.U. 
may also be of interest. In this calculation, A, = -0.09, A, = -0.00065, A, = 
0.000006 MeV; and now 

12;) = 0.17((8,4))- 0.351(10,4))+0.501(12,4)) -0.551(14,4)) 

+0.461(16,4))-0.261(18,4))+. . . . (74) 

To see that the large core excitations of eqs. (73) and (74) are related to the large 
values of the quantum numbers A,, pO, table 7 shows the amplitudes for the most 
important core excitations in the {&,~,,v,,} = (004) symplectic band based on the 
Op-Oh state of 160 with @,,~J = (00). For this case ;i = C = y. The parameters 
Ai for this band were chosen to give an excitation energy of 21.5 MeV for the 1st 
excited 2+ state, corresponding to the position of the observed giant E2 resonance 3s). 
Note that the Ai of table 7 are essentially identical to those used in connection with 
eq. (73); yet the (00) state carries 91 “/, of the 0: intensity, and core excitations are 
weak. Finally, table 8 shows the wave functions for the (422) band in 160, with 
A = y, Z = y based on the most deformed 2p-2h state with (1,~~) = (42). 

6. Conclusions 

The sample calculations presented in this investigation show that the Sp(4, R) 
shell model of collective motion strikes a practical compromise between the two 
extreme models, Sp(2, R) and Sp(6, R). This model avoids some of the computational 
complexities associated with the full Sp(6, R) symmetry; and yet core excitations 
with large values of both SU(3) quantum numbers A and ,u are included in the model. 
This may be important in nuclei in which there is competition between prolate and 
oblate intrinsic shapes. In nuclei with large prolate deformations the calculations 
indicate that the Sp(4,‘R) model space can be truncated further to include only 
excitations along the z-ladder and states with only one or two excitation quanta in 
the x-direction, for which matrix elements can be written in simple analytic form. 

The core excitations needed to account for quadrupole collective effects in strongly 
deformed nuclei are too large to be treated by perturbation theory, so that conven- 
tional shell-model calculations with effective charges may give an oversimplified 
picture of quadrupole collectivity. Despite the large core excitations, a definite 
symplectic band structure emerges for the experimentally observed rotational bands 
in light nuclei. 

Large core excitations seem to be required mainly for symplectic bands {&,~,,vO) 
with large quantum numbers AO, pLo. Since these excitations have a very simple struc- 
ture, it seems feasible to incorporate the symplectic core excitations into much more 
detailed shell-model calculations. Large symplectic core excitations may be required 
only for a few shell-model components with large A,,, p,, values; and for many of these 
the core excitation calculations can be simplified through use of the Sp(2, R), model 
or a truncation to a very simple subspace of the Sp(4, R) model. 
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