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It is often desirable to perform a %ensitivity analysis” by perturbing tbe data given with a 
problem. Motivated by serial and nonserial dynamic programming, we define a variety of 
sensitivity analysh problems, produce algcmihm, and obtain lower bound results. 

Consider an associative multiplication operation, initial values &, . . . Z’, and 
alternate values Z!{, . . Zh. Define Varian~=~~Z;, and Vmiant, = 
ai-’ QZim+l 4). This muItiplication model is appropriate for many applica- 
tions of serial dynamic programming (e.g. resource allocation, task assignment in 
distributed networks, equipment replacement, group knapsack) and for multiply- 
ing N matrices for convolving N functions. (In dynamic programming applica- 
tions, the multiplication operation corresponds to optimally combining return 
functions of adjacent stages.) 

1 

We first define a very simple sensitivity analysis problem, namely the problem 
of computing crll the variants. The practical contribution here is realizing that this 
form of sensitivity analysis is very attractive computationally. The actual al- 
gorithm is simple, and takes only a constant factor longer than just computing 
nyq. This form of sensitivity analysis does not seem to appear in the dynamic 
programming textbooks, perhaps because it is less obvious in specific applications 
than in this more abstract setting. 

Define 4 = n{ & and R, =nr &. Lo and RN+, are the identity. 

AIgoriW 1. (Mass produce variants in an arbitrary semigroup). 
Produce {Rj 1 j = N- 1, N-2,. . . 1) by multiplying righp to left. 
Produce{&Ij=2,3,... N- 1) by multiplying left to right. 
For k = 1,2,. . . N: Variant, = Lk_J~Rk+,. 
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Ansly& The algorithm requires exactly 4N-5 multiplications. 

Theorem 1. Every algorithm which computes ny 4 and all its variants requires at 
least 4N-5 multiplications. Furthermore, every optimal algorithm pe~orms essen- 
tially the same set of multiplications as algorithm 1. 

Roof method [3]. The computation is modelled as a directed acyclic graph with 
multipliers at the nodes. The graph is transformed step by step until it contains 
the graph for algorithm 1. 

For a problem similar to the above, [3] also includes an algorithm valid in all 
semigroups which is (essentially) the only optimal algorithm, even in commutative 
semigroups. 

Open problem. For each s (1 G s G N) find the best algorithm which stores no 
more than s intermediate results. What bounds can be obtained for the time- 
storage product? J. Bentley and N. Swami have shown that N log, N operations 
suffice for log, N intermediate storage locations. 

2. Treelike assochtions 

In algorithm 1, multiplications were performed left-to-right or right-to-left. We 
now consider other parenthesizations (i.e. associations), to be represented by 
binary trees. Each leaf corresponds to an individual term 4, and each internal 
node represents the product of the terms represented by its two sons. 

Notation. TO denotes the terms represented by node v. n (T,) denotes the 
product of those terms. TV denotes the set of terms not in TV. v’ and v” denote the 
sons of 21. 

2.1. On-line changes 

Suppose that instead of calculating all the variants, we receive and must 
immediately execute commands to change the value of a term and then compute 
the product. If the relative frequencies with which each term is changed are 
known, and the intermediate results corresponding to one tree may be stored, 
what tree (i.e. association) should be chosen? To change Z; requires (path-length 
from Zj to root) multiplications. The model immediately yields the results: The 
expected cost of making a change is minimized in an optimum alphabetic tree or a 
Huffman tree, depending on whether multiplication commutes [2,3]. The worst 
case is minimized by a uniform binary tree. 

2.2. Unequal multiplication costs 

If difierent multiplications can take drastically different amounts of time, so 
“number of multiplications” is an inadequate complexity measure, then the 



problem becomes much harder. Some exounples are the nonserial dynamic pro- 
gramming problem of [l] (which includes many classical problems like set cover 
and satisfiability), and probabiIistic circuit and fault tree problems [S]. A “good” 
association (i.e. a tree for which fly 4 is obtained quickly) is used below to obtain 
all the variants. Algorithm 2 be\ow is a simplification and generc%ization of 
algorithms in [4,5]. We assume that a good association tree is known, and that 
multiplicMion commutes. 

2. (1) t-d n z; using given association.) For all internal nodes of the 
tree, ordered bottom-up 

n (KJ = n U’,+*n(T,4. 

(2) For all internal nodes o, ordered top-down 

(3) For all leaves w, Variant,,, = n (Tw)*Z,.. 

Now suppose each term 2 is associated with a set V, of “variables”. A set T of 
terms is then associated with variables UZET V The active set (denoted AC(T)) z 
is (Variables x 1 x belongs to a term in T and a term in n. 

Assume also that for all sets S1 and & of erms, the time to multiply 
It (WII 6) is a nondecreasing function of [AC (S,) U AC (&)I. Our motivating 
examples obey til these conditions. 

m 3. Under the abolle assumptions, the entire algorithm takes at most a 
constant factor longer than step 1. In this sense, algorithm 2 is wi?hin a constant 
factor of optimal. 

Lemma. (i) AC (T,)= AC (TV). 
(ii) AC(T,~)UAC(T~a)~Ac(T,)UAc(T,~). 
By the lemma, the hypothesis of nondecreasing time, and symmetry, each step 

2 multiplication at node IJ takes no longer than the multiplication at u in step 1. 
Step 3 takes no longer than step 2. 
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