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ABSTRACT 

It has long been known how to relate anharmonic vibrational distribution functions to 
scattered electron intensities when deriving molecular parameters from gas-phase electron 
diffraction patterns. What bas been lacking is a convenient procedure for estimating the 
characteristic asymmetry parameters of radial distribution functions for polyatomic 
molecules, particularly in the case of non-bonded internuclear distances_ In the present 
work alternative models of bond distribution functions are discussed briefly and a 
plausible model is proposed for geminal non-bonded distances. Numerical examples are 
worked out for the groundstates of CO,, CS,, H,O, and D,O. Variations of the asymmetry 
parameters of SO, and SF, with temperature are examined. It is shown that the effect of 
asymmetry can become quite large at elevated temperatures. 

Molecular vibrations complicate determinations of molecular structure, 
whether spectroscopic or diffraction, and substantially interfere with the 
accuracy of determining physically meaningful structural parameters. Many 
years ago [l ] , preliminary attempts were made to treat the effects of 
vibrational ~h~rnoni~i~ in gas-phase electron diffraction. Subsequent 
studies [Z--13] substantially broadened the scope of the treatment. Diatomic 
molecules were successfully characterized_ Covalent bonds in polyatomic 
molecules were treated, for the most part, as one-dimensional Morse-like 
oscillators. That this may not always be a good approximation was indicated 
by a recent study [14] showing that the conventional Morse parameter 
accounts for only half the observed vibrational displacement of bonds from 
their equilibrium lengths in the case of SF+ Non-bonded distances present 
an even more difficult problem. 

Several workers [2--5,8] have shown, in principle, how to calculate the 
necessary asymmetry parameters for ~di~du~ molecules. Such calculations 
were carried out for methane [S] and a few triatomic moIeeuIes [3,5, 8, lo] 
to obtain ground-state anharmonic distributions for both bonded and non- 
bonded distances. While these treatments serve as valuable illustrations, they 
are much too complex for routine use in electron diffraction. 
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Prior analyses 143 have established how to interpret diffraction patterns 
once the asymmetry of each peak in the distribution function P(r) is known. 
What is lacking is a practical scheme for estimating asymmetry parameters, 
particularly for non-bonded distances. In special cases the effect upon the 
diffraction pattern is so conspicuous that the parameter can be refined 
directly from.experiment. More often it turns out that the effect is close to 
the noise level, Although it is unprofitable in such cases ta try to establish 
the asymmetry parameter from experiment, it is equally unwise to neglect it, 
because such neglect may degrade the determination of internuclear distances 
by several thousandths of an angstrom unit. 

A rigorous derivation of asymmetry parameters requires, (a) a knowledge 
of the anharmonic force field, and (b) an average over a thermal distribution 
of molecules whose ground and excited vibrational wavefunctions have been 
calculated from the anharmonic force field. Since these requirements are 
rarely met for polyatomic molecules it is necessary to resort to rather severe 
approximations in order to estimate the magnitude of the parameters needed. 
A provisional investigation in this direction is described in the following 
sections, af%er a brief review of the effects of anharmonicity upon electron- 
diffraction patterns. 

ANHAR~~~IC~TY AND DIFFRACTED INTENSITY 

Throughout the present treatment we shall assume, as in earIier treatments, 
that the component of molecular diffracted intensity associated with a 
particulzr internuclear distance is given by Debye’s relation [ 151 

(1) 

where M( s ) is the usual reduced intensity function. Failures of the Born 
approx~ation and other factors not taken into account in eqn. (1) can be 
incorporated in the usual way. It is convenient to express the internuclear 
probability distribution function as 

P(y) = A(2~1~)-“~ (1 -t- 2 c,y”) exp (--y2/2f2) (2) 
n=l 

wherey =r- rR and rR is an arbitrary reference internuclear distance para- 
meter. In ref. 4 the propagation of the parameters c, into the M(s) function 
was treated in detail, along with the conversions between the various types of 

parameters rg, re, I,, 1, , e , l etc,, representing distances and amplitudes of 
vibration. Explicit formulae were given for the particular case of the Morse 
oscillator in its ground state when ra is taken as r, and I represents the. 
amplitude for the fictional harmonic oscillator with the same quadratic force 
constant. In the present rough treatment where, at most, only the first three 
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moments of the distribution function are likely to be known, it is more 
practical to take rn as rg (so that (y> = 0) and l2 as 12 = (y2). If, further, the 
potential function is not radically different from that of a Morse oscillator, 
the above conversion makes c, = -3cLc, and makes c, small enough to 
be unimportant; terms higher than cubic are of significance only at quite 
high temperature or in individual excited states. Accordingly, the three 
parameters r g, I, and c3 characterize the distribution, the latter giving rise to 
the skewness we seek to examine. 

The effect of the asymmetry, or skewness, of P(y) is to introduce a phase 
modulation into the molecular oscillations of M(s) according to the expression 

sr,M(s) e AC exp (-12s2/2) sin [s(ra - KS’ + - - )] (3) 

where r, 3 rg (1) = rg - (12/rg), and where the coefficient of the leading term 
in the phase correction is [ 1,4 J 

K = (Cf - ?$ f22 )z6 

In eqn. (4), c2 normally plays a minor role, even if it is non-zero by the con- 
vention adopted for rR and 1, and we shall henceforth disregard it. As can be 
seen from eqn. (3) the effective value of the internuclear distance implied by 
the electron interference fringes in the vicinity of s = s, is (r, - K sz ). If 
neither the magnitude nor the sign of K is known, the derivation of the 
desired average r, is impaired. In the remainder of the paper we shall consider 
ways to estimate c3 and, hence, K , from information currently available. 

ASYMMETRY OF BOND DISTRIBUTION 

Because no general, quantitatively predictive representation of polyatomic 
force fields (short of Schrodinger’s equation) has yet been formulated, we 
can draw only tentative conclusions. We shall briefly compare the implications 
of two reasonably successful model fields, the Morse valence force field 
(MVFF) and an anharmonic Urey-Bradley force field (KBFF) formulated 
two decades ago [5] _ In the MVFF it is assumed that bond stretches are repre- 
sented by Morse-like potentials, the parameters of which are given to sufficient 
accuracy by Badger’s rules [16] or the tables of Herschbach and Laurie [ 171 
or Kuchitsu and Morino [lo]. In the KBFF, Morse parameters contribute 
the predominant anharmonic effects but geminal non-bonded interactions 
may significantly influence anharmonicity. Evidence of the superiority of the 
KBFF has been discussed in several references [lo, 14,18-203. 

Let us first compare the implications of the two force fields at modest 
temperatures where bond stretches are still in their ground states. As shown 
elsewhere [I, 41 

c3 = a/612 (5) 

where a is the Morse parameter which can be derived from the Herschbach- 
Laurie derivatives 1171 as (-V”‘/,V”), or from Kuchitsu and Morino’s 
tables [lo]. A rigorous derivation of c3 from the KBFF cannot be carried 
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out without first calculating the anharmonic vibrational wavefunctions 
corresponding to the field. Nevertheless, a crude assessment can be made by 
displacing one-bond along its z (stretch) coordinate while holding all others 
constant. This bond (bond i) then experiences the potential function [5,131 

V(AZi) = Kf r~ Az~ + :Ki (Az~)~ - i Kia(AZi)3 + 2 [Flj (QR)iiAqij 
i 

f ;Fij (Asij)’ + (F3/6qR)ij (Asij)” I (6) 

where K’, K, F’, and F are the usual UB force constants, a is the Morse 
parameter, and (F3/qR )ij is the third derivative of the non-bonded potential, 
with rR and qR being the bond and non-bonded distances in the reference 
structure. ‘Resolving forces for a symmetric AX, molecule, (see ref. 13 for 
relevant details), we find 

V(AZi) = $ [K C ??Z(C’F’ + S’F)] (Az~)’ 

-$K {Q + (m/GKrR) [3c2 (F’ W-F) -SOFA]} (AZi)3 (7) 

where m is the number of geminal non-bonded distances, s and c represent 
sin (aii/2) and cos (aij/2), respectively, and the quadratic force constant 
[K + m(c2F’ + s2F )] is simply the UB representation of the valence stretch 
constant h,. According to eqn. (7), the effective “Morse” parameter oKB 
E (-,“‘/3V”) in the KBFF is 

aKB = {Ka + (m/6rR) [3c2(F’ -F) --sWJ}/!?= (8) 
A dynamic average over vibrations would modify the factor somewhat. 

In order to determine whether a and a KB are significantly different, it is 

instructive to examine the case of SF,, where six fluorines are tightly packed 
around the central sulfur atom. For this example, there are prior estimates 
[ 141 of the relevent force constants. These estimates yield the values 1.8 a-’ 
and 1.6 A-‘, respectively, for CL and aKB _ A roughly comparable difference in 
the case of CH4 can be inferred from results tabulated by Kuchitsu [ 121, 
where vibrational averaging was carried out [6]. Since the differences are not 
large compared with uncertainties in the input parameters, and since the 
differences would often be smaller (with smaller m or F3, or larger qa), there 
is small incentive, at this stage, to go beyond the simple Morse model. 

Here it is appropriate to comment on the commonly encountered 
assumption that, for a covalent bond in a polyatomic molecule, the mean 
vibrational displacement (A r> from equilibrium is given by the diatomic 
formula 3afZ2/2, where (zf is an effective Morse asymmetry parameter. If this 
were true, calculated <Ar) values for CH, [6] and SF6 [14], based on the 
KBFF, as well as experimental <Ar> values in the latter case, would imply an 
af value substantially greater than the diatomic Morse parameter. However, 
the reported skew of the bonded C-H distribution [ 121 and the above ax B 
value for SF6 are smaller than predicted by the diatomic model. It may, be 
inferred, then, that significant contributions to the displacement (Ar> are 
made by bending as well as stretching modes, and that anharmonic vibrations 
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do not skew the distribution function of polyatomic molecules as much as 
they do those of diatomic molecules, per unit mean displacement. One source 
which can be easily visualized leading to displacement (namely, A,, in the 
notation of ref. 13), while contributing little skew, is discussed elsewhere [ 133. 

At temperatures high enough to excite stretching modes it is, of course, no 
longer appropriate to use eqn. (5) to estimate the skew parameter c3. Several 
treatments have appeared, the most useful one of simple form, perhaps, being 
the diatomic formula 

c3 = a[1 + 8x(1 + x)-~] /6f2 (9) 

proposed by Kuchitsu [ 211, where x = exp (--hv/Zit). It is of interest to examine 
the diatomic high temperature iimiting form of P(y, T) applying when kT 
B hv, namely lV exp [-V(y)/RT] . For example, if the potential energy of a 
Morse oscillator is expanded about ra = r, , with x = r - r,, the result is 

P(x, T) 2: NT [l + (a/21*)x3 - (7a*/241*)~~ + - - - ] X exp (_3c*/Zf*) (19) 

making 

c3 % a/212 (11) 

where the temperature-dependent mean-square amplitude Z2 is very nearly 
kT/k,, with k, representing the stretching force constant. It is evident that 
eqn. (9) successfully reproduces eqns. (5) and (11) at the appropriate limiting 
temperatures. 

GEMINAL NON-BONDED DISTRIBUTIONS 

If details of bond distributions are not yet fully resolved, details of non- 
bonded distributions are even less well understood. We propose the following 
models, then, not because they are rigorous but because they are tractable, 
and one of them yields fairly satisfactory results in those few cases for which 
more rigorous results exist. Let us consider the Xi- - - Xj non-bonded distance 
4 in the fragment Xi-A--X,, whose vibrational displacements from mean (not 
equilibrium) positions are specified in terms of the internal coordinates Ari, 
A?-;, and Acr. We assume that the displacement A 4 can be written as 

Aq=Aqi+ Aqj+ Aqb (12) 

where the three components arise from the stretching of bonds i and j, and 
from bending, respectively. If cross-terms are neglected, the components in 
eqn. (12) are simply related to the diagonal terms in the Taylor series 
expansion given by Shimanouchi [22] as 

Aqi =sijAri + --- 

(Aq)i = SiiArj + _ - - 

and 

(Aq)b = D1 Aac + ~*(AcY)~ + l l + 6 

(13) 

(14) 

(15) 
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where sii = (ri - rj COS~)fq~j, L)l =.(tfjtjirfrj)“2, tij = rjsi31atJq, B* = -SjiSJiririJZq 
and where 6 is a shrinkage parameter defined to make (Aq)b = 0. 

It is assumed that the bending and two stretching vibrations act inde- 
pendently in shaping the distribution P(Aq). It will emerge that consider- 
ations of dynamic bending trajectories require a significant correlation 
between Aa! and Art, Qri in bending modes, but this correlation will be 
absorbed into the component (Aq)b. While it is possible to develop explicit 
expressions for the distributions ps (A qi), ps (A qj), and pb (Aqb) ad, further, 
to reduce them to the desired one-dimensional distributions P(Aq) as out- 
lined elsewhere 1231, a more compact presentation can be made using a 
method of moments. We identify the moment ((Aq)” ), where n is an integer, 
with the quantity ((5qi + Aqj + Aqb)“). According to our assumptions of 
independence in the foregoing, averages of the type <(Aqi)‘(Aqj)S(Aq,)‘) 
simplify to the product ((Aqi)r) ((Aqj)‘) {(Aqb )?. The function we seek is 

P(Aq) = N{l + c3 I--3Z2Aq + (Aq)3] + - - - ) exp [-(Aq)2/2f& ] (161 

for which (Aq) = 0, ((As)‘> = a&, and the moment 

((Aq)3) = 6c,l$ + - -- (17) 

isolates the skew parameter c3 we need for the diffraction K constant. Accor- 
ding to our ~sumptions, the mean-square ampfitude & of our uncorreiated 
model would be 

1’ UM = CL: (Aq,J2 + 2 2 (Aqh) (Aq,)) 
k k>Z 

= ; ((Aqk)') + 2 1 ztAqk) (Aq,) 
k>l 

=((Aqi)*)+ ((5qj)2)+ <(Aqb)2) 

X STjC (Ari)‘) + Sfi (jAri)‘> + 0: ‘((AoJ)‘) (18) 

since all (Aq,) = 0. Whether it is advisable to substitute the model ~pli~de 
Zu, for the actual distribution breadth ZM wiI1 be discussed later, For similar 
reasons the third moment reduces to 

((Aq)3) = ((Aqi)3) + ((Aqi)3) + <(Aqb)j) (19) 

making the skewing contributions additive, so that the non-bonded skew 
parameter is the sum of a stretch and bend component, or 

c3 = c3s + C3b (20) 

Our task, then, is to find distributions giving plausible stretching and bending 
skews. Following the previous section, we adopt for stretches 

p(Ar,,) = N’{f + CJk [-3l;(Ar,) + (Ark)“]) eXp [-(Ar&“/Zr,2] (21) 

which, via eqns. (13) and (14) yields, for example, 
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= N’ {l + c3f C-32; (Aqi/Sij) + (Aqi/Sii)3]} 

X exp [-_(A~J2/2UA~E)l d (AQi/sii) Gw 
Moments implied by eqn. (22) are (Aqj) = 0, ((Aqi)2) = ~$12 and 

((Aqi)3) = 6c3is~jI~ (23) 

where cJi is the skew parameter presumed to be known for bond i. This 

yields for the stretching skew parameter 

c3S = (Cji S?j 1: + C3jSTilf )/l& C (24) 

What to do about bending is less obvious. We seek the simplest distribution 
giving realistic results. The most obvious simple model, the circular arc model, 
incorporates a bending distribution 

&(A&) = N” exp [--(AcK)~/~u~] (25) 

with mean-square bending amplitude u,, 2 from which, in the notation of eqn. 
(15), the moments are 

((Aq#) = 
(( 

2 D, (Aa)” + 6 n 
m 0 

Accordingly, the shrinkage 6 is established 

6 = -Dzoz - 3D& + - - - 

(26) 

as 

(27) 

from the condition that (Aq,,) = 0, whence 

((Aq,,)‘) = D:a& + - - - 

and 

(28) 

((Aqb)3) = 6DzD20: + ___ 

z 6~3bl& (29) 

Unfortunately, this is too crude. Equation (29) yields a value of cjb which is 
negative, as expected intuitively, but which may be far too large in magnitude. 
That such a model yields an excessive correction might have been anticipated 
from probability distributions plotted by Morino and Iijima [8] . 

It is improper to use a distribution of the form exp[-V(Ari, Ari, Aa)/hT], 
analogous to eqn. (ll), even for high temperatures, because such a distri- 
bution, valid in a one-dimensional problem, fails to take into account kinetic 
effects coupling Ari, Arj and ACY in bending trajectories. 

A greatly simplified “triatomic bender” model was carried through to a 
form requiring only mean amplitudes, stretch and bend force constants, and 
stretch and bend frequencies as input. Since it gave promising results it is 
provisionally adopted and will now be described. The model consists of a 
symmetric X-A-X fragment whose potential function is purely quadratic 
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in terms of the curvilinear internal coordinates, or 

2V(Ari, Arj, Aa) = k, [(Ari)2 + (Arj)2] + 2hrrAriArj + H(RAa)* (3Oa) 

where R = ri = rj_ Since it is essential in deducing a realistic quantum trajec- 
tory for the bending motion to allow a stretching correlated in phase with 
bending, it is necessary to include stretching as well as bending force constants. 
Since, however, we seek to model the Morse-like anharmonicity separately, 
via eqn. (24), we include no cubic stretching terms in eqn. (30). Nevertheless, 
because the internal coordinates are curvilinear, not rectilinear, the potential 
function is that of an anharmonic oscillator, and the anharmonicity has a 
crucial influence on the bending trajectory. Consistent with our goal of 
developing a universal function of great simplicity, we reduce the problem 
to two dimensions, the symmetric stretch and the bend. Only the symmetric 
stretch yields the stretch-bend correlation we need, and we disregard the 
remainder, recasting eqn. (30a) in to 

2v = FS; + H(RAcx))’ + - - - (sob) 

where S, = (Ari + A1))/25 is the desired symmetry coordinate for stretch and 
F is the associated force constant (to which the final result is sufficiently 
insensitive that the valence stretch k, can be used in its place with little loss 
in accuracy). 

Coordinates are then transformed to rectilinear stretch and bend coordi- 
nates [24], St = (AZi + AZj)/Zt ad Sg = (Ax; + AX,) with Axi = Axi, whence 

V(S,,S?) = v”*+ V’ @Ia) 

with 

2v” = FSf + KS; Wb) 

representing the harmonic potential and 

V’ = 2+[1 - (4iY/F)]S,S~/8R f - - - (31c) 

expressing the anharmonic coupling. The two-dimensional quantum problem 
was solved to obtain a first-order wavefunction for arbitrary quantum num- 
bers m(S, ) and lz(S*). In terms of S, and Ss, L.q,., of eqn. (15) becomes 

A4b = 2+?1 -I- csz + - * - + c5 (32) 

where s = sin(a/2), c = cos (a/2), and terms quadratic in Sl,S2 vanish iden- 
tically. The shrinkage parameter 6, evaluated from a thermal-average distri- 
bution by setting ((Agb)) = 0, is 

(33) 

where ai is the mean-square amplitude of bending (assuming 0: x C3$lR2) 
and qa is the reference non-bonded distance. For each quantum state (m,?z) 
the moment ((LI~~)~) was calculated incorporating the thermal average value 
of 6, and then the average of ((Aqb)‘) over a Boltzmann distribution was 
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determined [25] _ From this, via eqn. (17), an expression for the bending 
skew parameter cgb was found to be 

c3b (T) = 
--s2c2 [l - @H/F)] G(T)R4 u: 

29, (1 + W& 
(34) 

where (T, and 1~ are evaluated at the temperature of interest, S = (ZZQ,/Y~) in 
which vb and v, are mean bending and stretching frequencies, and 

t1 - xb) (1 + ?ds G”=[l- (l+ xb)(l--&) - 

2xbs2 

(1 + xb)’ ‘(’ --) 1 
(35) 

with xs = exp (--hv,/kT) and xb = exp (--hub /kT). Note that G(T) approaches 
unity as T approaches zero. 

It is worthwhile comparing the result of eqn. (34) with that of the circular 
arc model of eqn. (29) which, for the present case with ri = rj, reduces to 

c3b (circular arc) = -(s2c2 /2q &$)E4& (36) 

Presumably, the more difficult it is to stretch or compress the bonds, the 
more nearly should an actual oscillator yield trajectories with circular arcs. 
That this is the case is shown by taking the stretching force constant in 
eqn. (34) to be huge, hence atso making Y, 9 vb. With these conditions 
imposed, eqn. (34) can be seen to approach the circular arc limit at low 
temperature. For typical molecular cases, however, the disparity between 
eqns. (34) and (36) can be considerable. 

For non-bonded distances in cases where ri # rj, it would be possible to 
solve a related but appreciably more complicated problem. At this juncture, 
perhaps, it might suffice in order of magnitude to alter eqn. (34) by averaging 
force constants and Frequencies for the two bonds and replacing the coefficient 
(-s2c2R4/2qR) by D:D,, in the notation of eqn. (15). 

Before presenting numerical results it is necessary to propose a compro- 
mise for the simplified model to compensate partly for the errors associated 
with the assumption of independent internal coordinates. This assumption, 
among other things, tends to make the model mean-square amplitude ZGM 
of eqn. (18) somewhat too large (as can be seen in the tabulations of the 
next section). On the other hand, it tends to exaggerate the effects of Zi, ii, 
and O= in the individu~ skew con~ibutions of eqns. (24) and (29). Because 
the amplitudes are present to a high power (4 or 6), errors are amplified. A 
practical compromise, useful in the examples worked to date, is to use for ZM 
of eqns. (24), (29), (34) and (36) the geometric mean of the uncorrelated 
IuM of eqn. (18), and the actual normal coordinate amplitude INC for the 
non-bonded distance. This mean has been used in all of the results tabulated 
in the next section. 
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NUMERICAL ILLUSTRATIONS 

Molecular systems for which reasonably rigorous calculations are available 
for comparison include CO:!, C&, Son, H20, D20, CH, and CD,. In the 
following we present results for the foregoing triatomic molecules and for 
SF,. Methane, being very similar to water on the basis considered here, is 
deleted for brevity. For CO*, CS2, Hz0 and D20, input amplitudes for the 
present model are taken from the references cited by Kuchitsu [ 12]_ In the 
cases of SO2 and SF6 for which we illustrate the effect of temperature, the 
necessary amplitudes were calculated from the quadratic force fields pub- 
lished elsewhere 126,141. F or the present purposes the differences between 
amplitudes calculated from a quadratic field and an anharrnonic field are 
unimportant. In all cases but SF6, skew parameters c, for bonds were taken 
from Kuchitsu’s tabulations of moments [ 121 to permit comparisons of 
K values. For SFs, c3 values were based on an estimated [17] Morse para- 
meter of 1.8 A-’ _ 

Table 1 shows the stretching and bending components of the non-bonded 
skew parameter c3 calculated according to the present model. Because the 
circular arc model bending contributions are much too negative, net values 
for c3 incorporate the results of the triatomic bender model. Although the 
present model does not reproduce exactly the Kuchitsu values for the 
moments, the magnitudes are considerably closer to the more rigorous 
values than are those based on Kuchitsu’s diatomic approximation [lo, 123. 
Even in the case of SO;!, where the present model appears to be much too 
small at 0 K, two facts should be noted. Firstly, the important thing is that 
both c3 values are small (even the rigorous value is an order of magnitude 
less than the diatomic value) and, hence, neither contributes a serious skew 
which could distort the determination of a bond length. Secondly, the effect 

TABLE 1 

Skew parameter for non-bonded distancedistribution at 0 K derived by various approxi- 
mations (a-“) 

Molecule Present model Kuchi tsu 

c:s CFb C;b 
d 

C3 c, (mom.)e c, (approx)f 

co2 136 0 0 136 129 344 
R*O 3.30 -13.98 -4.81 -1.51 -0.90 28.1 

D,O 5.07 -20.66 -7.09 -2.02 -3.41 40.1 
SO* 24.1 -56.6 -21.2 2.9 26.5 207 

aStretching contribution from eqn. (24). bBending contribution according to circular arc 
model, eqn. (36). =Bending contribution according to symmetric bender model, eqn. (34). 
dTotal, eqn. (24) plus eqn. (34). eMethod of moments from first-order wavefunction, ref. 
12. fDiatomic approximation, ref. 12. 
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of temperature is to make c3 tend rapidly toward negative values, and the 
rigorous value, which is appropriate at 0 K, may be appreciably too large at 
room temperature. 

The discrepancy between amplitudes Zm calculated according to the 
uncorrelated model of eqn. (18) and the normal coordinate amplitudes lNC 
can be seen in Table 2. In future work it would be desirable to formuIate a 
less crude model. For the benefit of those who base their skew in diffraction 
analyses upon the ground state Morse distribution P,(x) discussed at length 
in ref. 2, we also tabulate the effective Morse parameter 

aeff = 6c3ZNc’ (37) 

which imparts the requisite skew into P, (3~). Phase modulation parameters 
K are compared with Kuchitsu’s values, where available. Finally, to give a 
more concrete illustration of the practical effect of the skew on a structure 
determination, we tabulate lo3 KS:, the shift (in thousandths of an Angstrom 
unit) in the effective bond length (ra - KS:). This is the length inferred 
from an electron interference fringe at the scattering angle at which the 
damping envelope exp (--12 s:/2) has dropped to e-l. 

It is prudent to emphasize once more the crudeness of the foregoing 
treatment. It is to be hoped that a better approximation will be forthcoming. 
As can be seen, particularly in the SF6 results of Table 2, the effect of 
skewing increases rapidly with temperature and can far exceed experimental 
error. Therefore, in view of the increasing interest in the dependence of 
structure on temperature 114,271, it is imperative that the effects of 
anharmonicity be taken into account. Whiie the present treatment is not 
guaranteed to give precise results, it seems to be less risky than a blind guess 
or complete neglect of the problem. 

Note added in proof: it has been shown by W. H. Miller [28] how to 
derive an “effective potential” Ve(x), such that the expression, N exp 
E-V, (x)/M!‘] , gives a reasonably faithful distribution function P(x,T) at all 
temperatures (see eqn. (10) in text, which is only valid at high values of T, 
and refs. 29 and 30). 
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