
Growth Equations: 
A General Equation and a Survey of Special Cases 

MICHAEL A. SAVAGEAU 

Department of Microbiologv and Immunology, 

The Unioersi@ of Michigan, Ann Arbor, Michigan 48109 

Receioed 2 September 1979 

ABSTRACT 

Although growth in its various manifestations has been studied for centuries and 

although there are a large number of well-established growth “laws,” that work is almost 

entirely empirical and lacks a theoretical foundation with which macroscopic aspects of 

growth might be related to underlying, microscopic determinants. Recent work on the 

analysis of complex systems, however, has provided just such a foundation. It has been 

shown that an important class of complex systems can be accurately described by a 

formalism involving simple nonlinear approximations. This formalism leads naturally to a 

general growth equation in differential form for complex systems. The survey of well- 

established growth equations presented here demonstrates that each of these is a special 

case of the general growth equation. 

INTRODUCTION 

The mathematical characterization of growth is among the oldest scien- 
tific pursuits [35] and transcends most modem, often narrowly defined, 
disciplines. The literature abounds with specific growth equations of dem- 
onstrated utility. Yet these equations are all empirically derived and lack a 
fundamental, theoretical relationship to the underlying mechanisms of 
growth. Recently I have derived a general growth equation that is based 
upon the nature of the elemental mechanisms in complex systems [35]. Here 
I shall briefly describe this general equation and then show that it has as 
special cases all the well-established growth equations. 

GENERAL GROWTH EQUATION 

Theoretically, the behavior of a complex system can be related to the 
nature of its component mechanisms. The prerequisite for obtaining this 
relation is a knowledge of the elementary descriptions for each of the 
component mechanisms. The mathematical form of these descriptions has 
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been presented elsewhere for a broad class of mechanisms called synergistic 
[33-351. These component descriptions can be combined to yield a set of 
differential equations capable of representing the intact system. 

For a system composed of n elements, different in kind and/or location, 
the symbol Xi has been used to represent the concentration or amount of 
the ith element. gi denotes the time derivative of Xi. By suitable numbering 
from 1 to n, the subscripts (i) can be used to denote both the identity and 
the location of an element. Additional variables with i varying from n + 1 to 
s can be defined as aggregate measures of the entire system and of 
particular subsystems within the system. For example, these could be the 
total weight of an organism, or a particular organ of the organism; the total 
population of a society, or a particular group within the society; the capital 
accumulation of an entire economy, or of a particular sector of that 
economy, etc. Each aggregate measure is the sum of all the relevant 
elements of the system or subsystem, i.e., 

xi= 5 xj, i=n+l,n+2 ,..., s. (1) 
relevant 
j from 1 

With the conventions in the preceding paragraph, it can be shown [34, 
351 that the behavior of complex synergistic systems is determined by the 
nature of the component mechanisms and their abundant interrelationships, 
as expressed mathematically in the following equations: 

i= 1,2 ,..., S, 
j-l j- 1 

and 

xi=yi fi x$, i=n+l,n+2 ,..., s. (3) 
j=l 

The problem of analyzing such systems can be viewed as a process of 
extracting the information latent in these descriptive equations. 

By starting with Eqs. (2) and (3) and a single reasonable postulate, one 
can derive a general growth equation [35]. The postulate is that most 
changes among the component parts of a system occur much faster than the 
rate of growth for the system as a whole. Mathematically, this implies that a 
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small number (k) of the equations (2), representing the slowest phenomena, 
determine the temporal response of the entire system; all other equations, 

representing the faster phenomena, can be assumed to have reached a 
quasisteady state with time derivatives equal to zero. Under these condi- 
tions, the descriptive equations can be reduced to the following k equations: 

j-l 

i=1,2 k, >..., 

in which an Xi may represent either one of the n fundamental variables or 
one of the s - n aggregate measures, including the total system. 

Thus, Eq. (4) represents a general growth equation in differential form 
for the entire system when there are k temporally dominant processes. Most 
systems appear to be governed by a very small number of temporally 
dominant equations. In fact, as will be seen in the next two sections, all the 
well-known growth equations are special cases of the equations (4) when 
there are only one or two temporally dominant equations.’ 

GROWTH EQUATIONS IN ONE VARIABLE 

When there is a single, temporally dominant process, the basic growth 
equation (4) can be written 

There are several well-known growth equations that are special cases of Eq. 
(5). A summary of the following comparisons is presented in Table 1. 

’ There is additional evidence, which I will present elsewhere [36, 371, that supports the 
notion of a small number of temporally dominant processes in complex systems. Any 
system that grows into a stable mature form has a growth curve that is a legitimate 
cumulative probability distribution. Conversely, the integral function of any probability 
distribution exhibits properties of limited growth. Thus, there are an enormous number of 
cumulative probability distributions that also represent potential growth functions. I have 
found that nearly all the well-known cumulative probability distributions can be repre- 

sented by the general growth equation (4) when there are a small number of temporally 

dominant processes [37]. Furthermore, the well-known allometric growth relationships can 

be derived from Eqs. (2) and (3) when there are a small number of temporally dominant 

equations [36]. 
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TABLE 1 

Comparison of the Basic Growth Equation 

in a Single Variable and Several Special Cases 

Growth law Parameters References 

Basic” 

Linear 
Exponential 

Monomolecular 

Logistic 

Bertalanffy 

al gll P, h - II 
C 0 0 0 32,41 
k 1 0 0 4, 18, 32 

% 0 k 1 1, 2, 32 

r 1 r/K 2 1, 3, 12, 21, 26, 
31,32, 39,44 

9 m K 1 1 

LINEAR 

Aside from a small number of examples in which growth is naturally 
linear [32], linear growth may result whenever an essential factor for growth 
is limiting and conserved at a constant value. For example, when a gene 
essential for the growth of a microorganism is carried on an extrachromo- 
somal element that cannot be replicated nor integrated into another repli- 
cating element, the growth of the population becomes linear. The cells 
having the essential gene grow relatively normally, but at the time of cell 
division only one of their two daughter cells can receive the essential gene; 
the other becomes “sterile.“2 The equation for linear growth is 

N(t)=C(t+a) 

and in differential form 

dN c -= 
dt ’ 

where N(t) is number at time t, C is the growth-rate constant, and 
a = N(O)/ C is related to the number at t = 0. In terms of Eq. (5): (or = C, and 
all other parameters have the value zero. 

EXPONENTIAL 

The law of exponential growth, or the law of Malthus [20] as it is 
sometimes called, is probably the best-known form of growth. Within limits, 
it applies extremely well to a wide variety of systems, e.g., microorganisms 

*For a further discussion of this and other examples, see Ref. [41]. 
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[4], plants [32], tumors (see Ref. I18]), publications on Drosophila [9], and 
manufacturing companies [8]. In conventional notation, 

N(t) = N(0) exp( kt), 

and in differential form 

$=kN, 

where N(t) is number at time t, and k is the exponential growth-rate 
constant. In the notation of Eq. (5): CY~ = k, g,, = 1, and all other parameters 

have the value zero. 

MONOh4OLECULAR (LIMITED OR DECREASING EXPONENTIAL) 

This equation describes the growth of certain animals during most of 
their lives [l, 21 and certain plants [32]; it can be written in the form 

w = w,[ 1 - b exp( - kt)], 

where w is weight or volume as a function of time, w, is the final value of w, 
k is the growth-rate constant, and b is a positive parameter related to the 
initial value of w. 

In differential form, 

dw 
-=k(w,-w), 
dt 

and the parameters of the basic growth equation (5) can be identified as 
follows: a,=kw,, /31=k,g,,=0, andhi,=l. 

LOGISTIC 

The logistic equation was proposed by the mathematician Verhulst [42] 
and since has become one of the most popular equations for describing 
growth of animals [ 1, 211, plants [32], populations [26, 31, 391, and econo- 
mies [3, 121. (For a criticism of some of the applications of the logistic and 
related functions, see Ref. [ 11.) The equation is often written 

N(t)=K[l+exp($-rt)]-‘, 

where N(t) is number or amount as a function of time, K is the final value 
of N, and r is the growth-rate constant. In differential form the logistic 
equation becomes 

dN 
dt =rN- SN’, 
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and thus the parameters in the basic growth equation (5) are LY, =r, 
Pi=r/K,g,,=l, andh,,=2. 

BERTALANFFY 

This is one of the most successful equations for describing animal growth 
because there has been an attempt to relate the overall growth to the 
physiology of the organism and because of the diversity of growth data that 
are well described. The advantages and limitations of this equation have 
been discussed extensively by Bertalanffy [ 11. Although the equation can be 
written as 

w(t>= IT! _ f _W;-m),-(l-mNt 
[ ( 

1/(1-m) , 
K I 

the differential form is more common and more easily understood: 

dW 
x =TJW”-KW, 

where w is weight or amount as a function of time; K is a first-order rate 
constant for loss due to catabolism, which is assumed to be proportional to 
w or body mass; and q and m are parameters of a power law describing 
anabolism, which is assumed to be proportional to the surface area (hence, 
the power function of mass or volume) through which nutrients are ab- 
sorbed [I]. In the notation of the basic equation (5): (pi = n, /?, = K, g,, = m, 

and h,, = 1. 

GROWTH EQUATIONS IN TWO VARIABLES 

When there are two temporally dominant processes, the basic growth 
equation (4) can be written 

The remaining growth equations considered in this survey are special cases 
of Eq. (6). The results of the following comparisons are summarized in 
Table 2. 
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TABLE 2 

Growth Law 

Comparison of the Basic Growth Equation 
in Two Variables and Several Special Cases 

Parameters References 

Bask? 
Logarithmic 
Power law 

Hyperbolic 
Weibull 
Stochastic 

Gompertz 

Lotka-Volterra 

a1 gll g12 Pl 4, h (12 831 ET22 P2 h2, h22 

b0 1000000 102 
bc 01-b0 0 0 0 0 0 1 0 2 

b0 200000 0 (1-‘/2 0 2 
ck 1 c+l 0 0 0 0 0 0 102 
Zk, 1 f 0 0 0 0 0 0 1 0 f 

11 1000000 a 01 

r 1 OkllK11 d 01 

- 
6 
1, 5, 25, 
32, 40 
22 
46,47 
7, 11 

1, 10, 17, 
31, 32, 39 
19.45 

LOGARITHMIC 

This type of equation is sometimes used to describe the decelerating 
phase of animal growth in certain species [6]. The equation can be written 

w( 2) = c + b log( t + a), 

or 

dw b _= 
dt t+a’ 

where w is weight or amount as a function of time, and a, b, and c are 
positive constants. This equation is equivalent to the following set of 
equations in which time no longer appears as an explicit variable3: 

3=b.z, 

i= -&-2* 

From these equations the parameters in the basic equation (6) can be 
identified: a, = 6, p2= 1, g,, = 1, h,,=2, and all others have the value zero. 

3The differential form of this growth equation, and most of those that follow, is not 

unique. For example, an alternative description of the logarithmic growth equation is 

6-b? 

icmz”+‘/*, n >o. 



274 MICHAEL A. SAVAGEAU 

POWER LAW 

Special cases of this equation have been proposed for the growth of 
various organisms [l, 321 and tumors [5, 24, 251. The equation can be 
written 

and in differential form 

3= bcz’-b, 

_+= _z=, 

where again w is weight or amount as a function of time, and a, b, and c are 
positive constants in the equation. Comparing these equations with Eq. (6) 
shows that a, = bc, p2 = 1, g,, = 1 - 6, and h,,=2; the other parameters in 
Eq. (6) have the value zero. 

HYPERBOLIC 

Regenerative growth in some instances has been represented by a hyper- 
bolic function [40]. A generalized form of this function that is capable of 
representing certain S-shaped or sigmoid growth curves can be written 

w(t)= 
w,( t + a)” 

b+(t+a)” ’ 

where w is weight or amount as a function of time, w, is the final value of w, 
and a, b, and n are positive parameters in the equation. In differential form 

,+=bbnw=z”+’ 

,f= --= 

and the corresponding values of the parameters in the basic growth equa- 
tion (6) are: (Y, = bn, p2 = 1, g,, = 2, grZ = n + 1, h,, = 2, and all other parame- 
ters have the value zero. 

This degeneracy is to be expected because z represents only one of a finite number of 

choices for any given system and because there are an infinite number of systems that can 

yield the same growth equation. Nevertheless, there are certain restrictions that must be 

obeyed. Since z represents the amount or concentration of an element of the system, its 

value cannot become negative or infinite; this restricts the possibilities for the second 

differential equation. This equation can be specified more precisely with additional 

detailed information about the mechanisms underlying growth. 
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WEIBULL 

Another growth equation that has been suggested to have widespread 
applicability [22] was originally developed by Weibull [46]. It can be written 

w(t)=w(O)exp[ -k(r+a)-‘I, 

where w is weight or amount as a function of time, and a, c, and k are 
positive parameters. In differential form, this equation can be written 

ti=ckwz’+‘, 

i=-z= 

and the parameters that have values different from zero in the basic growth 
equation (6) can be identified as: a,=ck, p2= 1, g,,=l, g,,=(c+l), and 
h,,=2. 

STOCHASTIC 

Zotina and Zotin [47] have developed a growth equation based on the 
normal probability distribution-hence the name stochastic. In its general 
form, this growth equation also includes powers of the normal distribution. 
The growth of certain insects is well described by this equation (see Refs. 
[ 11, 471). In the notation of Zotina and Zotin [47] 

w(t)=w,exp - 
( 

+cTm-1)2), 

where w is weight or amount as a function of time, w, is the maximum 
value of w, T, is the time when growth stops, and kg is the growth-rate 
constant. In differential form this equation can be written 

and the parameters of the basic equation (6) are seen to be: a, =2k,, fi2= 1, 
g,, = 1, g,,= f, h,,= t, and all other parameters have the value zero. 

GOMPERTZ 

This equation, proposed by Gompertz [7] for actuarial tables, has be- 
come one of the most popular for describing growth of animals [l, 15, 171, 
embryos [ 141, plants [32], tumors [lo, 13, 16, 231, and populations of 
organisms [3 1, 391, and is still used in studies of aging and mortality [31, 391. 
In the notation of Laird [16] 

V(t) = Y(0) exp[ - p exp( - cut)] 
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where V is volume or weight as a function of time, and cr and P are positive 
parameters. In differential form 

ti= kV, 

I;= -ak. 

Thus, the parameters of the basic equation (6) that have values different 
from zero are: (xi= 1, p2= a, g,,= 1, g,,= 1, and h,,= 1. 

LOTKA - VOLTERRA 

The following equations are the classic ones studied by Lotka [19] and 
Volterra [45]; they represent the growth in differential form of two popula- 
tions in a predator-prey relationship: 

X=rX- kXY, 

I’=KXY-dY, 

where X and Y represent the sizes of the prey and predator populations, 
respectively, and all the parameters are positive in value. The corresponding 
values for the parameters of the basic equation (6) are: (pi = r, (Ye= K, 

/3,=k, /3*=d, g,,=l, g,,=O, g,,=l, g,,=l, h,,=l, h,,=l, h,,=O, and 
h 1. 22= 

DISCUSSION 

There are still more growth equations (e.g., those discussed by Turner et 
al. [42,43] and by Peil and his colleagues [27-30, 381 in a series of papers on 
growth) that could be considered here, but suffice it to say these are special 
cases of the basic growth equation (4) when there are two or more 
temporally dominant processes. Since there are numerous examples of data 
that are well characterized by each of the specialized laws of growth, there 
clearly are an enormous number of examples that are described by the basic 
growth equation (4). Although many, if not all, processes exhibiting “regu- 
lar” growth are represented by these specialized growth equations, which as 
we have just seen are special cases of the basic growth equation (4), there 
are other processes that exhibit irregular growth curves with sharp breaks, 
oscillations, etc. The basic growth equation (4) has the potential for describ- 
ing these processes as well. 

This work was done in 1976-77 while I was the recipient of a fellowship 

from the John Simon Guggenheim Memorial Foundation. It also was supported 
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thank Robert Rosen and A. M. Kotre for helpful criticism of the original 

manuscript. 
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