
AUTOMAED DAn ACCESS
AND ANALYSIS SYSTEM

- -- --

SUBROUnNE DOCUMENTATION MANUAL

John A. Green

MAY 1983

UM'PRI The University of Michigan
Transportation Research Institute

On September 16, 1982 the Regents of
The llniversity of Michigan changed the
name of the Highway Safety Research
Institute to the LJniversity of Michigan
Transportation Research Institute (UMTRI).

I ADAAS
1 Automated Data Access and Analysis System

May 1983
6. P- & a m e n C.i.

1 Subroutine Documentation Manual I
J a. PI(..rwr O q m n r a ~ o a R . m No. 1 ' -I I
I UMTRI-83-19

, 9. P- +mrr MI. r~ ~ l l r e * ~ , 1 10. w o n um.t n.. (TIAIS) I
I Transportation Research Institute !

The University of Michigan ' 2901 Baxter Rd. Ann Arbor, MI 48109

1 11. ' n u rJ -**
I I Motor Vehicle Manufacturers Association
I 320 New Center Building 1 I Detroit, MI 48202

This manual documents a library of computer subroutines
that were developed by the University of Michigan Transportation
Research Institute in support of the data base efforts of the
Institute's Data Center. The subroutines are written in FORTRAN
and 370 Assembler.

Four classes of routines are included:

1) Data handlinglcharac ter manipulation,
2) Support for interactive programs,
3) Dictionary processing, and
4) ADAAS program support.

1 I

1 1:. I - B r o s la. O i r r n L ~ J o u t

i
I
I

I

I

I I i j
I !

1 9 . h r m r) . C;rsui. bet *Ion 3. w~ C;osul . I*# ma n i

!
i Unclassified 1 Unclassified
1 !

I
I

Fa- DOT F 17aO.7 #-73 R-m ei q i e d prpo W h n X d

Report Number UMTRI-83-19

A D A A S

Automated Data Access and Analysis System

Subroutine Documentation Manual

b Y

John A . Green

May 1983

The University of Michigan
Institute of Science and Technology
 rans sport at ion Research Institute

Ann Arbor, Michigan

ACKNOWLEDGEMENTS

The subroutines documented in this manual are the result of
contributions from many programmers over a long period of
time. Many of the important routines have been re-written
many times, and consequently represent the best thoughts of
a number of people.

The primary people responsible for the present library are:
Cory Devor, John Ferguson, Hank Golomb, John Green, Carole
Hafner, Elliot Noma, and Marianne Stover.

The dynamic dimensioning routine DIME was written by the
Statistical Research Laboratory at the University of
Michigan. The version documented here is an early version
of the routine currently maintained in STAT:LIBRARY.
Permission to use this routine is appreciated.

Primary funding for the development and maintenance of
this program library has come from the Motor Vehicle
Manufacturers ~ssociation. The continuing support of that
agency is gratefully acknowledged.

. SubroutineGUSRIN Entry GUSRIN
Entry GUSRNC

. Subroutine IFILTR

. Subroutine ILABEL Entry ILABEL
Entry CLABEL Entry GLABEL Entry GVAR

. Subroutine INFILE
Entry INFILE
EntryININ
Entry GETCHA
EntryCLOIN
Entry FREEIN

. Subroutine INFOF

. Subroutine ITRNSL

. Subroutine IWRT

. Subroutine JULDAT

. Subroutine KEYSCN
Entry KEYSCN
Entry KEYREP

. Subroutine LEFJ
EntryLYSOB
Entry LYSOMB

. Subroutine LISFIV Entry LISFIV
Entry LISHDR

. Subroutine LNBTD

. Subroutine LSTFIX

. Subroutine LSTPAR

. Subroutine MOIrBUT

. Subroutine MOVEM

. Subroutine OUTFIL
EntryOUTFIL

EntryINOUT
Entry PUTCHA
Entry CLOUT
Entry FREEOUT

. Subroutine PDNCHK

. Subroutine PRNTCK

Subroutine QSAM
Entry QGTUCB
EntryQOPEN..
Entry QGET
EntryQPUT
Entry QCLOSE
Entry QCNTRL
Entry QFRUCB

. Subroutine RBTD

. Subroutine READIN Entry READIN
Entry READNC

. Subroutine REPMSG

. Subroutine SHFTST

. Subroutine SLIST

. Subroutine SPLCHK

. Subroutine TIKDAT

. Subroutine VLCHEK

. Subroutine VLIST

. Subroutine VRANGE

Subroutine Documentation

I NTRODUCTION

May 17, 1983

This manual documents a library of subroutines
developed by the Transportation Research Institute at the
University of Michigan in support of the data base efforts
of the Institute's Transportation Data Center. The
subroutines are written in FORTRAN or 370 Assembler and are
stored in the file HSR1:LIBRARY. To include these
subroutines with a compiled program (called MYPROG) use the
MTS $RUN command

$RUN MYPROG+HSRI : LI BRARY

or include the statement

as the last line in MYPROG.

The library contains four general groups of subroutines:

1) Character manipulation, or data handling routines for
use in data formatting applications.

2) Support routines for interactive user-oriented
programs (keyword scanners, command scanners, list
processors, etc.)

3) Routines for modifying, listing, and processing
OSIRIS type 1 and type 5 dictionaries.

4) Data access routines for the ADAAS program. Due to
the specific requirements of these routines, they are
of limited use in a general programming environment.

The routines in the library are listed below by this
classification for easy identification,

1) Data processing
CHSRT - Sort small arrays
FILLM - Perform multiple fill operations
ITRNSL - Translate character strings
JULDAT - Convert gregorian dates to jalian
MOVBUT - Move numeric characters
MOVEM - Perform multiple move operations

2) Program support functions
CMDSCN - Command interpreter
DIME - Run-time array dimensioning
DISTIM - Timer interrupt
EKOLIN - print output with prefix & line wrap

I NTRODUCTI ON

May 17, 1983 Subroutine Documentation

ESCAPE - Attention interrupt processing
EWRITE - WRITE routine with error handling
FAIL - Program interrupt processing
FWRT - Covert real numbers to character
GETTP - Run-time access to tapes & files
GUSRIN - Read input from GUSER
INFILE - Input file control routines
INFOF - File type
IWRT - Convert integer numbers to character
KEYSCN - Keyword/Modifier interpreter
LEFJ - Left justify and delete blanks
LNBTD - Covert MTS line numbers to character
LSTFIX - Sort number lists & delete duplicates
OUTFIL - Output file control routines
PDNCHK - Check pseudo-device names
PRNTCK - Check strings for printing characters
QSAM - Fixed-block (FB) read/write routines
RBTD - Convert integer with decimal places
READIN - Read input from SCARDS
SHFTST - Shift a substring right or left
SLIST - List interpreter
TIMDAT - Time and date string generator
VLIST - Number list interpreter
VRANGE - Valuetrange interpreter

In addition, there are three special purpose routines that
support CMDSCN and KEYSCN

LSTPAR REPMSG SPLCHK

3) Dictionary processing
DIC1T5 - Convert type 1 to type 5
DIC5T1 - Convert type 5 to type 1
FIVPAR - Convert type 5 parameters to binary
LISFIV - List type 5 records

4) ADAAS routines
APIN - Read, filter, and recode data
CHKVAR - Check variable numbers
DICPAR - Get dictionary information
GETDAT - Access input data set
IFILTR - Filter/Recode interpreter
ILABEL - Label program output
FLOT - Float integer numbers
VLCHEK - Check variable lists

INTRODUCTION

Subroutine Documentation

SUBROUTINE DOCUMENTATION

May 17 , 1983

INTRODUCTION

May 1 7 , 1983 Subroutine Documentation

INTRODUCTION

Subroutine Documentation May 17, 1983

Module Name: API N
(Analysis - - Program

Purpose :

To read records from the input data set, perform filter or
recode operations requested, and return the requested data
to the calling program. There are five entry points:

SETFIL - To record the filter parameters from IFILTR
SETREC - To record the recode parameters from IFILTR
SETVAR - Read data set dictionary and recode program

variables.
IRECHK - To determine if a given variable has been

recoded.
CASE - To return a valid case (i.e,, filtered &

recoded) .
Location: HSR1:LIBRARY

Source Languaqe: 370 Assembler

Subroutines Used:

DICPAR, FLOT, GETDAT, GETSPACE, INFILE, SERCOM

Logical 1/0 Units:

SERCOM - Error messages

Description:

The subroutine IFILTR should be called first to read and
decode filter and recode statements. IFILTR in turn calls
SETFIL and SETREC to store the decoded filter and recode
information. Analysis programs then pass a list of required
program variables by means of the SETVAR entry. SETVAR
interrogates the on-line dictionary by means of GETDAT and
DICPAR and stores all the variables parameters internally
and returns them for use in the analysis programs. The CASE
entry may then be called to sequentially return records from
the input data set that have been properly filtered,
recoded, and flosted, i f required.

API N

May 17, 1983 Subroutine Documentation

Entry Point: SETF I L

Module Name: API N

Purpose :

To transfer filter parameters decoded by the input routine
IFILTR to internal storage for later use by CASE.

Locat ion: HSRI : LIBRARY

Source Language: 370 Assembler

Calling Sequence:

CALL S E T F I L (F I L L S T , N F V A R , ~ N ~ F F , F N R E S , L I N K , I N E ~ , ~ I ~ , F L ~ ~ ~

Parameters:

FILLST

NFVAR

ONOFF

FNRES

LINK

I NEX

FLOC

The Integer*2 list of filter variables.

The Integer*4 number of filter variables.

Indicates ranges in the value list.

Number of responses.

Indicates AND or OR logical connectives,

INCLUDE or EXCLUDE indicator.

Filter syntax vector,

Record location.

Subroutine Documentation May 17, 1983

Entry Point: SETREC

Module Name: API N

Purpose :

To transfer recoded parameters decoded by the input routine
IFILTR to internal storage for later use by CASE.

Location: HSRI : LI BRARY

Source Lanquage: 370 Assembler

Callinq Sequence:

CALL SETREC(RECLST,NRVARrISYNIJRANGE,NVST,JRSTlRNRESlRLOC)

Parameters:

RECLST The Integer*2 list of recode variables.

NRVAR The Integer*4 number of recode variables.

I SYN Recode syntax vector.

JRANGE Indicates ranges in the value list.

NVST Pointers to ISYN.

JRST Pointers to JRANGE,

RNRES Number of responses.

RLOC Record location.

API N

May 17, 1983 Subroutine Documentation

Entry Point: SETVAR

.Module Name: APIN

Purpose :

To read and store parameters for program variables, float
the missing data codes i f required, and acquire an input
buffer.

Location: HSRI : LI BRARY

Source Language: 370 Assembler

Calling Sequence:

CALL SETVAR(VARLST,NLVAR,CHRTYP,VARNAM,RECLOC,FLDWTH,
NUMDEC,NUMRES,MISONE,MISTWO,MODE LSTTYP,
LISTSW,OUTWTH,&RC4)

Parameters:

VARLST The NLVAR halfword list of program variables.

NLVAR The fullword number of program variables.

CHRTYP The NLVAR halfword list of character types.

VARNAM The 24*NLVAR list of variable names

RECLOC The NLVAR halfword list of record locations.

FLDWTH The NLVAR halfword list of field widths.

NUMDEC The NLVAR halfword list of implied decimal places.

NUMRES The NLVAR halfword list of number of responses.

MI SONE The NLVAR fullword list of missing data code # I .

MI STWO The NLVAR fullword list of missing data code #2.

MODE 0 - Return data in integer (fullword) mode
1 - Return data in floating point mode.
2 - Return data in character numeric mode,

LSTTYP Fuliword type of variable list

LISTSW Fullword dictionary list switch (see DICPAR)

Subroutine Documentation May 17, 1983

Parameters: (Continued)

OUTWTH Fullword length of the output field.
In words for MODE = 0 , 1
In bytes for MODE = 2

Return Code(s):

& R C 4 - Error return from GETDAT, GETSPACE, or DICPAR

Description:

The data set dictionary is read and parameters for the
program variables in VARLST are stored in the appropriate
arrays. I f the output data format is floating point, all
the missing data codes are floated.

API N

May 17, 1983

Entry Point: I RECHK

Module Name: API N

Subroutine Documentation

Purpose :

To determine i f a specified variable number is in the recode
variable list.

Locat ion: HSRI : LI BRARY

Source Lanquaqe: 370 Assembler

Callinq Sequence:

INTEGER* 4 I RECHK , I RETRN

Parameters:

VARNUM The halfword variable number to be checked.

I RETRN 0 - The variable has not been recoded.
1 - The variable has been recoded.

API N

Subroutine Documentation May 17, 1983

Entry Point:

Module Name:

CASE

API N

Purpose :

To read data records, perform the required filter and recode
operations, float the data if required, and place the data
in the output array for subsequent use by the analysis
programs.

Locat ion: HSRI :LIBRARY

Source Language: 370 Assembler

Callinq Sequence:

CALL CASE(OUTPUT,&RC~,&RC~)

Parameters:

OUTPUT The output data region. In FORTRAN programs,
OUTPUT should be declared as follows:

INTEGER*4 for MODE = 0
REAL * 4 for MODE = 1
LOGICAL*1 for MODE = 2

Return Code(s):

&RC4 - End-of file on input data set.

&RC8 - Error return from GETCHA or CLOIN

Description:

The data set record is read into the input data region by
GETCHA and the required filtering and recode operations are
performed. The data is then moved into the output array in
the mode specified by the SETVAR entry.

May 1 7 , 1983 Subroutine Documentation

APIN

Subroutine Documentation

Entry Point: CHKVAR

Module Name: CHKVAR

May 17, 1983

Purpose :

To check i f a specified variable number exists in the active
data set, and optionally, i f it is numeric.

Location: HSRI : LI BRARY

Source Lanquage: FORTRAN

Callinq Sequence:

LOGICAL*1 CHEKSW,CHKVAR ...
CHEKSW = CHKVAR(NUMBER,M~DE)

Parameters:

NUMBER The INTEGER*2 variable number to be checked.

MODE The INTEGER*4 mode of operation.
0 - Check if the variable exists.
1 check i f the variable exists and is

numeric.

CHEKSW The LOGICAL*1 result of the check.

Subroutines Used: ETD, FIVPAR, IRECHK, MOVEC, READ, SERCOM

Loaical I / O Units:

READ Read records from on-line dictionary
SERCOM Error messages

Description:

The on-line dictionary -ADASDICT is read to see if the
specified variable exists. If numeric checking is specified
(i.e., MODE = 1) then the character type is checked to see
if it is numeric o r i f it is alphabetic but has been
recoded.

Restriction:

References to an on-line dictionary and to several named
common areas make this subroutine useful only in the ADAAS
program.

CHKVAR

May 1 7 , 1983

CHKVAR

Subroutine Documentation

Subroutine Documentation May 1 7 , 1983

Entry Point: CHSRT

Module Name: CHSRT

Purpose:

To sort small in-core arrays into ascending order,

Location: HSRI : LIBRARY

Source Languaqe: FORTRAN

Callinq Sequence:

CALL CHSRT(ARRAY,NUMA,LENA,LOCF~LENF,&RC~)

Parameters:

ARRAY The LOGICAL*l array containing the data to be
sorted,

NUMA The INTEGER*4 number of segments in ARRAY which
are to be sorted.

LENA The INTEGER*4 length of each segment in bytes.
LENA must be less than or equal to 80.

LOCF The INTEGER*4 location within LENA where the sort
field begins.

LENF The INTEGER*4 length of the sort field in bytes.

Return Code(s1:

&RC4 - ERROR: CHSRT WIDTH > 80.

Subroutines Used: ICLC, MOVEC, SERCOM

~oqical I/O Units:

SERCOM - Error message LENA > 80

Description:

The purpose of CHSRT is to sort elements of ARRAY into
ascending order while the information is stored in core.
The array ARRAY is treated as consisting of NUMA segments,
each segment being LENA bytes long. Within each segment
there is a field LENF bytes long that begins at LOCF. The
segments of ARRAY are sorted into ascending order on the

15 CHSRT

May 17, 1983 Subroutine Documentation

basis of the binary values of the field defined by LOCF and
LENF .
For long lists and/or multiple sort fields involving input
or output operations, the MTS *SORT facility should be used.
CHSRT is intended for use where multiple short sorts may be
needed and generation of the calling sequences for *SORT
would be cumbersome.

CHSRT

Subroutine Documentation

Entry Point: CMDSCN

Module Name: CMDSCN

Purpose :

To scan a character string for the existence of a member of
a predefined set of commands.

Location: HSRI : LI BRARY

Source Lanquaqe: FORTRAN

Callinq Sequence:

CALL CMDSCN(STRING,LENGTH,MAXLEN,NCMDS~COMMND,CMDPAR~
CMDNUM,LAST,&RC~,&RC~)

Parameters:

STRING A Logicalxl array of dimension MAXLEN that
contains the character string to decode. - The
strinq must terminate with a trailing blank.

LENGTH The Integer*4 length of the .character string in
STRING .

MAXLEN The Integerx4 dimension of STRING.

NCMDS The Integer*4 number of possible commands that are
defined.

COMMND A Logical*.I array of dimension 8sNCMDS containing
the left-justified, 8-byte-aligned command names.

CMDPAR An Integerk2 array of dimension (2,NCMDS).
CMDPAR(1,J) is the minimum number of characters
that will be recognized as an abbreviation for
command number J. CMDPAR(2,J) is the full length
of the name for command number J.

CMDNUM The Integerx4 number of the command found in
STRING on output. I f the command is an MTS
command, that is it begins with " $ " , then
CMDNUM= 0.

LAST The Integer*4 location of the first blank in
STRING following the command. This variable is
provided for use with KEYSCN as a pointer to the
start of a KEYWORD/MODIFIER string.

CMDSCN

May 17, 1983 Subroutine Documentation

Return Code(s):

&RC4 Unrecognizabie command in batch mode
CANCELled command
Invalid LENGTH
NCMDS < 1
Blank string, or no trailing blank

Subroutines Used:

EQUC, FINDC, ,FINDST, GUINFO, GUSRIN, IGC, LCOMC, LSTPAR,
MOVEC, PRNTCK, REPMSG, SERCOM, SHFTST, SPLCHK

Loqical 1/0 Units:

SERCOM Error messages

S~ecial Note:

A 140-byte COMMON area named /BUF/ is used for 1/0
operations and other temporary tasks.

Description:

The array STRING is scanned for a command that matches one
in the input list defined by COMMND. If a command is
present it must be the first non-blank word in STRING. If a
syntax error is encountered in BATCH mode, an error message
is printed and RC4 is taken: If a syntax error is
encountered in TERMINAL mode, an attempt is made to
determine if the invalid command is a possible misspelling
of a correct one. The user is queried for verification or
rejection of each possible misspelling that is found. If
this process is unsuccessful, an error message is printed
and the user is prompted for a replacement string or the
word CANCEL to cancel the entire scanning process. If a
replacement string is supplied, the incorrect item is
deleted from STRING and the replacement is added at the
beginning of the array providing that the array dimension is
not exceeded. On exit from CMDSCN, therefore, STRING
contains a corrected version of the input.

A space (X'40') is the normal break character separating the
command from any modifiers and keyw'ords that may occur.
Leading blanks may also occur at any point.

CMDSCN

Subroutine Documentation May 17, 1983

Entry Point:

Module Name:

Pur~ose :

DICPAR

DI CPAR

To retrieve the dictionary parameters for a list of variable
numbers.

Locat ion: HSRI : LI BRARY

Source Languaqe: FORTRAN

Callinq Sequence:

CALL D1CPAR(VARLST,NLVAR,CHRTYP1VARNAM,RECL0C,FLDWTH,NUMDEC1
NUMRES,MISONE,MISTWO,MODE,LSTTYP,LISTSW,OUTWTH,
&RC4)

Parameters:

VARLST The INTEGER*2 list of variable numbers.

NLVAR The INTEGERe4 number of variables in VARLST for
LSTTYP = 1

CHRTYP The INTEGERe2 list character types returned.

VARNAM The LOGICAL*1 (i.e., VARNAM(~~,NLVAR) list of
variable names returned.

RECLOC The INTEGERe2 list of record locations returned.

FLDWTH The INTEGERe2 list of field widths returned.

NUMDEC The INTEGERe2 list of implied decimal places
returned.

NUMRES The INTEGER*2 list of number of responses
returned.

MI SONE The INTEGERe4 list of MD code # 1 returned.

MI STWO The INTEGERe4 list of MD code #2 returned,

MODE The INTEGER*4 data return mode as specified in the
APIN entry SETVAR.

0 - Fullword integer binary
1 - Fullword floating point. binary
2 - Character numeric

DI CPAR

May 17, 1983 Subroutine Documentation

Parameters: (Continued)

LSTTYP The INTEGER*4 type of variable list specified as
input.

1 - List contained in VARLST
2 - ALLV (all variables in the dictionary)
3 - ALLNV (all numeric variables in the

dictionary)

LISTSW The INTEGER*4 dictionary list control switch.
0 - Don't list the dictionary
1 - List the dictionary on PPRNT.

OUTWTH The INTEGER*4 total output record length for the
requested variables (in WORDS for MODE = 0,1 or in
BYTES for MODE = 2).

Subroutines Used:

BTD, EWRITE, FIVPAR, IRECHK, LISFIV, MOVEC, READ, SERCOM

Loqical 1/0 Units:

PPRNT Dictionary list for LISTSW = 1
READ Read records from on-line dictionary
SERCOM Error messages

Description:

The on-line dictionary (FDUB IDICT) is read to see if
the specified variable exists. If numeric checking is
specified (i.e.! MODE = 1) then the character type is
checked to see I £ it is numeric or if it is alphabetic but
has been recoded. The parameters from the dictionary record
are converted to binary and stored in the appropriate array.

Restriction:

References to an on-line dictionary and to several named
common areas make this subroutine useful only in the ADAAS
program.

DI CPAR

Subroutine Documentation May 17, 1983

Entry Point:

Module Name:

Purpose :

To convert OSIRIS type 1 dictionary records to type 5

Location: HSRI : LI BRARY

Source Lanquage: . FORTRAN

Callinq Sequence:

CALL DIC~T~(DICONE,DICFIV)

Parameters:

DI CONE The 80-character LOGICAL*1 type 1 dictionary
record to be converted.

DICFIV The 80-character LOGICAL*l type 5 dictionary
record.

Subroutines Used:

BTD, DTB, IGC, MOVEC, SETC

May 17 , 1983 Subroutine ~ocumentation

Subroutine Documentation May 17, 1983

Entry Point:

Module Name:

Purpose:

To convert an OSIRIS type 5 dictionary record to type 1 .

Locat ion: HSRI : LIBRARY

Source Languaqe: FORTRAN

Calling Sequence:

CALL DIC~T~(DICFIV,DICONE)

Parameters:

DICFIV The 80-character LOGICAL*1 type 5 dictionary
record to be converted.

DICONE The 80-character LOGICAL*1 type 1 dictionary
record.

Subroutines Used:

BTD, DTB, IGC, MOVEC, SETC

May 17, 1983 Subroutine Documentation

Subroutine Documentation May 17, 1983

Module Name: DIME

Purpose :

To dynamically dimension FORTRAN arrays during program
execution. There are four entry points fcr the routine:

DIME - Allocates new arrays.
REDIME - Changes the allocation of existing arrays.
UNDIME - Releases previously allocated arrays.
SETCOR - Define core initialization pattern.

Location: HSR1:LIBRARY

Source Lanquaqe: Assembler

Return Codes: &RC4 - Error return for all entries

Subroutines Used: FREESPAC, GETSPACE, SERCOM

Loqical 1/0 Units:

SERCOM - Error messages

Description:

After being dynamically dimensioned, an array may be used in
any legitimate FORTRAN context and may also be redimensioned
by the DIME or REDIME entries, or undimensioned by the DIME,
REDIME, or UNDIME entri9s. The array may be of any type
(LOGICAL, INTEGER, REAL, or COMPLEX), of any length
(1 , 2 , 4 , 8 , or 16), and dimensionality in the range (1 - 7) .
Type and dimensionality may not be changed in the course of
the program.

An array that is to be dynamically dimensioned and allocated
must satisfy the following conditions:

1) It must appear as a dummy argument in a SUBROUTINE,
ENTRY, or FUNCTION statement in the highest-level
routine in which it is used.

2) i t must he object-time dimensioned. That is, it must
appear in an explicit type or DIMENSION statement
with INTEGEH*4 variable dimensions. These dimension
variables may be in blank c r named common, or may be
passea as arguments through a call on the routine.

A SUBROUTINE, ENTRY, or FUNCTION statement that references
arrays to be dynamically dimensioned must satisfy the
following conditions:

DIME

May 17, 1983 Subroutine Documentation

1) The only arguments it may reference are arrays which
satisfy the previous two conditions. That is, the
arguments must be capable of being dynamically
dimensioned.

2) It must be in the highest level routine that will use
the arrays referenced by its argument list.

3) In general, it should not be referenced by any CALL
statements.

Restrictions:

1) The number of entries in use at any given time must
be less than 256.

2) The number of arrays referenced by an entry must be
less than 256.

The total
cannot be

amount of
more than

space requested on a single call
256 pages (1,048,576 bytes).

Examples :

1) Dimensioning a MAIN program

Due to FORTRAN's handling of array dimensioning, arrays to
be dynamically dimensioned must be in subprograms. This in
no way restricts the use of this routine, however, since a
subprogram can be run in MTS as a main program.

SUBROUTINE MAIN(A,B,C)
REAL*8 C(N,N)
INTEGER*4 B(M,M), IDIM(~)
LOGICAL*1 A (L)
COMMON N t M 1 L ...
Determination of N,M by input or computation

. . .
Determination of L ...
CALL DIME(O,L,-1 , O)
...

Get new value for M and assign proper values to
IDIM(.1) . . . IDIM(7)

DIME

Subroutine Documentation

CALL UNDIME(O)
RETURN
END

2) Dimensioninq for a deeper-level routine

Routine at hiqher level

COMMON N,M,L ...
EXTERNAL ENT ...
Determine N,M,L

cAtL UNDIME(ENT)
STOP
END

Routine at deeper level

ENTRY ENT (Q , R)
REAL*4 Q(N,M),R(N,M,L)
COMMON N,M,L ...
RETURN
END

May 17, 1983

DIME

May 17, 1983 Subroutine Documentation

Entry Point: DIME

Module Name: DIME

Purpose :

To dynamically dimension storage and allocate new arrays.

Callinq Sequence:

CALL DIME(ENTRY,LEN~, . ,LENn,&RC4)

Parameters:

ENTRY The INTEGER*4 entry point address, or "0" for the
entry point of the calling program. If ENTRY
references N arrays, there must be exactly N
lengths passed to DIME.

LEN i The INTEGER*4 desired length in bytes of the ith
array referenced by the entry.

LENi > 0 - The space currently allocated to the
ith array is released and the new
amount of space, rounded upward to a
multiple of 8, is obtained.

LENi = 0 - Space currently allocated is released.
LENi < 0 - No change is made for the ith array.

Description:

The total amount of space requested is calculated and
obtained in a single block. The block is then divided among
the arrays according to the lengths given. If the entry is
one that has not previously been used, space for an element
of the entry list is also allocated. The space to be
released is released. A parameter list is constructed from
the new addresses and passed to the prologue code of the
subject subroutine entry. Return is made to the calling
program at the statement following the call or, if an error
has occurred, to the indicated label indicated by &RC4. In
the event of an error return, no space has been allocated.
DIME may be called any number of times for an entry.

DIME

Subroutine Documentation May 17, 1983

Entry Point:

Module Name:

RED I ME

DIME

Purpose :

To dynamically alter the dimensions of DIMEd arrays and to
save all or part of the contents of the upper left corner of
the altered array.

Calling Sequence:

CALL REDIME(ENTRY1ARRAY1,DIMS1, ... ,ARRAYn,DIMSn,&RC4)

Parameters:

ENTRY The INTEGERr4 entry used in a previous call to
DIME.

ARRAY i The array referenced by ENTRY that is to REDIMEd.

DIMSi An INTEGERr4 array of information:
D I M S ~ (~) = LEN^ , the new length of ARRAYi in

bytes.
D I M S ~ (~) = Type of ARRAY1 (1,2,4,8, or 16).
D I M S ~ (~) = M, the number of dimensions for ARRAYi.
DIMSi(4) ... DIMSi(3+M)

The old dimensions.
D I M S ~ (~ + M) . . . D I M S ~ (~ + ~ + M)

The new dimensions.

Description:

I f LENi > 0 the new space is obtained and as'much of ARRAYi
as will fit into the new space is saved in the upper left-
hand corner. The old space is released.

I f LENi = 0 the old space is released.

If LENi < 0 no change is made to ARRAYi.

ARRAYi need not be referenced in the same order as in the
oriqinal call to DIME and only those being REDIMEd need tc
be present at all. If LENi < 0 or LENi = 0 then the array
elements DIMSit?) ... DIMSi(3+2+M) are not required for the
subreutine call.

DIME

May 17 , 1983 Subroutine Documentation

Entry Point:

Module Name:

UNDIME

DIME

Purpose :

To release storage previously acquired by DIME or REDIME,

Callinq Sequence:

CALL UNDIME(ENTRY,ARRAY~, . ,ARRAY~,&RC~)

Parameters:

ENTRY The entry used in a previous call to DIME.

ARRAY i An array referenced by the entry,

Description:

The space allocated to the arrays is released, Only space
allocated to the arrays specifically given in the call are
released, unless no arrays are specified in which case all
space for all arrays referenced by the given entry is
released, including the space for the entry list element,
This action constitutes taking the entry out of use. Thus
the call

CALL UNDIME(ENTRP)

will release all arrays for the entry.

DIME

Subroutine Documentation May 17, 1983

Entry Point: SETCOR

Module Name: Dl ME

Purpose:

To define an initialization pattern for space obtained by
DIME or REDIME.

Calling Sequence:

CALL SETCOR (LEN, STRING)

Parameters:

LEN The INTEGER*4 length of the pattern in STRING
where LEN has values of 1 - 256.

STRING The array containing the initialization pattern.

Description:

The core constant is changed from its previous value to the
value contained in STRING, On subsequent call to DIME or
REDIME this new bit pattern is used to initialize the new
space. Calling SETCOR with LEN < 0 or LEN > 256 will cause
the default pattern (X'81') to be restored. Thus the call

CALL SETCOR(O)

will reset the core constant.

DIME

May 17 , 1983

DIME

Subroutine Documentat ion

Subroutine Documentation May 17, 1983

Entry Point: DISTIM

Module Name: DI STIM

Purpose :

To interrupt a program after an specified CPU interval,
display run costs, and then restart the program.

Loc.ation: HSRI :LIBRARY

Source Lanquage: 370 Assembler

Callinq Sequence: CALL DISTIM(INTRVL)

Parameters:

I NTRVL The INTEGERs4 CPU time interval in seconds.

Subroutines Used:

COST, FWRT, SERCOM, SETIME, TIME, TIMNTRP

Loqical 1/0 Units:

SERCOM - Print time and cost

DISTIM should only be called in TERMINAL mode.

Description:

The MTS timer interrupt routines are utilized to set up an
interrupt every INTRVL seconds of CPU time expended. After
saving all general and floating point registers, TIME and
COST are called to print the current time and cost from the
beginning of the current signon. The program is then
started at the point of the interrupt.

CALL GuINFo(IO,MCDE)
IF(MODE.EQ.O) CALL DISTIM(10)

DI STIM

May 1 7 , 1983

DISTIM

Subroutine Documentation

Subroutine Documentation May 17, 1983

Entry Point: EKOLIN

Module Name: EKOL I N

Purpose:

To print a string on a specified 1/0 unit with folding at a
specified print width and with an optional prefix.

Location: HSRI :LIBRARY

Source Lanquaqe: FORTRAN

Callinq Sequence:

CALL EKOLIN(STRING,LENGTH,BUFFER,WIDTH,PREFIXIPFX~E~,
BRKCHR,BRKNUM,UNIT,&RC4)

Parameters:

STRING The LOGICAL*1 character string to be printed.

LENGTH The INTEGER*4 length of the information in STRING.

BUFFER A LOGICAL*1 print buffer used by EKOLIN. Must be
dimensioned at least WIDTHt1

WIDTH The INTEGER*4 output print width.

PREFIX A LOGICAL*1 string containing the desired prefix.

PFXLEN The INTEGER*4 length of the prefix string in
PREFIX.

BRKCHR A LOGICAL*l string containing a set of break
characters.

BRKNUM The INTEGER*4 number of break characters in
BRKNUM.

UNI T The logical 1/0 unit on which the string will be
written. If UNIT = - 1 or if (UNIT < - 1 or UNIT >
191, then the output is written on SPRINT.

Return code!^):

&Re4 - Output error from subroutine EWRITE

Subroutines Used:

EQUC, EWRITE, MOVEC, SETC, SPRINT

EKOLI N

May 17, 1983 Subroutine Documentation

Loaical 1/0 Units:

SPRINT - Subroutine output for UNIT = - 1

Description:

The character string in the array STRING is printed out in
segments of length WIDTH on the specified 1/0 unit. I f no
break characters are specified, then the string is broken at
the proper width and printed in segments. I f a set of break
characters is specified, then the last 20 characters of the
segment to be output are searched for one of the break
characters, I f one is found, the string is broken at this
point. If a prefix string is specified, then this string is
printed at the beginning of the first segment and a string
of blanks of equivalent length is printed on all succeeding
lines.

If STRING contains the 7 1 character string:

'The purpose of the EKOLIN subroutine is to provide a
formatted printout'

then the subroutine call:

CALL EKOLIN(STRING,71,BUFFER,4011String = l19,' 111,10)

will produce the following printout. The ruler is shown for
convenience in this example and is not a part of the EKOLIN
output.

String = The purpose of the EKOLIN
subroutine is to provide a
formatted printout

EKOLIN

Subroutine Documentation May 17, 1983

Entry Point:

Module Name:

ESCAPE

ESCAPE

Purpose:

To intercept attention interrupts in FORTRAN programs and
return control to the calling program after an interrupt.

Location: HSRI :LIBRARY

Source Language: 370 Assembler

Callinq Sequence: CALL ESCAPE(ATTNSW,&RC~,&RC~,

Parameters:

ATTNSW An INTEGER*4 variable that determines the return
code of the subroutine in the case of an attention
interrupt. See the description below for the
behavior of the routine for ATTNSW < 0. For ATTNSW
equal to or greater than zero:

ATTNSW = 0 - RC = 0
ATTNSW = 1 - RC = 4
ATTNSW = 2 - RC = 8
etc.

Return Code(s):

&RCn - Return after an interrupt when ATTNSW = n/4.

Subroutines Used:

ATTNTRP, COST, FWRT, CMDNOE, GUSRIN, MTS, SERCOM, SETLIO

Loqical 1/0 Units:

SERCOM - Notification of interrupt, cost of run and request
to continue.

The MTS subroutine ATTNTRP is used to set up a trap for a
single attention interrupt. When an attention interrupt
occurs, MTS passes control to ESCAPE. ATTNTRP is reset for
another interrupt, and SCARDS, GUSER, and %SOURCE% are all
reset to *MSOURCE*.

If ATTNSW > 0 or ATTNSW = 0, a return is made as specified
by the value of ATTNSW.

ESCAPE

May 17, 1983 Subroutine Documentation

If ATTNSW < 0, the cost of the current run from the time of
signon is computed and the message

XX.XX Dollars used. Continue? (Y/N/MTS)

is printed on SERCOM. If "Y" is entered, the program is
restarted at. the point of the interrupt. I f "N" is entered,
a return is made as specified by the value of -ATTNSW. If
"M" is entered, the subroutine MTS is called to provide a
restartable return to the MTS command mode. I f no commands
that unload the program are issued in MTS, the command
$RESTART will restart the program at the point of the
interrupt.

ATTNSW = 0
CALL E S C A P E (A T T N S W , & ~ O O , & ~ ~ ~ , & ~ ~ ~)
ATTNSW = 3

Note: When using the FORTRAN H-Compiler with optimization,
the calling sequence shown above results in an error since
it is not a logically possible sequence of events. The
error can be circumvented by putting ATTNSW in COMMON to
trick the compiler.

ESCAPE

Subroutine Documentation May 17, 1983

Entry Point: EWRI TE

Module Name: EWRI TE

Purpose :

To write an output record on a specified logical 1/0 unit
using the MTS WRITE subroutine with the facility for
trapping 1/0 and file assignment errors.

Location: HSR1:LIBRARY

Source Languaqe: 370 Assembler

Callinq Sequence:

CALL EWRITE(REGION,LEN,MOD,LNUM,UNIT,&RC~)

Parameters:

Definitions of the parameters are the same as those of the
MTS WRITE subroutine. See the MTS Manual, Volume 3 for more
information.

REG1 ON The location of the region from which data will be
transmitted.

LEN The INTEGERk2 length (in bytes) of the data in
REGION.

MOD The INTEGER*4 modifier used to control the action
of the subroutine.

LNUM An INTEGER*4 variable giving the internal value of
the line number that is to be written, or that has
been written,

UNIT The INTEGERk4 FDUB pointer or logical 1/0 unit
number, or a left-justified 8-character logical I/
0 unit name (i.e,, 'SPUNCH ') ,

Return Code(s):

&RC4 File assignment error for the specified UNIT, or
non-zero return code from WRITE.

Subroutines Used: FREESPAC, GDINFO, SERCOM, WRITE

May 17, 1983 Subroutine Documentation

Loqical 1/0 Units:

SERCOM Error messages

WRITE Data output

Description:

The modifier supplied with the subroutine call is OR'ed
with the NOPROMPT and ERRRTN modifiers and WRITE is called
with this altered modifier. If a file assignment error is
encountered, a message is printed on SERCOM and RC4 is
taken, If a non-zero return code from the WRITE operation
occurs, GDINFO is called to retrieve the associated 1/0
error message. If the message can be located, it is printed
on SERCOM and RC4 is taken.

EWRI TE

Subroutine Documentat ion May 17, 1983

Entry Point:

Module Name:

FAIL

FA1 L

Purpose :

To intercept program interrupts in FORTRAN programs and to
return control to the calling program.

Locat ion: HSRI :LIBRARY

Source Lanquage: 370 Assembler

Callinq Sequence: CALL FAIL(PPRNT,&R~~)

Parameters:

PPRNT A INTEGER*4 1/0 unit number (1 - 19) where a
loader map will be written in case of an
interrupt, or the value "0" for no dump.

Return Code(s):

&RC4 - The statement number to branch to in case of an
interrupt.

Subroutines Used:

CMDNOE, LODMAP, PGNTTRP, SERCOM, WRITE

Loqical 1/0 Units:

SERCOM - Notification of interrupt and PSW,
WRITE - Notification of interrupt, PSW, and loader map.

Description:

On the initial call to FAIL, the MTS routine PGNTTRP is
called to set up the interrupt trap and the routine returns
normally. If a program interrupt occurs at a later time,
MTS return control to FAIL. The PSW is decoded and put into
standard form and a message of the form

+PROGRAM INTERRUPT+
PSW = 071D0005 A081CD8E

is printed on SERCOM. If PPRNT = 0 a return is made to the
program via.RC4.

May 17, 1983 Subroutine Documentation

Description: (Continued)

If PPRNT > 0, the SERCOM error message is printed on PPRNT
along with the loader map at the time of the interrupt.
Then the $MESSAGE system is used to send a notification
message of the interrupt to 'UMTRI' and a return to the
calling program is made via &RC4.

Subroutine Documentation May 17, 1983

Entry Point:

Module Name:

FI LLM

FILLM

Purpose :

To perform multiple fill operations with a single subroutine
call.

Location: HSRI : LIBRARY

Source Language: 370 Assembler

Calling Sequence:

CALL F I L L M (A R R A Y ~ , L E N ~ , C H A R ~ , . ,ARRAY~,LEN~,CHAR~)

Parameters:

ARRAY i The array location where filling will begin.

LEN i The INTEGER*4 number of bytes to fill.

CHARi The LOGICAL*l character used to fill the array.

Description:

With the exception of a different calling sequence, this
routine is similar to the MTS routine SETC except that
multiple fill operations are possible with a single
subroutine call.

FILLM

May 1 7 , 1983

FILLM

Subroutine Documentation

Subroutine Documentation May 17, 1983

Entry Point: FIVPAR

Module Name: F I VPAR

Purpose :

To convert an OSIRIS type 5 dictionary record into binary
variables.

Location: HSRI : LI BRARY

Source Language: FORTRAN

Callinq Sequence:

CALL FIVPAR(DICREC,VARNUM,VARNAM,CHRTYP,RECLOC~FLDWTH,
NUMDEC,NUMRES,MISONE,MISTWO)

Parameters:

DICREC The LOGICALxl 80-character type 5 dictionary
record,

VARNUM The INTEGERr2 variable number.

VARNAM The LOGICAL*1 24-character variable name.

CHRTYP The INTEGER*2 character type
0 - character numeric
1 - alphabetic
2 - fullword integer binary
3 - fullword floating point binary
4 - packed decimal
5 - zoned decimal
6 - halfword integer binary

RECLOC The INTEGER*2 record location

FLDWTH The INTEGER*2 field width

NUMDEC The INTEGER*2 number of implied decimal places

NUMRES The INTEGER*2 number of responses

Mi SONE The INTEGER*4 missing d a t ~ code $ 1

MISTWO The INTEGER*4 missing data code # 2

May 17, 1983 Subroutine Documentation

Subroutines Used:

DTB, EQUC, IGC, MOVEC

Description:

The character values are converted into their binary
representations. I f the missing data code fields are blank
on the input record, then the value 1,500,000,000 is
returned for MISONE and/or MISTWO.

F I VPAR

Subroutine Documentation May 17, 1983

Entry Point:

Module Name:

FLOT

FLOT

Purpose :

To convert a fixed binary number with an implied number of
decimal places to floating point representation.

Location: HSRI : LI BRARY

Source Lanquage: 370 Assembler

Callinq Sequence: CALL FLOT

Parameters:

GRO The number to be converted

The number of decimal places in the resultant
floating point value,

FR 1 The converted floating point number.

This routine may only be called from an assembler program.

Description:

FLOT converts fixed binary to floating point. It will
convert character representations of numbers up to
1 6 , 7 7 7 , 2 1 5 accurately. Numbers that are larger than this
will lose precision in the low order digits.

FLOT

May 17 , 1983

FLOT

Subroutine Documentation

Subroutine Documentation May 17, 1983

Entrv Point: FWRT

Module Name: FWRT

Purpose :

To convert REAL*4 numbers to a character format.

Location: HSRI :LIBRARY

Source Language: 370 Assembler

Callinq Sequence:

CALL FWRT(ARRAY,START,LENGTH,NUMDEC,NUMBER,&RC~)

Parameters:

ARRAY The LOGICAL*1 array where the character number
will be placed.

START The INTEGERs4 location in ARRAY where the number
begins,

LENGTH The INTEGER*4 length of the character number.
Length must be greater than 1 and less than 17.

NUMDEC The INTEGER*4 number of decimal places in the
output.

NUMBER The REAL*4 binary number to be converted.

Return Code(s):

&RC4 - The character number is too large for the output
field width specified,

Description:

This routine converts signed REAL*4 binary numbers to
decimal characters with an imbedded decimal point. The
character number is right justified in the output array with
leading blanks. I f the decimal representation of the cumber
is too long for the specified field width, the output array
is filled with asterisks.

FWRT

May 17, 1983 Subroutine Documentation

FWRT

Subroutine Documentation May 17, 1983

Entry Point:

Module Name:

GETDAT

GETDAT

Purpose :

To set up the input data set by calling INFILE and ININ

Location: HSRI : LI BRARY

Source Languaqe: FORTRAN

Calling Sequence:

CALL GETDAT(LRECL,&RC4)

Parameters:

LRECL The INTEGER*4 record length of the input data set
as returned from ININ.

Return Code(s):

&RC4 - Error in converting the file number, record length,
or blocking factor, or an error return from
INFILE, ININ, or CLOIN

Subroutines Used:

DTB, IGC, INFILE, MOVEC, SETC

GETDAT

May 17, 1 9 8 3 Subroutine Documentation

GETDAT

Subroutine Documentation May 17, 1983

Entry Point: GETTP

Module Name: GETTP

Purpose:

To mount tapes or access files while a program is running.
Access information is read by the routine during execution.

Location: HSR1:LIBRARY

Source Languaqe: FORTRAN

Calling Sequence:

CALL GETTP(UNIT,PAR~,PAR~,&RC~)

Parameters:

UNIT ~n INTEGER*4 array of dimension 1 - 6 containing
the FDUB for the ith device acquired.

PAR 1 The INTEGERr4 number of devices to be obtained on
a particular call. PAR1 must be in the range 0 -
6. If PAR1 = 0, then device control cards will be
read but no new devices will be obtained,

PAR2 An INTEGERk4 switch specifying whether to look for
control cards or not.

PAR2 = 0 - Look for control cards.
PAR2 = 1 - Don't look for control cards.

Return Code(s):

&RC4 - Error in MOUNT or CONTROL subroutines.

Subroutines Used:

ADROF, CNTRL, DTB, GETFD, GUINFO, GUSER, ICLC, ITRT, MOUNT,
MOVEC, RCALL, SCARDS, SERCOM, SETC, SPRINT

Loqical 1/0 Units:

GUSER - Read control card input after an error.
SCARDS - Read control card input.
SERC9M - Print program prompts after an error.
SPRINT - Print program prompts,

GETTP

May 17, 1983 Subroutine Documentation

Description:

GETTP will permit the mounting of tapes or the acquisition
of other files while a program is running, and optionally
will allow the user to supply tape control commands to tapes
that have been mounted. GETTP reads control cards from
SCARDS, The control cards have the following format:

Col 1: Device number (1 - 6)
Col 2 - 80: Mount request, file name, or device

control command.

If the control card contains a mount request, the tape will
be mounted and the FDUB for the pseudo-device name specified
will be placed in the corresponding location in UNIT. I f
the control card contains a file name, an FDUB will be
acquired and placed in UNIT. After GETTP has obtained all
the devices requested, it will optionally read control cards
from SCARDS until an end-of-file is encountered, executing
each control command via the MTS CONTROL subroutine.

SUBROUTINE MYPROG
INTEGER*4 UNIT(^)

...
RETURN ...

999 RETURN 1
END

To execute the program the following setup may be used as a
$SOURCE or batch file.

$RUN MYPROG SCARDS=*SOURCE*
1C1234A 9TP *S1* VOL=TAPEOl 'FIRST'
2C2345B 9TP *S2* WRITE=YES VOL=TAPE02 'SECOND'
3-TEMP
1POSN *5*
2POSN *EOT*
2DSN NEWFILE ...
$ENDFILE

GETTP

Subroutine Documentation

Entry Point:

Module Name:

GUSRI N

GUSRIN

May 17, 1983

To read input into an array on 1/0 unit GUSER with the
features of line continuation, upper-case conversion, and
array length protection.

Location:

Source Language: FORTRAN

Calling Sequence:

CALL GUSRIN(STRING,LENGTH,MAXLEN,&RC~,&RC~,)

Parameters:

STRING A LOGICALL1 array of dimension MAXLEN.

LENGTH A INTEGER*4 variable that contains, on exit from
the routine, the length of the input string plus
one for the trailing blank added to the end of the
string.

MAXLEN The INTEGER14 length of STRING.

Return Code(s):

&RC4 An end-of-file was encountered.
&RC8 The input line length is greater than MAXLEN-1

Subroutines Used:

ADROF, ETD, EQUC, GDINF, GUSER, LAND, LOR, MOVEC, RCALL,
SERCOM, SETLIO, SETPFX

Loqical 1/0 Units:

GUSER Read input string
SERCOK Error messages

May 17, 1983 Subroutine Documentation

Description:

This subroutine is intended for user error replacement
input. The prefix character for the read is set to " ? " . The
read is made on GUSER with the modifiers @TRIM, @CASECONV,
@MAXLEN, and @NOTIFY. I f the input string ends in the
continuation character "-", another read is made and the new
characters are added on to the end of the previous string
beginning at the location of the " - " . If the total number
of characters read in is greater than MAXLEN-1, a branch is
made to RC8. I f not, the prefix character is reset, a
trailing blank is appended to the string, and a normal
return is taken.

I f an 1/0 unit re-assignment occurs, the GDINF subroutine is
called to determine what the assignment is, If the
assignment is not to *MSOURCE*, then an error message is
printed and GUSER is assigned to *MSOURCE*. The read is
then performed as described above.

GUSRIN

Subroutine Documentation May 17, 1983

Entry Point: GUSRNC

Module Name: GUSRIN

Purpose :

To read input into an array on 1/0 unit GUSER with the
features of upper-case conversion and array length
protection. The action is the same as the GUSRIN entry with
the exception that line continuation is not supported.

Location: HSRI :LIBRARY

Source Lanquage: FORTRAN

Callinq Sequence:

CALL GUSRNC(STRING,LENGTH,MAXLEN,&RC~,&RC~)

Parameters:

STRING A LOGICAL*l array of dimension MAXLEN.

LENGTH A INTEGER*4 variable that contains, on exit from
the routine, the length of the input string plus
one for the trailing blank added to the end of the
string if no continuation character is present.
I f there is a continue character at the end of the
segment, then LENGTH contains the length of the
input string including the continue character.

MAXLEN The INTEGER*4 length of STRING.

Return Code(s):

&RC4 An end-of-file was encountered.
&RC8 The input line length is greater than MAXLEN-1

Subroutines Used:

ADROF, BTD, EQUC, GDINF, GUSER, LAND, LOR, MOVEC, RCALL,
SERCOM, SETLIO, SETPFX

Logical 1/0 Units:

GUSER Read input string
SERCOM Error messages

GUSRIN

May 17, 1983 Subroutine Documentation

Description:

This entry performs the same function as GUSRIN except for
line continuation, A trailing dash " - " is ignored by the
routine and treated as any other character. If a continue
character is found at the end of the line, no trailing blank
is appended to the line,

This routine is intended for use in dynamic dimensioning
applications where an very long string is read in segments
and a buffer array of unknown length must be generated
dynamically to hold the information, In such a case, the
line continuation must be performed outside of GUSRIN as
part of the dimensioning process.

Because this routine is intended as a user error correction
input, GUSER is always attached to *MSOURCE* and cannot be
reassigned.

GUSRIN

Subroutine Documentation May 17, 1983

Entry Point: IFILTR

Module Name: IFILTR

Purpose :

To read user supplied FILTER, RECODE, and TITLE statements,
to check the statement syntax, decode the FILTER and RECODE
statements, and to call the APIN entries SETFIL and SETREC.

Location: HSRI : LI BRARY

Source Languaqe: FORTRAN

Callina Seauence:

CALL IFILTR(TITLE,TITLEN,&RC~)

Parameters:

TITLE The LOGICAL*l 132 character title entered by the
user.

TITLEN The INTEGER*4 length of the title in TITLE.

Return Code(s):

&RC4 - Error in processing the filter, recode or title.

Subroutines Used:

BTD, DIME, DTB, EKOLIN, EQUC, EWRITE, FINDC, FIVPAR,
FRDICT, GUSRIN, IFRER, IGC, LCOMC, LYSOMB, MOVEC,
PRNTCK, READ, READIN, SERCOM, SETC, SPRINT

Loqical 1/0 Units:

READ - Read the on-line dictionary
SERCOM - Error messages
SPRINT - Program input requests

Description:

Requests for filter, recode, and title statements are made
on SPRINT. The input i s read into a aynamically dimensioned
array by IFRER and decode3 by INTER or RECSYN. Lists of the
filter or recode variables requested are printed by FRDICT.
The entries SETFIL and SETREC are called to pass the decoded
parameters to APIN for subsequent use in the data entry
operations.

IFILTR

May 17, 1983

IFILTR

Subroutine Documentation

Subroutine Documentation May 17, 1983

Module Name: I LABEL

Purpose :

This set of routines provides for the retrieval of code
value labels from a special label file created by the
program HSR1:LABGEN. There are four entry points:

ILABEL - To initialize the routine and open the label file.

CLABEL - To check if labels exist for a particular
variable.

GLABEL - To retrieve code value labels

GVAR - To retrieve variable names.

Location: HSR1:LIBRARY

Source Languaqe: 370 Assembler

Subroutines Used: FREEFD, FREESPAC, GDINFO, GETFD, READ

Description:

This module permits programs to retrieve variable names and
code value labels from a specially prepared label file for
on-line documentation purposes. The label file must be
constructed by the HSR1:LABGEN program either by direct
entry of the code value label information, or by use of the
LABEL command in the HSR1:CODEBOOK program.

I LABEL

May 17, 1983 Subroutine Documentation

Entry Point: I LABEL

Module Name: I LABEL

Purpose :

To check the label file and open it for subsequent use by
CLABEL, GLABEL, and GVAR.

Location: HSRI :LIBRARY

Source Lanquage: 370 Assembler

Callinq Sequence: CALL ILABEL(FDNAME,LABSW,&RC4)

Parameters:

FDNAME A LOGICAL*l array containing the name of the label
file. The name must be terminated by a trailing
blank.

LABSW A LOGICAL*1 switch giving the status of the label
file, (see description)

Return Code(s):

&RC4 - Bad label file name.

Description:

I f the file name is blank, a normal return is made with
LABSW = .FALSE.

If the name is not blank, an FDUB is acquired, and GDINFO is
called to see if the file exists and is a line file. A
further check of line 0 of the file is made to see if the
file is a label file. I f any trouble is encountered in
these checks, an RC4 return is taken with LABSW = .FALSE.

If the label file specified is valid, a normal return is
taken with LABSW = .TRUE.

ILABEL

Subroutine Documentation May 17, 1983

Entry Point: CLABEL

Module Name: I LABEL

Purpose :

To check i f labels exist for a particular variable number.

Location: HSRI :LIBRARY

Source Lanquaqe: 370 Assembler

Calling Sequence:

CALL CLABEL(VARNUM,LENGTH,MAXCOD,&RC~)

Parameters:

VARNUM The INTEGER*4 variable number.

LENGTH The INTEGER*4 maximum length of the code value
labels for VARNUM.

MAXCOD The INTEGER*4 maximum code value for VARNUM.

Return Code(s):

&RC4 - No code value labels for VARNUM.

Description:

The entry CLABEL checks to see if code value labels exist
for variable VARNUM. I f they do, the maximum code value and
the maximum code value length are returned. If there are no
code labels for VARNUM, an RC4 is taken.

I LABEL

May 17, 1983

Entry Point:

Module Name:

Subroutine Documentation

GLABEL

I LABEL

Purpose :

To retrieve the code value label for a specified variable
number and code value from the label file.

Locat ion: HSRI :LIBRARY

Source Languaqe: 370 Assembler

Callinq Sequence:

CALL GLABEL(vARNUM,CODNUM,LABEL,JUST,&RC~~&RC~~&RC~~)

Parameters:

VARNUM The INTEGER*4 variable number.

CODNUM The INTEGER*4 code value for VARNUM.

LABEL A LOGICAL*1 array of at least 16 bytes where the
code value will be placed.

JUST A INTEGER*4 value defining label justification:
0 - Label is left-justified.
1 - Label is right-justified.

Return Code(s1:

&RC4 - No code value labels for VARNUM
&RC8 - CODNUM greater that maximum code value.
&RC12 - No code value label for CODNUM.

Description:

GLABEL finds the code value label for CODNUM for variable
VARNUM and returns it in the first LENGTH bytes (LENGTH is
defined by CLABEL) of the array LABEL. The label is left or
right justified within the LENGTH bytes as specified by the
variable JUST.

I LABEL

Subroutine Documentation May 17, 1983

If the value of LENGTH for a variable is 6, then GLABEL will
place the following in a 16-byte array LABEL for the code
value label 'YES':

JUST = 0 'YES aaaaaaaaaa'
JUST = 1 ' YESaaaaaaaaaa'

where the bytes denoted by 'a' are not accessed by GLABEL,

I LABEL

May 17, 1983 Subroutine ~ocumentation

Entry Point: GVAR

Module Name: I LABEL

Purpose :

To return the 24-character dictionary name for a specified
variable number,

Location: HSRI :LIBRARY

Source Language: 370 Assembler

Calling Sequence:

CALL GVAR(VARNUM,LENGTH,MAXCOD,VARNAM,&RC~,&RC~,&RC~~~

Parameters:

VARNUM The INTEGER*4 variable number.

LENGTH The INTEGERt4 code value label length for VARNUM.

MAXCOD The INTEGER*4 maximum code value for VARNUM.

VARNAM A LOGICAL*1 24-byte array where the variable name
will be placed.

Return Code(s):

&RC4 - No code labels for this variable
&RC8 - Variable not found.
& R ~ 1 2 - VARNUM > maximum variable number.

Description:

The variable name for the specified variable number is read
from the label file and placed in the VARNAM array. The
variables LENGTH and MAXCOD are not used in this entry.

I LABEL

Subroutine Documentation May 17, 1983

Module Name: INFILE

Purpose :

To provide an interface between programs that access files
and the actual read, write, and control routines, The
subroutine supports fixed-block type data records and
performs most of the actual file support operations through
the QSAM routines.

There are five entry points to the module:

INFILE - To acquire up to four files for subsequent
input operations.

ININ - To open a given file for input.

GETCHA - To read the next sequential record from the
file.

CLOIN - To close the given file.

FREEIN - To release the file. Subsequent input
operations will require another call to
INFILE.

Location: HSRI : LI BRARY

Source Lanquaqe: FORTRAN

Subroutines Used:

BTD, CHKFIL, DTB, EQUC, IGC, LCOMC, MOVEC, QSAM, SERCOM,
SETC

Logical 1/0 Units:

SERCOM - Error messages

Description:

These routines will read sequential fixed-block records from
a tape or disk file. If the file is on disc, it may be
labelled (as generated by OUTFIL) or unlabelled, I f the
fiie is on tape, all control operations necessary to
position the tape to the desired DSN and to obtain the
necessary blocking information are handled by INFILE.

INFILE

May 17, 1983 Subroutine Documentation

Entry Point: INFILE

Module Name: INFILE

Purpose :

To set up input files for later use by ININ, GETCHA, and
CLOI N .
Location: HSRI : LI BRARY

Source Lanquage: FORTRAN

Calling Sequence:

CALL INFILE(DSR,PDNAME,VOLUME,DSNAME,FILENO,LRECL,BLKFAC~
&RC4)

Parameters:

DSR An INTEGER*4 file reference number (1-4). This
number serves as an index to the input unit for
all subsequent operations.

PDNAME The LOGICAL*1 pseudo-device name if the file
resides on tape, or blank if the file resides on
disk. If not blank, the name must be 3 to 16
characters in length and must terminate with a
trailing blank.

VOLUME The LOGICAL*l 6 character volume serial name for
the pseudo-device specified by PDNAME, or blank
for disc files.

DSNAME The LOGICALrl DSN if the file resides on tape, or
the file name if the file resides on disk, The
name must be 1 - 17 characters in length and must
terminate with a trailing blank.

FILENO The INTEGER*4 file designator.
For tapes = the file number, or " 0 " .
For disc = "0" for labelled files

= " 1 " for unlabelled files..

LRECL The INTEGER*& logical record length for unlabelled
files, or "0" fcr l a b e l l e d files.

BLKFAC The INTEGERs4 blocking factor for unlabelled
files, or "0" for labelled files.

INFILE

Subroutine Documentation May 17, 1983

Return Code(s):

& R C 4 - A wide variety of errors that occur in setting up
the file. Error returns are generally preceded by
a message from INFILE or from QSAM,

Description:

I f a disk file is specified (as indicated by a blank
PDNAME), the file name is checked for validity, an FDUB is
acquired, and the file parameters are stored in internal
arrays.

I f a previously used tape is specified, an FDUB is acquired,
the volume name of the tape is checked against the name
supplied, the current tape position is determined, and the
file parameters are stored in internal arrays.

If a previously unused tape is specified, the same
operations described above are performed, but in addition
blocking is disabled on the tape (i.e,, BLK=OFF).

INFILE

May 17, 1983 Subroutine Documentation

Entry Point:

Module Name:

ININ

INFILE

Purpose :

To open a file acquired by INFILE for subsequent read
operations.

Location: HSR1:LIBRARY

Source Language: FORTRAN

Calling Sequence:

CALL ININ(DSR,LRECL,&RC~)

Parameters:

DSR The INTEGER*4 file reference number used in a
previous call to INFILE.

LRECL The INTEGER*4 logical record length, On input the
logical record length for unlabelled disk files if
not supplied in the INFILE entry. On output the
logical record length for labelled disc files or
tapes as determined from the file header record.

Return Code(s1:

&RC4 - Many errors resulting from tape positioning, invalid
header records, etc.

Description:

If the file is an unlabelled disk file, the file is opened
for reading with the specified logical record length.

If the file is a labelled disk file, The header record(s1 is
read to determine its validity and the record length and
blocking factor are acquired. The file is then opened for
reading.

If the file is on tape, the tape is positioned to the
specified file number if this value in non-zero, or to the
specified DSN i f the file number is zero. The blocking
factor and record length are determined and the file is
opened for reading.

I NFI LE

Subroutine Documentation May 17, 1983

GETCHA

INFILE

Entry Point:

Module Name:

Purpose :

To read the next sequential record from the input file.

Location: HSRI :LIBRARY

Source Lanquage: FORTRAN

Callinq Sequence:

CALL GETCHA(DSR,DATA,&RC~,&RC~)

Parameters:

DSR The INTEGER*4 file reference number used in a
previous call to INFILE.

DATA The region where the data record from the input
file will be placed.

Return Code(s):

&RC4 - End-of-file from the input unit.
&Re4 - Error return from QGET

Description:

The subroutine entry QGET is called to get the next record
from the input file.

INFILE

May 17, 1983 Subroutine Documentation

CLOI N

INFILE

Entry Point:

Module Name:

Purpose :

To close the specified input file.

Locat ion: , HSRI : LI BRARY

Source Lanquaqe: FORTRAN

Callinq Sequence:

CALL CLOIN(DSR,&RC4)

Parameters:

DSR The file reference number used in a previous call
to INFILE.

Return Code(s):

&RC4 - Control error while positioning tape.
Description:

If the file is on disc, it is closed. If the file is on
tape, the tape is positioned to the file number defined in
the last call to ININ and the file is closed.

INFILE

Subroutine Documentation May 17, 1983

Entry Point: FREEIN

Module Name: INFILE

Purpose :

To release the file acquired by entry INFILE,

Locat ion: HSRI : LI BRARY

Source Lanquage: FORTRAN

Callinq Sequence:

CALL FREEIN(DSR,&RC~)

Parameters:

DSR The file reference number used in a previous call
to INFILE.

Return Codes:

&RC4 - Invalid DSR number.
Description:

If the file is on disc, a check is made to see if another
DSR uses the same DSN. I f not, then the FDUB is released.
All internal arrays for this DSR are initialized.

If the file is on tape, a check is made to see if another
DSR uses the same tape. I f not, the FDUB is released and
the internal arrays are initialized.

INFILE

May 17 , 1983 Subroutine Documentation

Subroutine Documentation May 17, 1983

Entry Point:

Module Name:

INFOF

I NFOF

Purpose:

To check the type of file assigned to an I/O unit.

Location: ' HSRI : LI BRARY

Source Language: 370 Assembler

Calling Sequence: ITYPE = INFOF(UNIT,TYPE)

Parameters:

UNIT The 1/0 unit specification. For TYPE = 0, UNIT is
the INTEGERk4 logical 1/0 unit number (1 - 19) or
an FDUB. If TYPE = 1 then UNIT is an eight
character I/o unit name with trailing blanks
e l 'SPUNCH ' 1

TYPE The INTEGER*4 type of unit specification.

I TYPE The INTEGER*4 file type assigned to UNIT.
ITYPE = 1 - Line file

= 2 - Sequential file
= 3 - Not a line or sequential file
= 4 - UNIT not assigned or bad FDUB.

Subroutines Used: FREESPAC, GDINFO

Description:

This subroutine calls GDINFO and compares word 2 with the
types 'FILE' and 'SEQF'. If these are found INFOF is
assigned the value " 1 " or "2" respec,tively. For all other
cases INFOF is assigned the value "3".

Example :

IF(INFOF(1O1O).NE.1) RETURN 1

I NFOF

May 17 , 1983

I NFOF

Subroutine Documentation

Subroutine Documentation May 17, 1983

Entry Point: ITRNSL

Module Name: I TRNSL

Purpose :

To translate one character string into another.

Location: HSRI :LIBRARY

Source Lanquaqe: 370 Assembler

Callinq Sequence:

IRETRN = ITRNSL(ARRAY,NTRANS,LENOLD,LENNEW,OLD,NEW~

Parameters:

ARRAY A LOGICAL*1 array containing the translation
strings. Each old character string is followed by
the new character string for that case.

NTRANS The INTEGERa4 number of translations possible,
That is, the number of old string/new string pairs
in ARRAY.

LENOLD The INTEGERa4 length of the old string to be
translated. (LENOLD.LE.256)

LENNEW The INTEGER*4 length of the new translated string.
(L E N N E w ~ L E . ~ ~ ~)

OLD The LOGICAL*1 a r r a y containing the string to be
translated.

NEW The LOGICALal array where the translated string
will be placed. NEW remains unchanged if the
string in OLD does not occur in ARRAY.

I RETRN An INTEGERs4 variable specifying the results of
the translation. A value of zero indicates that
the translation was successful.

Description:

This subroutine is sin?ilar in acticn to the MTS routine TRNC
except that strings are translated to strings and the input
and output strings need not be of equal length.

I TRNSL

May 1 7 , 1983 Subroutine Documentation

I TRNSL

Subroutine Documentation May 17, 1983

Entry Point: I WRT

Module Name: I WRT

Purpose :

To perform a binary to character number conversion with
optional prefix and suffix characters.

Location: HSRI :LIBRARY

Source Lanquage: 370 Assembler

Calling Sequence:

CALL IWRT(ARRAY,START,LENGTH,NUMBER,~,&RC~)

CALL IWRT(ARRAY,START,LENGTH,NUMBER,~,?CHAR,&RC~)

CALL IWRT(ARRAY,START,LENGTH~NUMBER,~~SCHAR,&RC~)

CALL IWRT(ARRAY,START,LENGTH,NUMBER,~~PCHAR,SCHAR~&RC~)

Parameters:

ARRAY The LOGICALsl array where the character number
will be placed.

START The INTEGER*4 location in ARRAY where the number
should start.

LENGTH The INTEGER*4 field width of the output number.
LENGTH must be less than 17.

NUMBER The INTEGERr4 number to be converted.

?CHAR A prefix character to be placed before the
converted number.

SCHAR A suffix character to be placed after the
converted number.

Return Code(s):

& R C 4 - The number is too large for the output field.

I WRT

May 17, 1983 Subroutine Documentation

Description:

The decimal number is placed into the output field right-
justified with leading blanks. Optionally, a prefix
character, a suffix character, or both may be included with
the number in the output field. If the binary number is too
large for the output field width specified, the output is
filled with asterisks

Subroutine Documentation May 17, 1983

Entry Point: JULDAT

Module Name: JULDAT

Purpose :

To convert Gregorian dates to the corresponding Julian date
using the MTS routine GRJLDT, and to provide validation of
the input data prior to conversion.

Locat ion: HSRI :LIBRARY

Source Lanquage: FORTRAN

Callins Sequence: CALL JULDAT(IN,OUT,MODE)

Parameters:

IN A LOGICAL*l array of at least 6 bytes containing
the Gregorian date in the form specified by MODE.

OUT A LOGICAL*l array of at least 5 bytes where the
Julian date will be placed.

MODE The INTEGERr4 format of the Gregorian date
MODE = 1 IN = MMDDYY
MODE = 2 IN = YYMMDD

Subroutines Used: BTD, DTB, GRJLDT, IGC, MOVEC

Leap years are not taken into account when checking the
input dates for validity. Consequently, the entry of
February 29 for a non-leap year would result in the Julian
date for March 1.

Description:

The input field is first checked for non-numeric characters,
Then values for year, month, and day are range-checked. I n
addition, the resulting Julian date is checked to see i f it
lies in the range of (1 - 9 9 9 9 9) . I f any e r r o r s are
detected, the Julian date is set to the value "99999".

JULDAT

May 17 , 1983

JULDAT

Subroutine Documentation

Subroutine Documentation

Entry Point:

Module Name:

KEYSCN

KEYSCN

May 17, 1983

Purpose:

To scan a character string for the existence of members of a
predefined set of modifiers and/or keyword phrases.

Location: HSRI :LIBRARY

Source Lanquage: FORTRAN

Calling Sequence:

CALL KEYSCN(STRING,IBEG,ILAST,MAXLENrN~ODrMODfMPARSrMODSWr
NKEY,KEY,KPARS,KEYSW,KEYVAL,&RC~,&RC~)

Parameters:

STRING A Logical*l array of dimension MAXLEN that
contains the character string to decode. The -
strinq must terminate with a trailinq blank.

I BEG The Integer*4 location in STRING where scanning is
to begin.

I LAST The Integer*4 number of the last character in
STRI NG .

MAXLEN The Integer*4 dimension of STRING.

NMOD The Integer*4 number of possible modifiers that
are defined.

MOD A Logical*l array of dimension 8*NMOD containing
the left-justified, 8-byte-aligned modifier names.

MPARS An Integer*2 array of dimension (~,NMOD).
MPARS(~,J) is the minimum number of characters
that will be recognized as an abbreviation for
modifier number J. MPARS(~,J) is the full length
of the name for modifier number J.

MODSW An Logicalrl array of dimension NMOD. MODSW(J) is
.TRUE. if the modifier J is present in STRING and
.FALSE. otherwise.

NKEY The Integers4 number of possible keywords that are
defined.

KEYSCN

May 17, 1983 Subroutine Documentation

KEY A Logicalrl array of dimension 8*NKEY containing
the left-justified, 8-byte-aligned keyword names.

KPARS An Integers2 array of dimension (2,NKEY).
KPARS(~,J) is the minimum number of characters
that will be recognized as an abbreviation for
keyword number J. MPARS(~,J) is the full length
of the name of keyword number J,

KEYSW A Logical*l array of dimension NKEY. KEYSW(J) is
.TRUE. if the keyword J is present in STRING and
.FALSE. otherwise,

KEYVAL An Integers4 array of dimension (~,NKEY).
KEYVAL(~,J) gives the location in STRING where the
Right-Hand-Side of keyword J begins. KEYVAL(~,J)
gives the length of this RHS.

Return Code(s):

&RC4 BATCH mode syntax error.
&RC8 The replacement string was CANCELed.

Subroutines Used:

EQUC, FINDC, FINDST, GUINFO, GUSRIN, IGC, LCOMC, LSTPAR,
MOVEC PRNTCK, SERCOM, SHFTST, SPLCHK

Logical 1/0 Units:

SERCOM Error messages

Special Note :

A 140-byte COWON area named /BUF/ is used for 1/0
operations and other temporary tasks.

Description:

The array STRING is scanned for modifiers (i.e., ALLV,
PRINT) and keywords (i.e., FILE=-A, VAR=1,3,5-12) that match
those in the input lists defined by MOD and KEY. I f a
syntax error is encountered in BATCH mode, an error message
is printed and the scanning of STRING continues. If a
syntax error is encountered in TERMINAL mode, an attempt is
made to determine if the invalid parameter is a possible
misspelling of a correct one. The user is queried for
verification or rejection of each possible misspelling that
is found. If this process is unsuccessful, an error message
is printed and the user is prompted for a replacement
string, a carria.ge return to ignore the incorrect item, or

KEYSCN

Subroutine Documentation May 17, 1983

the word CANCEL to cancel the entire scanning process. If a
replacement string is supplied,, the incorrect item is
shifted out of STRING and the replacement is added at the
end of the modified array providing that the array dimension
is not exceeded. If the replacement prompt is returned, the
incorrect item is simply deleted. On exit from KEYSCN,
therefore, STRING contains a corrected version of the input.

A space (X 1 4 0 ') is the normal break character separating
modifiers and keywords.

KEYSCN

May 17, 1983 Subroutine Documentation

Entry Point:

Module Name:

KEYREP

KEYSCN

Purpose :

To enter a replacement for a keyword whose RHS has been
found to be invalid during the process of decoding,

Location: HSRI : LI BRARY

Source Language: FORTRAN

Callinq Sequence:

CALL KEYSCN(STRING,ILAST,MAXLEN,NMOD,MODSW,NKEY,KEYSW,
KEYVALrIKEY,&RC4,&RC8)

Parameters:

STRING A Logicalrl array of dimension MAXLEN containing
the character string decoded by KEYSCN.

ILAST The Integert4 number of the last character in
STRING.

MAXLEN The Integer*4 dimension of STRING.

NMOD The Integer*4 number of possible modifiers that
are defined.

MODSW An Logical*l array of dimension NMOD. MODSW(J) is
.TRUE. if the modifier J is present in STRING and
.FALSE. otherwise.

NKEY The Integer*4 number of possible keywords that are
defined.

KEYSW A Logical*l array of dimension NKEY. KEYSW(J) is
.TRUE. if the keyword J is present in STRING and
.FALSE. otherwise.

KEYVAL Aninteger*4 array of dimension (~,NKEP).
KEYvAL(~,J) gives the location in STRING where the
Right-Hand-Side of keyword J begins. KEPVAL(~,J)
gives the length of this RHS.

I KEY An Integer*4 variable that designates the number
of the keyword that requires replacement.

KEYSCN

Subroutine Documentation May 17, 1983

Return Code(s):

&RC4 BATCH mode syntax error.
&RC8 The replacement string was CANCELed.

Subroutines Used:

EQUC, FINDC, FINDST, GUINFO, GUSRIN, IGC, LCOMC, LSTPAR,
MOVEC, PRNTCK, REPMSG, SERCOM, SHFTST, SPLCHK

Logical 1/0 Units:

SERCOM Error messages

Special Note:

A 140-byte COMMON area named /BuF/ is used for 1/0
operations and other temporary tasks.

Description:

The keyword and corresponding RHS designated by IKEY is
deleted from STRING and the characters in STRING are shifted
left to fill the gap, If sufficient room is available, a
replacement is read from GUSER and appended to the end of
STRING. The new contents are then decoded as in KEYSCN in
order to provide updated values of MODSW, KEYSW, and KEYVAL,
On exit from KEYREP, program control should pass to the next
executable statement after the KEYSCN call, just as i f a
normal return from that subroutine had been made.

KEYSCN

May 17, 1983

KEY SCN

Subroutine Documentation

Subroutine Documentat ion May 17, 1983

Entry Point:

Module Name:

LYSOB
LYSOMB

LEFJ

Purpose :

To left-justify a character string and remove all blanks.

Location: HSR1:LIBRARY

Source Languaqe: 370 Assembler

Callinq Sequence:

NCHAR = LYSOB(ARRAY,START,LENGTH)

NCHAR = LYSOMB (ARRAY, START, LENGTH)

Parameters:

ARRAY The array containing the character string.

START The INTEGERs4 location of the character in ARRAY
where justification should.start.

LENGTH The INTEGERr4 number of characters in ARRAY to be
checked.

NCHAR The INTEGERs4 number of non-blank characters
found.

Description:

The routine left-justifies a character string and deletes
all blanks. There are two entries: the LYSOMB entry allows
for primes within the character string and only deletes
those blanks that are not enclosed within the primes.

LEF J

May 1 7 , 1983

LEFJ

Subroutine Documentation

Subroutine Documentation May 17, 1983

Entry Point:

Module Name:

LISFIV

LISFIV

Purpose :

To list type 5 dictionary records on a specified 1/0 unit.

Location: HSRI : LI BRARY

Source Languaqe: FORTRAN

Callinq Sequence:

CALL LISFIV(DICREC,UNIT,&RC4)

Parameters:

DICREC The LOGICAL*l 80-character type 5 dictionary
record to be listed.

UNI T The INTEGER*4 1/0 unit number on which the list is
to written.

Return Code(s):

&RC4 - Error return from EWRITE

Subroutines Used:

EWRITE, MOVEC, SETC

Description:

The dictionary elements are moved into a readable format and
written on UNIT. Each call to LISFIV lists only one
dictionary record. The entry LISHDR should be called first
to produce a heading for the list.

LI SFIV

May 17, 1983

Entry Point:

Module Name:

Subroutine Documentation

LI SHDR

LI SFIV

Purpose :

To print a list header on a specified 1/0 unit.

Location:

Source Language: FORTRAN

Callinq Sequence:

CALL LISHDR(UNIT,&RC~)

Parameters:

UNIT The INTEGER*4 I / O unit number on which the header
is to written.

Return Code(s):

&RC4 - Error return from EWRITE

LISFIV

Subroutine Documentation

Entry Point: LNBTD

Module Name: LNBTD

May 17, 1983

Purpose :

To convert an MTS internal file line number to character
format.

Location: HSRI : LI BRARY

Source Language: FORTRAN

Calling Sequence:

CALL LNBTD(LINENO,ARRAY,WIDTH)

Parameters:

L I NENO The INTEGER*4 MTS internal line number.

ARRAY The LOGICAL*I array where the number will be
placed,

WIDTH The INTEGER*4 width of the character string
generated.

Subroutines Used: BTD , SETC

Description:

If the internal line number is a multiple of 1000 (i.e.! an
integral line number) the number is written with no decimal
point. Otherwise, a decimal point and three decimal places
are written.

Internal line number Output

LNBTD

May 17, 1983

LNBTD

Subroutine Documentation

Subroutine Documentation

Entry Point: LSTFIX

Module Name: LSTFIX

May 17, 1983

To sort a list of numbers and delete duplicate values.

Location: HSR1:LIBRARY

Source Lanquaqe: FORTRAN

Calling Sequence: CALL LSTFIX(LIST,NUMBER)

Parameters:

LIST The INTEGERs2 list of values.

NUMBER The INTEGER*4 number of values in LIST,

Subroutines Used: CHSRT

The list of number is first sorted, then duplicate values
are deleted. On output, NUMBER contains the number of non-
duplicate values in LIST.

LSTFIX

May 17, 1983 Subroutine Documentation

Subroutine Documentation May '17, 1983

Entry Point:

Module Name:

Purpose :

LSTPAR

LSTPAR

To list keywords and/or modifiers for the CMDSCN and KEYSCN
routines.

Locat ion: HSRI : LI BRARY

Source Lanquaqe: FORTRAN

Callinq Sequence: CALL LSTPAR(NWRDS,WRDPAR,WORD)

Parameters:

NWRDS The INTEGER*4 number of words in WORD.

WRDPAR The INTEGER*2 array of word lengths of dimension
(2,NWRDS) used in CMDSCN and KEYSCN.

WORD The LOGICAL*l array containing the 8-character
left-justified words to list,

Subroutines Used: MOVEC, SETC

Description:

This routines lists valid modifiers and/or keywords from the
input arrays to CMDSCN and KEYSCN for the HELP function in
error replacement,

LSTPAR

May 1 7 , 1983 Subroutine Documentation

LSTPAR

Subroutine Documentation May 17, 1983

Entry Point:

Module Name:

MOVBUT

MOVBUT

Purpose:

To move a number of strings cofitaining numeric characters.

Location: HSRI :LIBRARY

Source Languaqe: 370 Assembler

Calling Sequence:

CALL MOVBUT(LEN1,IN1,OUT1, . ,LENn,INn,OUTn,O)

Parameters:

LEN i The INTEGER*4 number of characters to be moved for
operation " i " , or "0" to terminate the sequence of
moves. (LENi.LE.256)

1Ni The array containing the characters to be moved.

OUT i The array to which the characters will be moved.

Description:

This subroutine is similar in function to MOVEM except that
only strings of numeric characters are moved. If the array
INi contains any non-numeric characters, the array OUTi
remains unchanged by the subroutine operation.

MOVBUT

May 17, 1983

MOVBUT

Subroutine Documentation

Subroutine Documentation May 17, 1983

Entry Point: MOVEM

Module Name: MOVEM

Purpose :

To perform multiple move operations with a single subroutine
call.

Location: H S R I :L IBRARY

Source Lanquage: 370 Assembler

Calling Sequence:

Parameters:

LEN i The INTEGER*4 number of bytes to be moved for
operation "i", or "0" to terminate the move
sequence.

INi The array containing the data to be moved.

OUT i The array to which the data will be moved.

Description:

This subroutine is identical to the MTS routine MOVEC except
that it allows for multiple move operations with a single
subroutine call. The list of move operations must be
terminated with a zero,

MOVEM

May 17 , 1983

MOVEM

Subroutine Documentation

Subroutine Documentation May 17, 1983

Module Name: OUTF I L

Purpose :

To provide an interface between programs that write files
and the actual read, write, and control routines. The
subroutine writes fixed block type data records and performs
most of the actual file support operations through the QSAM
routines.

There are five entry points to the module:

OUTFIL - To acquire up to four files for subsequent
output operations.

INOUT - To open a given file for output.

PUTCHA - To write the next sequential record to the
file.

CLOUT - To close the given file and write out any
remaining data blocks.

FREOUT - To release the file. Subsequent output
operations will require another call to
OUTFI L.

Location: HSRI : LI BRARY

Source Lanquage: FORTRAN

Subroutines Used:

BTD, CHKFIL, EQUC, FINDC, IGC, LAND, LCOMC, MOVEC,
PDNCHK, QSAM, SERCOM, SETC, TIME

Logical 1/0 Units:

SERCOM - Error messages

Description:

These routines will write sequential fixed-block records
onto a tape or disk file. If the file is on disc, it may be
labelled or unlabelled. If the file is on tape, all the
control operations necessary to position the tape to the
desired DSN and to set the necessary blocking information is
handled by OUTFIL.

OUTF I L

May 17, 1983

Entry Point:

Subroutine Documentation

OUTF I L

Module Name: OUTF I L

Purpose :

To set up output files for later use by INOUT, PUTCHA, and
CLOUT.

Location: HSR1:LIBRARY

Source Languaqe: FORTRAN

Callinq Sequence:

CALL OUTFI L (DSR, PDNAME ,VOLUME ,DSNAME , FI LEN0 , LRECL , BLK~AC ,
&RC4)

Parameters:

DSR An INTEGER*4 file reference number (1 - 4) . This
number serves as an index to the output unit for
all subsequent file access.

PDNAME The LOGICAL*1 pseudo-device name if the file is to
be written on tape, or blank if the file is to be
written on disk. If not blank, the name must be 3
to 16 characters in length and must terminate with
a trailing blank.

VOLUME The LOGICAL*1 6 character volume serial name for
the pseudo-device specified by PDNAME, or blank
for disc files.

DSNAME The LOGICAL*I DSN if the file is to be written on
tape, or the file name if the file is to be
written on disk. The name must be 1 - 17
characters in length and must terminate with a
trailing blank.

FILENO The INTEGER*4 file designator.
For tapes = the file number

(or " O n for *EOT*).
For disc = " 0 " for labelled files

= "1" for unlabelled files.

LRECL The INTEGER*4 logical record length, or " 0 " . If
zero is used, the record length must be supplied
on the INOUT call.

OUTF I L

Subroutine Documentation May 17, 1983

Parameters: (Continued)

BLKFAC The INTEGER*4 blocking factor, or "0". If zero is
used, the blocking factor is chosen to be the
truncated value of "28000/LRECLV for tapes or " 1 "
for disc files.

Return Code(s):

&RC4 - A wide variety of errors that occur in setting up
the file. Error returns are generally preceded by
a message from OUTFIL or from QSAM.

Description:

If a disk file is specified (as indicated by a blank
PDNAME), the file name is checked for validity, an'FDUB is
acquired, and the file parameters are stored in internal
arrays.

If a previously used tape is specified, an FDUB is acquired,
the volume name of the tape is checked against the name
supplied, the current tape position is determined, and the
file parameters are stored in internal arrays.

If a previously unused tape is specified, the same
operations described above are performed, but in addition
blocking is disabled on the tape (i.e., BLK=OFF).

OUTF I L

May 17, 1983 Subroutine Documentation

Entry Point:

Module Name:

I NOUT

OUTF I L

To open a file acquired by OUTFIL for subsequent write
operations.

Location: HSRI :LIBRARY

Source Languaqe: FORTRAN

Callinq Sequence:

CALL INOUT(DSR,LRECL,&RC~)

Parameters:

DSR The INTEGER*4 file reference number used in a
previous call to OUTFIL.

LRECL The INTEGER*4 logical record length if not
supplied in the OUTFIL entry.

Return Code(s1:

&RC4 - Many error resulting from tape positioning, header
records, etc.

Description:

If the file is an unlabelled disk file, the file is rewound
and opened for writing with the specified logical record
length.

If the file is a labelled disk file, the file is rewound and
a header record is written. The file is then opened for
writing.

If the file is on tape, the tape is positioned to the end of
tape if the file number is zero. If the file number is not
zero, date checking is turned off, a warning message is
printed and the tape is positioned to the specified file
number. The tape DSR is controlled for the specified DSN
and blocking format, and the file is opened for writing.

OUTF I L

Subroutine Documentation May 17, 1983

Entry Point:

Module Name:

PUTCHA

OUTF I L

Purpose :

To write the next sequential record to the output file.

Location: HSRI :LIBRARY

Source Lanquage: FORTRAN

Callinq Sequence:

CALL PUTCHA(DSR,DATA,&RC~)

Parameters:

DSR

DATA

The INTEGER*4 file reference number used in a
previous call to OUTFIL.

The region containing the data record to be
written.

Return Code(s1:

&RC4 - Error return from QPUT
Description:

The subroutine entry QPUT is called to write the next
record.

OUTF I L

May 17, 1983

Entry Point:

Module Name:

Subroutine Documentation

CLOUT

OUTF I L

Purpose :

To close the specified input file and write out any unfilled
data blocks.

Location: HSRI : LIBRARY

Source Language: FORTRAN

Callinq Sequence:

CALL CLOUT(DSR,&RC~)

Parameters:

DSR The file reference number used in a previous call
to the entry OUTFIL.

Return Code(s):

&RC4 - Control error on PDNAME.

Description:

Any unfilled data blocks are written out. If the file is on
disc, it is closed. If the file is on tape, a tape mark is
written, date checking is turned on, and the file is closed.

OUTF I L

Subroutine Eocumentation May 17, 1983

Entry Point: FREOUT

Module Name: OUTF I L

Purpose :

To release the file acquired by entry OUTFIL.

Location: HSRI :LIBRARY

Source Lanquaqe: FORTRAN

Callinq Sequence:

CALL FREOUT(DSR,&RC4)

Parameters:

DSR The file reference number used in a previous call
to OUTFIL.

Return Codes:

&RC4 - Invalid DSR number,

Description:

If the file is on disc, a check is made to see if another
DSR uses the same DSN. I f not, then the FDUB is released.
All internal arrays for this DSR are initialized.

If the file is on tape, a check is made to see if another
DSR uses the same tape. I f not, the FDUB is released and
the internal arrays for this DSR are initialized.

OUTF I L

May 17, 1983

OUTF I L

Subroutine Documentation

Subroutine Documentation May 17, 1983

PDNCHK

PDNCHK

Entry Point:

Module Name:

Purpose :

To check a pseudo-device name to see if it a valid MTS name.

Locat ion: HSR1:LIBRARY

Source Lanauaae: FORTRAN

Callinq Sequence: CALL PDNCHK(PDN,PDNLEN,&RC~)

Parameters:

PDN A LOGICAL*1 array containing the PDname to be
checked.

PDNLEN The INTEGER*4 length of the name in PDN.

Return Code(s):

&RC4 The PDname is invalid.

Subroutines Used: EQUC, FINDC

Logical 1/0 Units: None

Description:

The following checks are made:

1) Is PDNLEN < 1
2) Is PDNLEN > 16
3) Does PDN(~) = ' * '
4) Does PDN(PDNLEN) = ' * '
5) Does PDN contain , ; : () @ + = ' l1 ? & or blanks

PDNCHK

May 17 , 1983

PDNCHK

Subroutine Documentation

Subroutine Documentation May 17, 1983

Entry Point: PRNTCK

Module Name: PRNTCK

Purpose :

To check a string for non-printing characters and insert a
question mark in place of any that are found.

Location: HSRI : LI BRARP

Source Lanquage: FORTRAN

Callinq Sequence: CALL PRNTCK(STRING,LENGTH)

Parameters:

STRING The LOGICAL*l array containing the string to
check.

LENGTH The INTEGER*4 length of the string in STRING.

Description:

Printing characters are assumed to be one of the set of
EBCDIC characters with DECIMAL values:

This routine may be used to replace any non-printing
characters in a string before printing it out. It is useful
for echoing back user input that may contain bad characters
that were entered accidentally.

PRNTCK

May 1 7 , 1983

PRNTCK

Subroutine Documentation

Subroutine Documentation May 17, 1983

Module Name: QSAM (Queued Sequential Access Method)

Purpose :

To read and write blocked records consisting of one or more
fixed-length logical records. The blocked input/output
routines have the following seven FORTRAN entry points:

QGTUCB To acquire a file or device
QOPEN To open the file or device for reading or

writing
QGET To read a logical record
QPUT To write a logical record
QCLOSE To close the file or device and write any

unfilled blocks
QCNTRL To perform any valid MTS control operation
QFRUCB To release the file or device

Locat ion: HSRI : LI BRARY

Source Languaqe: 370 Assembler

Subroutines Used:

GETSPACE, GETFD, GDINFO, READ, FREESPAC, FREEFD, REWIND#,
SERCOM, WRITE , CONTROL

Logical 1/0 Units:

READ Read blocked records
WRITE Write blocked records
SERCOM Error messages

Description:

These routines will read and write blocked input/output
records consisting of one or more fixed length logical
records. All input/output requests are made for logical
records: the routines handle record blocking and deblocking
automatically. More that one file or device may be handled
at one time. These routines are intended for use with
magnetic tapes and tapes must be mounted with BLK=OFF. The
routines are not restricted to tape usage, however, and may
be used with disc files, or with other devices.

QSAM

May 17, 1983 Subroutine Documentation

Many internal error messages can be generated. Each of
these has the form:

"device name": <message text>

In addition, if a return code greater than zero is
encountered in the CONTROL or WRITE routines, or if a
return code greater than four is encountered in the READ
routine, then the MTS error message associated with this
return code is also printed if this message is available.
See the MTS Manual, Volume 3, for a description of the 1/0
error return codes.

Subroutine Documentation May 17, 1983

Entry Point: QGTUCB

Module Name: QSAM

Purpose :

To acquire a file or device which will be used by the 1/0
routines, A table of control information for the file or
device is generated.

Location: HSRI : LI BRARY

Source Lanquage: 370 Assembler

Calling Sequence:

CALL QGTUCB(NAME,UCBPTR,&RC4)

Parameters:

NAME The 17 character (max) file or pseudo-device name
to be used for the 1/0 operations terminated by a
trailing blank,

UCBPTR An Integers4 pointer to the UCB for this fdname
that is used by the remaining routines as an index
to this device.

Return Code(s):

&RC4 Invalid file or device name

Description:

A chain of all UCB's acquired thus far is searched to see if
this file or device has been acquired before. If so, the
UCB pointer is returned immediately. Otherwise, a UCB is
built and added to the chain, and a pointer to it is
returned. The routines GETFD and GDINFO are called and
pertinent information is stored in the UCB. The comparison
is performed for the full name given. That is, F and
F(1,10) are considered to be different files or devices.

QSAM

May 17, 1983 Subroutine Documentation

Entry Point: QOPEN

Module Name: QSAM

Purpose :

To prepare a file or device which has been acquired by
QGTUCB for blocked input/output operations.

Location: HSRI : LI BRARY

Source Lanquaqe: 370 Assembler

Callinq Sequence:

CALL QOPEN(UCBPTR,KEY,BLKFAC,LRECL,&RC~)

Parameters:

UCBPTR The INTEGER*4 UCB pointer returned by QGTUCB

KEY An INTEGER*4 variable that indicates whether the
information is to be read or written:

1 Information is to be written
2 Information is to be read

BLKFAC The INTEGER*4 maximum number of logical records
per physical record

LRECL The INTEGER*4 length of each logical record in
bytes

Return Code(s):

&RC4 File or device is already open
Incorrect READ/WRITE parameter specification
Maximum record length rejected by tape DSR

Description:

The file or device specified by UCBPTR is checked to
determine if it has been opened by previous calls to QOPEN,
The read/write parameter KEY is checked for validity. The
block size of the blocked record is computed as BLKFAC*LRECL
and a buffer is acquired for this record.

QSAM

Subroutine Documentation May 17, 1 9 8 3

Entry Point: QGET

Module Name: QSAM

Purpose :

To acquire the next sequential logical record from the file
or device opened as an input file via QOPEN,

Location: HSRI : LIBRARY

Source Lanquaqe: 370 Assembler

Callinq Sequence:

CALL QGET(AREA,uCBPTR,&RC~,&RC~)

Parameters:

AREA The input area where the next logical record will
be stored

UCBPTR The INTEGERs4 UCB pointer returned by QGTUCB

Return Code(s):

&RC4 End-of-file detected on input file or device
&RC8 The file or device has not been opened for input

Device used after an end-of-file
Input is longer than the maximum specified
Return code > 4 from READ

Description:

Physical records are read from the input file or device as
required, Each physical record is broken into one or more
logical records of the length specified in the QOPEN call.
The last logical record in a physical record may actually be
shorter than the length of the logical record, In that
case, it is padded to the proper length with blanks. I f
there are no more logical records, the input area is filled
with X'FF'.

May 17, 1983 Subroutine Documentation

Entry Point: QPUT

Module Name: QSAM

Purpose :

To write the next sequential logical record to the file or
device opened as an output file via QOPEN.

Location: HSRI :LIBRARY

Source Lanquage: 370 Assembler

Callinq Sequence:

CALL QPUT(AREA,UCBPTR,&RC~)

Parameters:

AREA The output area where the next logical record is
stored

UCBPTR The INTEGER*4 UCB pointer returned by QGTUCB

Return Code(s):

&RC4 The file or device has not been opened for output
Return code > 0 from WRITE

Description:

Each logical record presented by a call to QPUT is placed
into an output buffer. When the buffer is filled, it is
written out as one physical record. All physical records
will contain the maximum number of logical records specified
by the call to QOPEN except the last, which will be
truncated if it is only partially filled when QCLOSE is
called.

QSAM

Subroutine Documentation May 17, 1983

Entry Point: QCLOSE

Module Name: QSAM

Purpose:

To terminate blocked input/output operations on the file or
device opened by a call to QOPEN. I f the file or device was

. used for-output; and a partially filled buffer of logical
records is present, the truncated buffer is written out as
part of the closing procedure.

Locat ion: HSRI : LI BRARY

Source Language: 370 Assembler

Callinq Sequence:

CALL QCLOSE(UCBPTR)
CALL QCLOSE(O)

Parameters:

UCBPTR The INTEGER*4 UCB pointer returned by QGTUCB. If
a zero is specified for UCBPTR, then all currently
open files or devices are closed.

Description:

If the file or device was used for output and a partial
buffer of logical records for it is present, this buffer is
written out as a truncated physical record. A11 information
in the UCB is reset to the normal state of an unopened file
or device which is then available for further use and can be
reopened or positioned.

Note that no tape mark is written when an output file is
closed. If a tape is repositioned, a tape mark will be
automatically be written by the tape DSR.

QSAM

May 1 7 , 1983 Subroutine Documentation

Entry Point : QCNTRL

Module Name: QSAM

Purpose:

To perform any v a l i d MTS con t ro l command for the f i l e o r
device s p e c i f i e d , For magnetic t a p e s , a complete
p resen ta t ion of t he se commands i s presented i n MTS Manual,
Volume 4 "TERMINALS AND TAPES".

Location: HSRI : LI BRARY

Source Language: 370 Assembler

Ca l l ing Sequence:

CALL QCNTRL(COMMND,LEN,UCBPTR,&RC~)

parameters:

COMMND A n a r r a y c o n t a i n i n g t h e c o n t r o l c o m m a n d

LEN The INTEGER*2 length of t h e c o n t r o l command i n
COMMND

UCBPTR The INTEGER*4 UCB po in t e r re turned by QGTUCB.

Return Code(s1:

& R C 4 The f i l e or device i s open and cannot be CONTROLled
Improper c o n t r o l opera t ion
No c o n t r o l en t ry or i l l e g a l FDUB poin te r
Return code > 0 from CONTROL
Unable t o rewind device
Device has no type and cannot be CONTROLled
Device has no FDUB and cannot be CONTROLled

Descr ipt ion:

I f REW is s p e c i f i e d , then t he rou t ine REWIND# i s c a l l e d t o
rewind the f i l e o r device . For a l l o ther con t ro l command,
the rou t ine CONTROL i s c a l l e d t o perform t h e s p e c i f i e d
opera t ion .

QSAM

Subroutine Documentation May 17, 1983

Entry Point:

Module Name:

QFRUCB

QSAM

Purpose :

To free a file or device which has been acquired via QGTUCB.

Location: HSRI : LI BRARY

Source Language: 370 Assembler

Callinq Sequence:

CALL QFRUCB(UCBPTR)
CALL QFRUCB(O)

Parameters:

UCBPTR The INTEGER*4 UCB pointer returned by QGTUCB. If
a zero is specified for UCBPTR, then all currently
open files or devices are released,

Description:

The chain of all UCB'S acquired is searched for the UCB
specified by UCBPTR. I f it is found, the UCB is deleted
from the chain and released. Any subsequent operations on
this file or device must be preceded by a call to QGTUCB in
order to reallocate its UCB.

QSAM

May 1 7 , 1983 Subroutine Documentation

QSAM

Subroutine Documentation May 17, 1983

Entry Point: RBTD

Module Name: RBTD

Purpose :

To convert an integer number and a corresponding implied
number of decimal places to a character representation.

Location: HSR1:LIBRARY

Source Lanquage: FORTRAN

Callinq Sequence: CALL RBTD(INTEGR,ARRAY,FLDWTH,NUMDEC)

Parameters:

I NTEGR The INTEGER*4 value to be converted,

ARRAY he LOGICAL*1 array where the character
representation will be placed.

FLDWTH The INTEGER*4 length of the output field,

NUMDEC The INTEGER*4 number of implied decimal places for
I NTEGR .

Subroutines Used: BTD, SETC

Description:

If NUMREC is zero, INTEGR is converted into the output array
with a maximum length of FLDWTH. I f the number is too large
to fit into the desired output field, the field is filled
with asterisks, If NUMDEC is greater than zero, the number
with decimal point is written,

RBTD

May 17 , 1983

RETD

Subroutine Documentation

Subroutine Documentation May 17, 1983

Entry Point: READIN

Module Name: READIN

Purpose:

To read input into an array on 1/0 unit SCARDS with the
features of line continuation, upper-case conversion, array
length protection, and notification of unit reassignment..

Location: HSRI : LIBRARY

Source Lanquaqe: FORTRAN

Callinq Sequence:

CALL READIN(STRING,LENGTH,MAXLEN,SOUSW~&RC~,&RC~,&RC~~~

Parameters:

STRING A LOGICALrl array of dimension MAXLEN,

LENGTH A INTEGERr4 variable that contains, on exit from
the routine, the length of the input string plus
one for the trailing blank added to the end of the
string.

MAXLEN The INTEGER*4 length of STRING.

SOUSW A LOGICALrl switch that is .TRUE. if SCARDS is
assigned to the terminal or card reader, and
.FALSE. otherwise.

Return Code(s):

&RC4 An end-of-file was encountered with SOUSW = .TRUE.
&RC8 An end-of-file was encountered with SOUSW = .FALSE.
&RC12 The input line length is greater than MAXLEN-1

Subroutines Used:

ADROF, BTD, EQUC, GDINF, LAND, LOR, MOD, MOVEC, RCALL,
SETLIO, SETPFX

Loqical 1/0 Units:

SCARDS Read input string
SERCOM Error messages

May 17, 1983 Subroutine Documentation

Description:

This subroutine is intended as a general user input. The
prefix character for the read is set to " ? " . The read is
made on SCARDS with the modifiers @TRIM, @CASECONV, OMAXLEN,
and @NOTIFY. If the input string ends in the continuation
character "-" , another read is made and the new characters
are added on to the end of the previous string beginning at
the location of the " - " . If the total number of characters
read in is greater than MAXLEN-1, a branch is made to RC12.
If not, the prefix character is reset, a trailing blank is
appended to the string, and a normal return is taken.

If an I/O unit re-assignment occurs GDINF subroutine is
called to determine what the assignment is, and SOUSW is set
accordingly. The read is then performed as described above.

Subroutine Documentation May 17, 1983

Entry Point: READNC

Module Name: READIN

Purpose :

To read input into an array on 1/0 unit SCARDS with the
features of upper-case conversion, array length protection,
and notification of unit reassignment. The action is the
same as the READIN entry with the exception that line
continuation is not supported.

Location: HSRI : LI BRARY

Source Languaqe: FORTRAN

Callinq Sequence:

CALL READNC(STRING,LENGTH1M~XLE~,S0USW,&RC4,&RC8,&RC12~

Parameters:

STRING A LOGICAL*1 array of dimension MAXLEN,

LENGTH A INTEGER*4 variable that contains, on exit from
the routine, the length of the input string plus
one for the trailing blank added to the end of the
string if no continuation character is present.
If there is a continue character at the end of the
segment, then LENGTH contains the length of the
input string including the continue character.

MAXLEE The INTEGERs4 length of STRING.

SOUSW A LOGICAL*l switch that is .TRUE. i f SCARDS is
assigned to the terminal or card reader, and
.FALSE. otherwise.

Return Code(s):

&RC4 An end-of-file was encountered with SOUSW = .TRUE,
&RC8 An end-of-file was encountered with SOUSW = .FALSE.
6RC!2 The input line length is greater than MAXLEN-1

Subroutines Used:

ADROF, BTD, EQUC, GDINF, LAND, LOR, MOD, MOVEC, RCALL,
SETLI 0, SETPFX

May 17, 1983 Subroutine Documentation

Logicai I/O Units:

SCARDS Read input string
SERCOM Error messages

Description:

This entry performs the same function as READIN except for
line continuation, A trailing dash " - " is ignored by the
routine and treated as any other character. I f a continue
character is found at the end of the line, no trailing blank
is appended to the line.

This routine is intended for use in dynamic dimensioning
applications where an very long string is read in segments
and a buffer array of unknown length must be generated
dynamically to hold the information. In such a case, the
line continuation must be performed outside of READIN as
part of the dimensioning process.

READIN

Subroutine Documentation

Entry Point: REPMSG

REPMSG

May 17, 1983

Module Name:

Purpose :

To print a HELP explanation message for CMDSCN and KEYSCN.

Location: HSRI : LI BRARY

Source Language: FORTRAN

Callinq Sequence: CALL REPMSG

Subroutines Used: SPRINT

Logical 1/0 Units:

SPRINT - Message output

REPMSG

May 1 7 , 1983

REPMSG

Subroutine Documentation

Subroutine Documentation May 17, 1983

Entry Point: SHFTST

Module Name: SHFTST

Purpose :

To shift portions of a string to the right or to the left.

Locat ion : HSRI :LIBRARY

Source Languaqe: FORTRAN

Callinq Sequence:

CALL SHFTST(STRING,LENGTH,MAXLEN,START,SHIFT,&RC~)

Parameters:

STRING The LOGICAL*l array in which the character shift
is to be performed.

LENGTH The INTEGER*4 length of the character string in
array STRING.

MAXLEN The INTEGER*4 length of the array STRING.

START The INTEGER*4 location where the shift is to
start.

SHIFT The INTEGER*4 number of characters to shift.
SHIFT < 0 - Shift left
SHIFT = 0 - No shift
SHIFT > 0 - Shift right

Return Code(s):

&RC4 - The requested shift would would put part of thee
string outside of the boundaries of STRING.

Subroutines Used: SETC

Description:

The substring beginning at START and ending at LENGTH is
shifted right or left by the number of characters indicate?
in SHIFT. I f the shift is made to the left (i.e., SHIFT <
0) then existing characters in STRING are written over. If
the shift is made to the right (i.e,, SHIFT > 0) then the
portion of the array that is vacated is filled with blanks.

SHFTST

May 17, 1983 Subroutine Documentation

The call SHFTST(STRING,22,80,11,-5,&900) would change the
string

This is a test string.
into

This test string.

SHFTST

Subroutine Documentation May 17, 1983

Entry point: SLI ST

Module Name: SLI ST

Purpose:

To decode a character string into elements using the comma
as a delimiter.

Location: HSRI : LI BRARY

Source Languaqe: FORTRAN

Callinq Sequence:

CALL SLIST(STRING,START,LENGTH,NUMBER,ARRAY,MAX,&RC~)

Parameters:

STRING The LOGICALaI character string to be decoded.

START The INTEGERs4 location in STRING where decoding is
to begin.

LENGTH The INTEGER*4 length of the string to decode.

NUMBER The INTEGERr4 number of elements found in STRING.

ARRAY An INTEGERa4 array of dimensions (2,MAX) where:
ARRAY(~,J) = The location in STRING where

element number J starts.
ARRAY(~,J) = The length of element number J.

MAX The INTEGERa4 maximum number of elements that may
be specified in STRING.

Return Code(s1:

&RC4 - The number of parameters specified is greater than
MAX.

Subroutines Used: FIND€

The array STRING is scanned from START to STARTtLENGTH-1 for
the occurrence of a comma. If the length of the element
found is zero (i.e., two sequential commas) then the element
is treated as valid, but ARRAY(~,J) and ARRAY(~,J) are set
to ZERO, This permits the entry o'f default element
specifications. Scanning continues until the end of the

135' SLI ST

May 17, 1983 Subroutine Documentation

string is reached, or until too many elements have been
specified. The string need not terminate with a comma to
delimit the last element.

SLI ST

Subroutine Documentation May 17, 1983

Entry Point: SPLCHK

Module Name: SPLCHK

Purpose :

To provide the spelling check and error replacement function
for the KEYSCN and CMDSCN subroutines.

Location: HSRI : LI BRARY

Source Languaqe: FORTRAN

Calling Sequence:

Parameters:

TSTNAM The LOGICALsl array containing the test word.

TSTLEN The INTEGER*4 length of the test word.

NWRDS The INTEGERr4 number of words in WORD.

WORD The LOGICAL*1 array containing the 8-character
left-justified valid names.

WRDPAR The INTEGER*2 array of word lengths of dimension
(~,NWRDS) used in CMDSCN and KEYSCN,

WRDNUM The INTEGERs4 number of the word in WORD that
TSTNAM is a misspelling of,

Return Code(s):

&RC4 - The t e s t word is not a misspelling of any valid word
contained in WORD.

&RC8 - The error replacement request on GUSRIN was
CANCELled.

Subroutines Used:

EQUC, FINDST, GUINFO, GUSRIN, IGC, LCOMC, LSTPAR,

MOVEC, PRNTCK, SERCOM, SPELCK, SPRINT

SPLCHK

May 17, 1983 Subroutine Documentation

Loqical I / O Units:

SERCOM - Error messages

SPRINT - User prompts.

The routine uses a LOGICAL*I 140-character COMMON area named
/BUF/ for a work array.

Description:

The test word supplied in TSTNAM is checked against the list
of valid words in WORD for a possible misspelling using the
MTS spelling check routine SPELCK. If a candidate is found,
the user is prompted for confirmation of the correct value.

SPLCHK

Subroutine Documentation May 17, 1983

Entry Point:

Module Name:

TI MDAT

TIMDAT

Purpose :

To generate and print a line containing the current date and
time.

Location: HSRI :LIBRARY

Source Language: FORTRAN

Calling Sequence: CALL TIMDAT(UNIT,&RC~)

Parameters:

UNIT The INTEGER*4 logical 1/0 unit number.

Return Code(s):

&RC4 - Error return from EWRITE

Subroutines Used: EWRITE, MOVEC, SPRINT, TIME

Logical I/O Units:

SPRINT - Time/date string for UNIT = - 1

Restrictions:

The subroutine uses a LOGICAL*l 140-byte common area named
/BuF/ to hold the TIME/DATE string.

Description:

Time is called to generate the required output string. If
UNIT = - 1 , then the string is written out on SPRINT, If
UNIT = 1-19 then the string is written on the specified unit
using EWRITE. For all other values of UNIT, a return is
made with the string left in COMMON /BUF/.

Examole (s) :

Date: kpr 19, 1983 at 1 4 : 5 3 : 0 6

TI MDAT

May 1 7 , 1983

TIMDAT

Subroutine Documentation

Subroutine Documentation May 17, 1983

Entry Point:

Module Name:

VLCHEK

VLCHEK

Purpose :

To check a list of variable numbers for accuracy in terms of
syntax errors as well as valid variable numbers.

Location: HSRI : LIBRARY

Source Lanquaqe: FORTRAN

Callinq Sequence:

CALL VLCHEK(STRING,FIRST,LAST,NUMBER,ERRCOL,MODE,&RC~)

Parameters:

STRING TheLOGICAL*lcharacter stringcontainingthe
variable list to be checked.

FIRST The INTEGER*4 location in STRING where the list
begins.

LAST The INTEGER*4 location in STRING where the list
ends.

NUMBER The INTEGER*4 number of distinct values in the
list.

ERRCOL The INTEGER*$ location of a syntax error, Valid
only when RC4 is taken.

MODE An INTEGER*4 switch to control variable checking.
0 - Check if variable exists
1 - Check if variable exists and

is numeric.

Return Code(s):

&RC4 - Syntax error
Number is too large for INTEGER*4 representatior,
Too many values specified (NUMBER > 3 2 7 6 7)
Non-numeric character in number.

Subroutines Used:

BTD, CHKVAR, DTB, EQUC, FINDC, IGC, MOVEC, SERCOM

May 17, 1983 Subroutine Documentation

Loqical 1/0 Units:

SERCOM - Error messages

This routine uses a 140-byte LOGICAL*1 COMMON area named
/BuF/ and relies on an on-line dictionary for variable
checking. These restrictions make it of use only in the
ADAAS program.

Description:

The list is syntax checked and each number is converted into
binary. The on-line dictionary is accessed to make sure each
variable is valid for the data set and the total number of
variables in the list is returned.

Example :

The routine expects a list of numbers consisting of single
values and ranges separated by commas. Ranges are indicated
by two values joined with a dash, For example:

VLCHEK

Subroutine Documentation May 17, 1983

Entry Point: VLI ST

Module Name: VLI ST

Purpose :

To convert a list of numbers in character format into an
array of binary values corresponding to elements in the
list.

Location: HSRI :LIBRARY

Source Language: FORTRAN

Calling Sequence:

CALL VLIST(STRING,FIRST,LAST,NUMBER,NUMLST,MAXNUM,
ERRCOL,&RC4)

Parameters:

STRING The LOGICAL*1 character string containing the
variable list to be converted.

FIRST The INTEGER*4 location in STRING where the list
begins.

LAST The INTEGERx4 location in STRING where the list
ends.

NUMBER The INTEGER*4 number of distinct values in the
list.

NUMLST The INTEGER*4 array of dimension MAXNUM where the
binary values will be stored.

MAXNUM The INTEGER*4 maximum number of values permitted.

ERRCOL The INTEGER*4 location of a syntax error. Valid
only when RC4 is taken.

Return Code(s):

&RC4 - Syntax error
Number is too large for INTEGER*Q representation.
Too many values specified ! NUMBER > MAXNUM)
Non-numeric character in number.

Subroutines Used:

BTD, DTB, EQUC, FINDC, IGC, MOVEC, SERCOM

VLI ST

May 1 7 , 1 9 8 3 Subroutine Documentation

Loqical 1/0 Units:

SERCOM - Error messages

Description:

The list is syntax checked and each number is converted into
binary. The routine is used to convert input lists into
binary for use by. analysis programs.

Example :

The routine expects a list of numbers consisting of single
values and ranges separated by commas. Ranges are indicated
by two values joined with a dash. For example:

VLI ST

Subroutine Documentation May 17, 1983

Entry Point:

Module Name:

VRANGE

VRANGE

Purpose :

To decode a value and associated range of the form:
VALUE:MIN-MAX

Location: HSR1:LIBRARY

Source Languaqe: FORTRAN

Callinq Sequence:

CALL VRANGE(STRING,LENGTH,VALUE,MIN,MAX,&RC~)

Parameters:

STRING A Logical*l array containing the string to be
decoded.

LENGTH The Integer*4 length of the string.

VALUE The Integer*4 value for VALUE. VALUE is set to
zero if the error return is taken, or if the
string specifies the value "NONE"

MI N The Integers4 value for MIN

MAX The Integer*4 value for MAX

Return Code(s):

&RC4 Syntax error
Non-numeric character
Number too large for Integer*4 representation
Minimum value greater than maximum

Subroutines Used: DTB, EQUC, FINDC, IGC, LCOMC, SERCOM

Logical 1/0 Units:

SERCOM Error messages

VRANGE

May 17, 1983 Subroutine Documentation

Description:

Five possible input configurations are possible. They are
decoded as follows:

STRING V A L U E M I N - MAX -
I1xx :yy-zzTI XX YY zz
'Ixx : yy" XX YY Y Y
Itxx" XX * *
"NONE" 0 * *
"none" 0 * *

The asterisk indicates that the values of M I N and MAX are
not changed by V R A N G E for these input strings.

I f an error occurs, an error message and the column location
of the error is printed on SERCOM. The value of V A R N U M is
set to zero, but the values of MIN and MAX may have been
changed.

VRANGE

