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1. INTRODUCTION 

Let R be a commutative ring and I an ideal of R. In this paper, we consider 
the question of when the symmetric algebra of I is a domain, and hence iso- 
morphic to the Rees algebra of I. (see Section 2 for definitions.) Several authors 
have studied this question (for example, [I, 4, 9, lo], or [14]). In the cases in 
which the symmetric algebra is a domain, other questions have been asked: 
Is it Cohen-Macaulay [l] ? Is it factorial [15] ? Is it integrally closed [1, 121 ? 
In this paper we prove the symmetric algebra of I is a domain whenever R is 
a domain and I is generated by a d-sequence (see [6] or [7]). A sequence of 
elements xi ,..., x, in R is said to be a d-sequence if (i) xi 4 (x1 ,..., xiwl , 
xi+r ,..., x,) for i between 1 and n and (ii) if {il ,..., ii} is a subset (possibly (6) of 

u,..., TZ} and K, rn~ { l,..., n}\(il ,..., ii} then((xil ,..., xi,) : xlcx,) = ((xi, ,..., xi,) : xlc). 
Many examples were given in [7] of d-sequences. We list some examples here. 

(1) Any R-sequence which can be permuted and remain an R-sequence 
is a d-sequence. 

(2) If X = (xij) is an n x n + 1 matrix of indeterminates, then the 
maximal minors of X form a d-sequence in the ring of polynomials. 

(3) If X = (xij) is an r x s matrix of indeterminates over a field K and 1 
is the ideal in R = k[x,J generated by all the t x t minors of X (t < Y < s), 
then the images of xii ,..., xls in the ring R/I form a d-sequence. 

(4) If A is a local Buchsbaum ring [17], then any system of parameters 
forms a d-sequence. 

(5) Let A be a ring satisfying Serre’s condition Sn+l and p a height 7c 

* Junior Fellow, Michigan Society of Fellows. 

268 
OOZl-8693/80/020268&08$02.00/0 
Copyright 0 1980 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



REES ALGEBRA OF AN IDEAL 269 

prime in A such that A, is regular and p is generated by n + 1 elements. 
(Hence p is an almost complete intersection.) Then p is generated by a 
d-sequence. 

(6) Let A, m be a regular local ring and p a Gorenstein prime. If xi ,..., x/, 
is an A-sequence such thatpA, = (xi ,..., SC~) A,, then the ideal ((xi ,..., xk) : p) 
is generated by a d-sequence. 

(7) If 

x = 

i 

0 x12 42 x14 x15 
-42 0 x23 x24 x25 
-x1, -x2, 0 x2, x3, 
-x,, -x2, -x3, 0 Y 1 45 
-x1:, -x2, -x3, -x4, 0 i 

and p, ,..., p, are the Pffafians of order 4 [2], then p, ,. .., p, form a d-sequence. 

(8) Any ideal in an integrally closed domain minimally generated by two 
elements can be generated minimally by a d-sequence. 

(9) If P two , X1 , X, , X,] is the prime defining the cubic given 
parameterically (h3, h2p, Xp2, p3) then p is generated by a d-sequence, namely, 
the 2 x 2 minors of ($; 2 $, 0). On the other hand the defining ideal of the quartic 
4 C k[X,, , X, , X2 , Xa] given parametrically by (X4, X3p, Xp3, p4) is not generated 
by a d-sequence; its defining ideal is generated (not minimally) by the 2 x 2 
minors of 

( 
x1 x3 x22 x0x2 

1 x0 x2 x,x, x12 . 

( 10) The prime p Z k[X, Y, Z] determined by any curve given parametri- 
cally by k[tfil, tnz, tn3] is generated by a d-sequence. It is known this ideal is 
generated by three elements [5]. 

(11) If R is a two-dimensional local domain which is unmixed then there 
is an n such that for every system of parameters x, -V of R, {xn, y”} is a 
d-sequence. 

In [7], the basic properties of d-sequences were studied, among them the fact 
that any d-sequence in a local ring is analytically independent. The purpose 
of this note is to prove: 

THEOREM 3.1. Let R be a commutative Noetherian ring and xl ,..., x, a 
d-sequence in R. Set I = (x1 ,..., x,). Then the map CJ~ dejined in Section 2 

4: S(I) -+ R(I) 

is an isomorphism. 
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2. GENERALITIES 

Let I = (ur ,..., a,) be an ideal in a commutative ring A with unit. The map 
Alz -+ I given by (b, ,..., b,) --+ Ci=, bzcli induces an A-algebra epimorphism 
cc A[X, ,..., X,] -+ S(I), the symmetric algebra of I. The kernel of CY, which we 
will henceforth denote by 4 is generated by all linear forms 

such that 

f b,ai = 0. 
i=l 

The Rees algebra R(I) ofIis the subring A[a,T,..., a,T] C A[T] and we obtain 
a map 

p: A[X, ,..., X,] + R(I) by Xi+azT. 

This map has a kernel which is generated by all forms F(X1 ,..., X,) such that 

F(al ,..., a,) = 0. In particular, we may factor p through S(I) and obtain the 
diagram 

A[X, ,..., X,J --% R(I) 

4 / 

S(I) 

4 is onto. If A is a domain, then R(I) is clearly also a domain. The following 
proposition is proved in [9]. 

PROPOSITION. Let A be a domain and I an ideal of A. The following conditions 
are equivalent: 

(i) S(I) is a domain; 

(ii) S(I) is without torsion; 

(iii) C$ is injective (and hence an isomorphism). 

If 1 is generated by an A-sequence, then the isomorphism S(I) E R(1) has 
long been known. If p is a homogeneous prime in k[X, ,..., X,] then S(p) 
a domain implies [9, lo] that p is generated by analytically independent elements. 
In addition, if I = (al ,..., a,) and S(I) is a domain [lo] then a, ,..., a, must be 
a relative regular sequence in the sense of Fiorentini [4], i.e., ((al ,..., a,-, , 
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a Ai-1 ,-..9 a,) : ai) n (a, ,..., a,) = (a, ,..., u,-~ , CZ,+~ ,..., a,). It was shown in [7j 
that any d-sequence is a relative regular sequence. 

Finally we list two propositions of [7] which will be used in the sequel. 

PROPOSITION 2.1. Letx 1 ,..., x, be a d-sequence. Then (0 : x1) n (x1 ,..., x,) = 0. 

PROPOSITION 2.2. Suppose I is an ideal in a ring R, and .x1 ,..., x, form a 
d-sequence mod&o I. Then 

I n (x1 ,..., ~,)m C (x1 ,..., ~,)l’l~lI 

3. PROOF OF THEOREM 3.1 

The proof of Theorem 3.1 requires a result concerning the powers of an ideal 
generated by a d-sequence which generalizes Proposition 2.2 above. 

PROPOSITION 3.1. If I is an ideal in A and the images of xl ,..., x, are 
a d-sequence in A/I, then I n (x1 ,..., xn)(xl ,..., x~)~ C (x1 ,..., x,)(x1 ,..., x#-l I 
if 0 < k < n and m > 1. Proposition 2.2 asserts I n (x1 ,..., x,Jm CI(x, ,..., x,$-l; 
the content heve is that the left side remains linear in x,, +, ,..., w,‘ . 

Proof. We induct on n - k. If n - k = 0 then the quoted Proposition 2.2 
of [7] shows the veracity of the statement. Suppose the proposition has been 
demonstrated for all m whenever n - k - 1 < t. We wish to prove the proposi- 
tion for every m and n - k - 1 = t. 

Set x = x1 . By induction we may assume 

(4 X> n (x2 ,... , x,)(x2 ,..., xk)m c (x2 ,..., x,)(~2 ,..., Xk)m-l (I, x) 

for all m > 1. 
Let JfL = Ax”+l + xm(xz ,..., x,) + xfn-l(xB ,..., xlc)(x2 ,..., x,) + ... + 

X”“+l--u C 212 )...) .xky--l(xB ,...) x,). Then we claim J, n I CI(x, ,..., .x~)+~ x 
*~~+l-u + Ju-l n I. Here 1 < u < m + 1. For u = m + 1, Ju = 

g: i’;.c.!.“, xkp(x2 ,..., x,). Hence if r E Jm and s E (x, ,... x )m(x2 x ) 
such that Y + s E 1, then as Jm C (I, x) we see s E (xP ,..., x,)~(x,‘,..!?, xn) A’i>, i) 
which by the induction is contained in (xZ ,..., ~~)‘~-i(xa ,..., x,)(1, x) C J,,, + 
1(x, )..., xk)m--1(X2 )...) x,). Hence, r + s E Jnz n I -t 1(x, ,..., .GJ~-~(x~ ,..., xn). 
Assume 1 < u < m + 1, and write Ju = Juel + .x”~-~-~(x~ ,..., x$-l x 

(x2 ,..., .x,). Suppose y E JuPl , 2 E x”+~-~(x~ ,..., xJ~-~(x~ ,..., x,) are such that 
y + z E I. We may write y = x~+~-~w and .a = x~+~-uv where 

v E (x2 )...) x&-1(x2 ,...) Xn). 
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Then x”~-+-~(zJ + xw) EZ and 
detirmion of a d-sequence. 

h ence x(v + xw) EZ since (Z : .v) := (I : 3) by 

Thus v -t xw E (I : x) n (x, x2 ,..., x, , Z) = Z by Proposition 2.1. This 
implies 23 E (x2 ,..., ~,,.)U-l(xz ,..., x”,) n (Z, z). Thus, by the induction, 

z == p+1-uyj g x”i2-u 
( 

x 
2 ,..., xk)“-2(x2 ,..., X,L) 

+ Z(x, ,..., xky(x2 )..., x,) xm+1-u E Jzlml 

+ Z(x, )..., xg)“-2(x2 )..., x,) x”+l-u. 

Then Y + a~ JU--l n Z + Z(X, ,..., xk)u-a(x2 ,..., x,) xni+l-u as required. Consider 
J1 = Ax"+~ + xrn(xZ ,..., x,). Then if rxm+r + sxmJ1 n I with s E (xa ,..., x,), 
then xm(s + rx) E Z implies as above that s + TX E Z and hence s 6 (Z, x); thus 
xms E Ix” + (xm+l) and r.xnl+l + sxln E Ax”+l n Z + Ix” C Ix”” by Proposition 
2.2. 

Now Jm+l = (x, x2 ,..., x,)(x, x2 ,..., x~)~. Hence Jm+l n I = (xl , x2 ,..., xn) x 

(Xl , x2 ,..., xkyn n Z C JwL n I t- I(x, ,..., xkp-l(x2 ,..., xn) C Jn,+l n I + 

Z(x, ,..., x~)~-~(x~ ,..., XJ + Z(x, ,..., xp2(x2 ,..., X,)X _C ... C Jl n I + 

1(x, ,..., XJ+-1(X2 ,...) x,)x + ... + Z(x2 )...) xn) x-1 c XMZ + Z(x, ,..., xliy--l x 

(x2.2 ,..., x,) + ... + Z(x, ,..., x,) x”-l C Z(x, x2 ,..., x,)(x, x2 ,..., .~)~-i which 
proves the proposition. 

THEOREM 3.1. Suppose Z = (zl ,..., z,) is generated by a d-sequence. Then 
the map 4: S(Z) -+ R(Z) is an isomorphism. 

Proof. We need to show if H(X, ,..., X,) is a homogeneous polynomial such 
that H(z, ,..., z,) = 0, then H(X, ,..., X,) E q = ker(ol) where 

a: A[X, ,..., X,] -+ S(Z) + 0 

is defined as in Section 2. 
First we show this if H(X, ,..., X,) is linear in every -Xi ,..., S, . Let H. 

have degree d. If only one monomial appears in H then H(Xl ,..., X,) = 
aX ... Xi,. But then as H(z, ,..., a,) = ar, ... zld = 0 the definition of a 
d-s:quence shows a E (0 : zzl ... .q,) = (0 : zI,)‘so azil = 0. Let 

F(Xl ,**-, X,) = aXi, . 

ThenF(z, ,..., a,) = azil =0soF~q.ButH=X~~~~~X,~FsoH~q. 
Now lexicographically order the monomials appearing in H by 

if and only if i, = j, , idel = jdpl ,..., ik+l = jk+l , i, < jlc for some 1 < k < d, 
and induct on the greatest monomial appearing in H. Let aXzl ... Xz, be the 
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maximal monomial appearing in H(XI ,..., Xn) under this order. Put J = (the 
ideal generated by zlc for k # il . . . i, , k < id). 

Now H(z, ,..., z,) = 0 shows az, ... zld E J as every other monomial has 
at least one zli which appears in J. The’n as z,~ ... zzd form a d-sequence modulo J, 
we see 

a E (J : ztl ... ZZd) = (J : Xi,) 

and so azla E J. Hence there is an equation azid = x:lc b,z, where zlr E J. Then 
the polynomial F(Xr . . . X,) = aAYzd - C6 b,X, is in 4. Hence Xi x 1 ... -Y? d-l 
FE q and so it is enough to show 

H - Xtl ... Xi,-, FEN. 

But H - Xj, ... Xid-,F only has monomials which are strictly less that Xi1 ... Xld . 
The induction now shows that H - X. 21 ... Xi,-,F E q which shows the theorem 
if H(Xl ,..., -Y,J is linear in all variables. 

We proceed to “linearize” H, induct on the degree of H to show HE q. Now 
suppose dep H == d and H(z, ,..., z,J = 0, with H linear in X, ,..., S,,, . 
Write H(Xl ,..., XT,) = XiF(Xl ,..., X,) + G(X, ,..., X,-, , Xi+, ,..., X,) where 
F and G are linear in X, ,..., &+r , and degree F = d - 1, degree G = d. 
Since H(z, ,..., ZJ = 0 we see that w == G(z, ,..., z,-r , zILl ,..., 2,) E (x1) and 
SO w E (zJ n (x1 ,..., fftpl , xitl ,..., z,)(zr ,..., ~,-#-l. By Proposition 3.1 this is 
contained in 

4% ,...) xi-1 , zj+1 I..., Z,)(Zl ,..., .z-p. 

Hence there is a polynomial F’(X, ,..., X-, , Xi+l ,..., X,), linear in X, ,..., X, +I 
so that 

w = z,F’& ,..., z,pl , zitl ,..., z,). 

Now this shows that 

ziF(.zl ,..., z,,) + z,F’(al ,..., 0,-l , q+1 9.S’) .%) = 0 

so that (F + F’)(z, ,..., a,) is in (0 : z,). By Proposition 2.1 of [7], we see this 
implies (F {- F’)(x, ,..., z,) = 0. Now deg(F + F’) < d so the induction shows 
F + F’ E q; hence X,F + X,F’ E q and it is enough to show G - XiFf == 
(XLF + G) ~ (X<F + X,F’) E q. But G is a polynomial in XI ,..., X-r, 
Xi+r ,..., -Y, linear in X, ,..., X,+l and so G - X,F’ is linear in X, ,..., Xi+l , -YZ . 
Continuing, we may clearly completely linearize and apply the above work to 
finish the proof. 
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4. APPLICATIONS 

Theorem 3.1 can be used effectively to compute the graded ring of an ideal 
generated by a d-sequence. We illustrate this in the case of Example I of the 
Introduction; where I is the ideal generated by the maximal minors of a generic 
n Y n + 1 matrix -X. 

First, we recall some isomorphisms. If I = (ai ,..., a,) then the Rees algebra 
R(Z) is the subring A[a,T,..., a,T] C A[T]. Adjoin T-l to this ring; set B = 
-4[a,T,..., a,T, T-I]. Then it is easy to see B/BT-l LX gr,(d) == -4/I @ 
P/P @ “’ . 

Now let il be a domain, a, b E A. Consider the ring B = A[u/b]. It is imme- 
diate to check that if the kernel of the map A[T] --f A[a/b] is generated by linear 
polynomials then B/&z/b N A/(a : b). If (a : b2) = (a : b) then this is indeed 
the case (see Ratliff [I 11). 

Now consider the example above. Let X = (xzi) be a n x n + 1 matrix of 
indeterminates. It is well known that the linear relations on the maximal minors 

4 ,‘.., A,+1 of X are generated by the relations 

la-t-1 

C xi, Aj = 0. 
J=l 

Thus if I = (A, ,..., An+l), S(I) = A[T, ,..., Tn+l]/J where J is the ideal 
generated by (Cj”=:’ x,,T,)~!, and A = k[x,,]. 

By Theorem 3.1, S(I) ci R(1). R(1) = A[A,T,..., A,+,T] C .-2[T] and 
T-1 === A,/A,T. Now the map g, from S(I) + R(I) sends T, --t A,T. Hence 
T-1 == A,/A,T = Al/T, . Set B = S(I)[A,/T,]: to find B/B(A,/T,) it is enough 
to find (A, : Tl). But T,A, = A,T, follows from the relations C,“l’,’ x,?T, = 0 
in S(1). As (A, : T12) = (A, : T,), gr,(A) ‘v k[xtj, Tl ,..., T,,,]/(~~~~ x,)T, , 
A, ,..., A,,,). Now in [fl the following result is shown. 

THEOREM. Let x z (x8,) be an P x s matrix of indeterminates and E7 := (J;,~) 
an s x t matrix of indeterminates. Let k be a$eld, and let J be the ideal in k[s,, , yj,<] 
generated b-y the entries of the product matrix XI’, all a + 1 x a $- I minors of X 

and all b + 1 Y b + 1 minors of Y. If a + b ,( s, then J is prime rind k[cr,j , 
y2& J is Cohen-Macaulay and integrally closed. 

We apply this result with X = (Q) an nx(n + 1) matrix and 

Tl 
IT= i 

t 1 T 71 +1 

a (n + 1) Y 1 matrix. The ideal J defining the graded algebra of 1 is given by 
the entries of 9Y and all n x n minors of X. Since (n - 1) + 1 -< n + 1, 
we can conclude gr,(>q) is Cohen-Macaulay and integrally closed. 
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In characteristic zero, this result has been shown by Hochster (unpublished) by 
representing gr,(R) as a ring of invariants of a reductive algebraic group. 
Recently, DeConcini, Eisenbud, and Procesi have derived this result without 
restriction on the characteristic [3]. W e also note that Theorem 3.1 for the 
d-sequence of maximal minors follows from the above theorem, as the ideal J 
generated by the entries of 

is prime by the quoted result, and hence S(I) N R(I). 

REFERENCES 

1. J. BARSHAY, Graded algebras of powers of ideals generated by A-sequences, J. 
Algebra 25 (1973), 9&99. 

2. D. BUCHSBAUM AND D. EISENBUD, Algebra structures for finite free resolutions and 
some structure theorems for ideals of codimension 3, Amer. J. Math. 99 (1977), 
447-485. 

3. DECONCINI, D. EISENBUD, AND C. PROCESI, Young diagrams and determinantal 
varieties, to appear. 

4. M. FIORENTINI, On relative regular sequences, j. Algebra 18 (1971), 384-389. 
5. J. HERZOG, A note on complete intersections, preprint. 
6. C. HUNEKE, Thesis, Yale University, 1978. 
7. C. HUNEKE, The theory of d-sequences and powers of ideals, to appear. 
8. H. MATSUMURA, “Commutative Algebra,” Benjamin, New York, 1970. 
9. A. MICALI, Sur les algebras symetrique et de Rees d’un ideal, Ann. Itut. Fourier. 

10. A. MICALI, P. SALMON, AND P. SAMUEL, Integitt et factorialitt des algebras syme- 
triques, Atas do IV Coloquio Brasileiro le Matematica, Sao Paulo (1965). 

11. L. RATLIFF, Condition for ker (R [X] -R [c!b]) to have a linear base, Proc. Amev. 
Math. sot. 39 (1973), 509-514. 

12. P. RIBENBOIM, Anneaux de Rees mtegralement clos, Instituo de Matemhtica Pura 
e Aplicado do Conselho National de Pesquisas, Rio de Janeiro, 1959. 

13. P. SALMON, Sulle graduate relative ad un ideale, Symposia Mathematicn 8, 269-293. 
14. P. SALMON, “Sulle algebre simmetricle e di Rees di un ideale,” Edizioni Scientifiche, 

Genova, 1964. 
15. P. SAMUEL, Anneaux grad&s factoriels et modules reflexifs, Bull. Sot. Math. France 

(1964). 
16. P.‘SAMUEL, Modules rtflexifs et anneaux facoriels, in “SCminare Dubreil 1963-1964,” 

Expose du 27 Janvier (1964). 
17. J. STR~~CKRAD AND W. VOGEL, Towards a theory of Buchsbaum Singularities. d&zer. 

J. Math. 100 (I 978), 727-746. 


