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1. INTRODUCTION 

Motivated by the paper of Feit et al. [8] on centralizer nilpotent (abbreviated 
cn.) groups, Benkart and Isaacs [l] have studied c.n. Lie algebras 22’ over 
an algebraically closed field of arbitrary characteristic p. They show that 
g/nil 9 is simple where nil dp is the nilpotent radical of 9, and that Z/nil 2’ 
is isomorphic to Y (which is three dimensional for all characteristics and 
isomorphic to 998 for p # 2), YSSF/FI (p = 3) or W%F (the p-dimensional 
Witt algebra over F, p > 3). 

In the present paper, we use Cartan decomposition methods to study Engel 
subazgebra triunguluble (abbreviated E.t.) Lie algebras 2, that is, Lie algebras P 
all of whose proper Engel subalgebras d = Zs(ad X) are triangulable when 
represented as linear Lie algebras on 2’ by way of the adjoint representation. 
By the results of Benkart and Isaacs, every c.n. Lie algebra is E.t. In fact, 
the E.t. Lie algebras were conceived as generalizations of the c.n. Lie algebras. 

We prove in Section 5 that every nonsolvable E.t. Lie algebra 9 can be expressed 
us 2’ = nil 2 + 9-1 where X = Xm + nil ~9 is any Curtan subalgebra of 9’ 
and nil S is ad-nilpotent on 9 (see 2.1) and of codimension 1 in A?. Furthermore, 
the core Core 9 = P-/nil dpa of 9 is a simple Lie algebra, nil Pm being the 
nil radical of JP and also being ad-&potent on 9’. The core Core 9’ of an E.t. 
Lie algebra is then a simple E.t. Lie algebra. 

In Section 6, we prove that every simple E.t. Lie algebra with characteristic 
not 2, 3, 5, or 7 is isomorphic to 9’S$$ OY WDF, assuming conjecture 6.5. 

The structural methods (Section 5) are of a different character than those 
of Benkart and Isaacs [l]. The classification methods (Section 6) follow a related 
approach, with refinements which are needed to pass from a context with 
Cartan subalgebras Fx to a context with Cartan subalgebras Fx + JV where 
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M is ad-nilpotent on 9. The key classification device is the use of speciaE 
modules of P?Q’ and their integrability-introduced and studied in Benkart 
and Isaacs [l]. This is used to show that if the simple (proper) subquotients 
of 9 are only .4p$p,F and WIpF, then 9 is toral rank 1, at which point the 
classification theorem of Wilson [15] is used inductively to show that simple 
Et. Lie algebras of characteristic not 2, 3, 5, 7 are .Y’LZ?TF or WDF, assuming 
conjecture 6.5. 

2. TRIANGULABLE AND SEMITRIANGULABLE SUBALGEBRAS 

An element .X of 9 is nilpotent on 9’ if ads x is a nilpotent linear transforma- 
tion of 9. A subalgebra/ideal Jlr of 9’ is a niZ subalgebra/ideal of 9 if every 
element of. I’ is nilpotent on 9. A subalgebra/ideal 99 of L?’ is trianguluble 
on 9 if adY .J = (adz x 1 x E %!I] is a Lie algebra of linear transformations 
of 9 which is triangulable over the algebraic closure of F. A triunguZabZe 
subalgebra of 9 is a subalgebra of 9 which is triangulable on 9. 

Note that the ideal nil 9’ introduced in the following proposition is the 
unique maximal nilpotent ideal of 9, whereas nil 99 need not be the unique 
maximal nilpotent ideal of 8. (Elements of g nilpotent on 99 need not be 
nilpotent on -ip.) Thus, it must be emphasized that nil @ is defined relative to 9. 

2.1. PROPOSITION. For any subalgebra g of 9, there is a unique maximal 
ideal nil .% of .Y consisting of nilpotent elements of 9. 

Proof. It suffices to show that if 9 and $ are ideals of 99 which are nil 9, 
then .F + $ is nil on 9. But this follows from Jacobson [lo], since ad 9 u 
ad ,y is weakly closed. [ 

2.2. THEOREM. A subalgebra d of 9 is a triangulable subalgebra of lp zf 
and only if .W) is a nil subalgebra of 9 if and only if @!/nil 99 is Abelian. 

Proof. This follows as in Sehgman [14] or Schue [12] or Winter [22] since 
ad .%P) := (ad .g)u) is a nil ideal of ad .@ on 9’. l 

It is convenient to use the above theorem to motivate the following defini- 
tion. # 

2.3. DEFINITIOIX. Letting ?P = n .# (z’ = 1, 2 ,... ), we say that a sub- 
algebra 9 of .Y is semitrianguluble (abbreviated s.t.) on 9 if ~8~ is a nil sub- 
algebra of 9’. We say that 9 is semitriangulable if the ideal Zm of 9 is nilpotent. 

Note that every semitriangulable subalgebra G? of 9 is solvable. A nilpotent 
subalgebra of Y is always semitriangulable on 9, but need not be triangulable 
on P. 
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Note also that, whereas the irreducible nil-preserving representations of a 
triangulable subalgebra L@ of 3 are one dimensional, the irreducible nil- 
preserving representations of a semitriangulable subalgebra 9 are univalued 
in the sense that every representing linear transformation has only one eigen- 
value. Here, a representation of .G@ is nil-preserving if for each x E J which 
is nilpotent on 2, the representing transformation is also nilpotent. 

The following two propositions are straightforward. 

2.4. PROPOSITION. .?8 is semitriangulable on 9 if and only if .#/nil J is 

nilpotent. 

2.5. PROPOSITION. If .X is a triangulable~semitriangulable subalgebra of 2 
and 2 normalizes a nil subalgebra Jlr of 9, then S? + N is triangulablejsemi- 
triangulable on 9. 

2.6. COROLLARY. A semitriangulable subalgebra .GB of 9 is triangulable on A? 
if and only if some Cartan subalgebra X of 29 is triangulable on 9. 

Proof. If X is triangulable on 9, then d = .YF + .GP is triangulable 
on L by the above proposition. 1 

2.7. DEFINITION. Let 3’ be a Cartan subalgebra of A?. Then Z, is the 
ideal 2% = X n .P of .Z. 

The following theorem shows that for any Cartan subalgebra 2 of Y with 
root spaces Ya (CL E R) LP is the ideal CabR [Pa, Xu] + CaGR L$ studied in 
Schue [12] so that, in particular, the ideal CspR [LZfi, Z,] + CaER ge is 
independent of the choice of A?. 

2.8. THEOREM. Let X be a Cartan subalgebra of 9 with root spaces Za 
(a E R). Then 9 = Z + J9, Y = Z& 0 CaoR Z= , and Hz = xarR [2&, E,]. 

Proof. It is clear that 9 = xEsR [ZE, L?+] + xEeR Z& is the subalgebra 
of L generated by CaeR ZE , and it is an ideal since it is normalized by itself 
and by Z. Since [YE’, Zm] = ga for all LY, xaeR Ze is contained in P. Thus, 
3 C L?m. Since F = X + 3, we see that 9 = X + 9 r ; and also that 
P/S is nilpotent. The nilpotency of 3’/$ implies that .Yz C .P. Thus, 
LP = S. It now is apparent that sm = Z n 59 = xatR [TX , Z,]. 1 

2.9. PROPOSITION. Let SF be a Cartan subalgebra of 9 root spaces YU 
(a E R). Then XT is nil on 53 if and only ;f the elements of [9& , LZm] aye nil 
on 9 for all LY. 

Proof. This is a consequence of Jacobson [lo] since xmtR ad[Ya, Za] 
is a weakly closed set. a 
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The next theorem is related to work of Schue [12] on semirestricted Lie 
algebras 9. 

2.10. THEOREM. Let S be a Cartan subalgebra of 2’ with root spaces Za 
(a E Ii). Then 9 is semitriangulable on 9 if and only if the elements of [pfi , ZJ 
and Se are nilpotent on 9 for 01 E R. 

Proof. Zaj is nil if-f the weakly closed set uaeR (ad[TE, E,] u ad 9=) 
consists of nilpotent transformations, by Jacobson [lo]. 1 

2.11. COROLLARY. Let H be a Cartan subalgebra of L with root spaces YN 
(a E R). Then 53 is semitriangulable on 2 if and only if the subalgebras Y(,) = 
S -+ xfLI1 dpE are semitriangulable on 2’for all oi E R. 

2.12. Open question. Can “semitriangulable on L” be replaced by “solvable” 
in 2.11 ? 

The answer to 2.12 is “yes” for 9 of characteristic 0, by Lie’s theorem 
and Corollary 2.11. The answer to 2.12 is “yes” in general if the answer to 
2.12 is “yes” for Lie algebras 2 which are semirestricted with respect to the 
given Cartan subalgebra 2. (See Section 7.) 

2.13. EXAMPLE. Let a vector space Y = X’.. + 9, + ... -+ 6p,-r be a 
direct sum of subspaces X+ , 9; ,..., YD-l where &* is spanned by a vector 
h + 0, ZI is two dimensional with basis x, y1 , and Zz is spanned by a vector 

~+~“,~:,;~y=$~~~;~ P - 1. H ere, we regard the indices i as elements 
9 = (0 ,..., p - I>. Make the span Se of y,, , yr ,..., yD-r 

into an Abelian Lie algebra. Make x’ into the derivation .vyyi = y1+1 , 0 -2 i < 

P - 2, xypel = y,, of G?. Form the split extension Lie algebra B = Fx 4~. .cl = 
9” + ... + gD-, , and note that a is a a-graded Lie algebra since [9), q] C 
Yt+j for i, j. Let h be the derivation of 99 such that h 1~~ is i times the identity 
transformation on 9, . Since 9’ is a graded Lie algebra, h, so defined, is a deriva- 
tion. Finally, let L be the split extension 9 = Fh + 28 = ti* + xi:i 9, = 
X @CrLrr Pi . Then 9 is a Lie algebra of toral rank 1 with respect to the 
Cartan subalgebra &? (see Section 3) ris, = Z0 is nil on 9 and the element 
s E -44 is not nil on Zr . 

The above example shows that there exist Lie algebras of toral rank 1 which 
are solvable and which have a triangulable Cartan subalgebra H, but which are 
not semitriangulable. 

In passing, we note the following theorem. 

2.14. THEOREM. Let 9 be a subalgebra which is maximal such that B is 
semitriangulable on 2’. Let Z be a Cartan subalgebra of d. Then S is a maximal 
nilpotent subalgebra of the normalizer M(B%) = {x E 9’/[x, .@I C SIX] of .2+ 
in %. 
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Proof. Let N(@) 3 2’ 3 Z with 2’ nilpotent. Then .Z’ + gL” is 
semitriangulable, by an earlier proposition, and contains B = X + 9P. 
Thus, &?’ + &P = B = 2 + %P, by the maximality of ,B’. It then follows 
that X” = %. 1 

3. SUBALGEBRAS OF TOFUL RANK 1 AND AN APPLICATION 

We first recall a result of Winter [18] needed for the section. 

3.1. THEOREM. Let 9 be a jnite-dimensional Lie algebra graded by a group 
A and let 2 be a Cartan subalgebra of the identity subalgebra -tip (1 is the identity 
of &‘). Then ?&(ad S) is a Cartan subalgebra of 9 if either ~2 is torsion free 
or if (ad 9’)P C ad 9 and A is a p-group; and Zs(ad &@) is solvable if A is cyclic. 
In particular, if 2YI = {0}, then 9 is nilpotent for A torsion free or for (ad 9)p C 
ad 2’ and A a p-group; and 9 is solvable for A cyclic. 

The above theorem applies to the study of a Lie algebra 9 having a Cartan 
decomposition of the form 9 = .X + CFzrl &, since Yz = Hz + zy!rr ,Ep,i 
is then graded by the cyclic group (E, , +) = (0, i,...,p - 1) of order p, 
%a being the identity subalgebra Zm = (Y’“),=, and (5?p”)j being 5p,, for 
1 <i<p-1. 

We use the above theorem to establish the following theorem, which is 
related to a result of Schue [12]. 

3.2. THEOREM. Let 3 be a Lie algebra of toral rank 1, so that 9 has a Cartan 
decomposition 2’ = &@ f xfl: gUi for some (Y. Then the following conditions 
are equivalent: 

(1) Y, is solvable; 

(2) ~([9&,9Q)=Oforl <i,Cp-I; 

(3) the ideal Y& of S is nil on 9. 

Proof. As in Schue [12], (1) implies (2). For if 9 is solvable and if x E 
[Pai , 9-,,I with a(x) # 0, then x E 9’t2); and x E 9”) implies that x E _I;pck+r) 
for all k (which is impossible, being in contradiction with the solvability of 9) 
since Z& == [gN, , X] C Z(“), -Ep_,, = [ZZY,:, X] C Zfr) imply x E [gti, , -&,] C 
Yck+l). To see that (2) implies (3), simply observe that a(~) = 0 implies that 
ad x is nil on 9, so that uf!rl ad[Zm, , Zai] is a weakly closed set of nilpotent 
linear transformations, so that (3) f 11 o ows from Jacobson [lo]. Finally, (3) 
implies that HZ + z&1 Zti, is solvable, by the preceding theorem, when 
# + &$ + xfirr 9”, = # + xFlrr gl is certainly also solvable. 1 
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Schue’s theorem reads the same as the above theorem, except that 9 is 
assumed to be semirestricted and condition (3) is replaced by the following 
condition (3’): 

(3’) Yfl = CTit [ga, , Z,,] + z2”=;’ Ye, is nilpotent. 

(In our language, Yf is Ta.) In the following example, a semirestricted Lie 
algebra 8 is constructed whose existence shows that Schue’s theorem cannot 
be generalized from toral rank 1 to toral rank 2 (meaning, in Example 3.3, 
that the additive group generated by roots has rank 2). 

3.3. EXAMPLE. Let 9 = X + Cr=;’ gz, 2 = &$ + Z0 be the Lie 
algebra 9 with Cartan subalgebra &‘ of Example 2.13. Let t be the derivation 
t=(ad~)~of~,s~thatty,=y,forO~i~p-l,tzc=O,th=O.Form 
the split extension 9 = Ft + 9, which has Cartan decomposition 8 = 

2 + -5&, + dRl + ***+ZW,-,+ZB where .~?=Ft+%+=FtfFh and 

=%a, = FY, , a,(h) = i, a,(t) = 1 for 0 < i < p - 1; and where sm = Fx, 
,B(h) = 1, ,8(t) = 0. Since aL = ij? + a0 for 0 < i < p - 1, 9 has toral 
rank 2. Furthermore, 8 is solvable and 2 is semirestricted with respect to 2. 
However, the above condition (3’) that “W = Z’= be nilpotent is not satisfied, 
since Yp” contains Zfl = Fx and ad x is not nilpotent on Yip”. 

3.4. Open question. If we drop the condition that 9 be toral rank 1 over Z, 
is it still true that 9 is solvable if flm is nil on 9, X being a specified Cartan 
subalgebra of 9 ? 

The answer to 3.4 is “yes” if the answer to 2.12 is “yes,” by Theorem 3.2. 
In particular, the answer is “yes” in characteristic 0. The answer is also “yes” 
if 9 is s.s.s.t. (see Theorem 3.6 below), as is the case for the Engel subazgebra 
trianguluble Lie algebras studied in Section 5. Finally, we show in Section 7 
that the answer to 3.4 is “yes” for every Lie algebra 9 and triangulable Cartan 
subalgebra 2 if and only if the answer to 3.4 is “yes” for every Lie algebra 9 
which is semirestricted with respect to a given triangulable Cartan subalgebra 
3P of 9. 

3.4. DEFINITION. A Lie algebra 8 is solvable subalgebra trianguluble 
(abbreviated s.s.t.) if every solvable subalgebra of 9 is triangulable on 9’. 
And 2 is solvable subalgebra semitrianguluble (abbreviated s.s.s.t.) if every 
solvable subalgebra of 9 is semitriangulable. (Recall that s.t. abbreviates 
semitriangulable.) 

3.5. THEOREM. Let 2’ be s.s.s.t. and let 2 be a Curtan subalgebra of 2. 
Then 2’ is solvable if and only if Zm is nil on 9’. 

Proof. If 9’ is solvable, it is semitriangulable on 9 (since .Y is s.s.s.t.) 
and gp, is nil on 9, whence X? is nil on 9. Suppose, conversely, that Xm 

481/62/2-r I 
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is nil on 2. Then the subalgebra 2 la) = % + xi”=;’ gai is solvable by 
Theorem 3.2, since .z?$ (that is, Zm as defined relative to 5!Q)) is nil on P’(*), 
for all a: E R. Thus, Y(“) is semitriangulable on 2 (since 9 is s.s.s.t.) for all 
cx E R, whence 2 is semitriangulable by Corollary 2.11. 1 

4. ENGEL SUBALGEBRAS OF A LIE ALGEBRA L 

4.1. DEFINITION. We recall that subalgebras d of 2 of the form G” = 
dP,(ad x) for some x E 9 are called Engel subalgebras of 2, and that an Engel 
subalgebra d of 9 is a Cartan subalgebra of 8 if and only if & is nilpotent. In 
this paper, we say that an element x E Z’ is regular if Zs(ad x) is nilpotent 
(and therefore a Cartan subalgebra of 2). 

The set Zreg regular elements of 55’ contains a Zariski dense open subset 
of 9. (We do not assert that 9 reg is open, with the present notion of regular.) 
It is easily shown that &‘rreg n Prep contains a dense open subset YY of d for 
any Engel subalgebra d = Zs(ad x) of 2. For we can take %‘- = @ n V” 
where V” is the nonempty and therefore dense open set of those y in 6 which, 
like x, have nonsingular adjoint action on P/J?; and @ is any dense open subset 
of &rep . We state these observations for reference as follows. 

4.2. THEOREM. Every Engel subalgebra ~9 of a Lie algebra 9 has a Zariski 
dense open subset which consists of regular elements of 9. 

In passing we note the following consequence of Theorem 4.2. 

4.3. COROLLARY. If 9 has characteristic 0 and d is an Engel subalgebra 
of 9, then every Cartan subalgebra of 8 is a Cartan subalgebra of 9’. 

Proof. The proof is based on strongly nilpotent elements x E 2, that is, 
elements x E 2 which are contained in Zti(ad y) for some y and some nonzero 
root 01. For each such X, adbe x is certainly nilpotent. The group Ad2 d of 
automorphisms of dp generated by {exp ads x/x E G’, x is strongly nilpotent) 
acts transitively on the set of Cartan subalgebras of d by Winter [21, pp. 92-981. 
Since one Cartan subalgebra of G is a Cartan subalgebra of 2 by Theorem 4.2, 
all Cartan subalgebras of d are therefore Cartan subalgebras of 2. 1 

5. E.t. LIE ALGEBRAS AND THEIR STRUCTURE 

5.1. DEFINITION. We say that a Lie algebra L is Engel subalgebra triangulable 
(abbreviated E.t.) if every proper Engel subalgebra 8 of 2 is triangulable 
on 2. Here, G is proper if & G 2. 
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If I is an ideal of an E.t. Lie algebra 2, and if (64,(ad x) + 9)/s is a typical 
proper Engel subalgebra of Z/Y, then 9s(ad x) is a proper Engel subalgebra 
of 9 and therefore is triangulable on 9. Similarly, any proper Engel sub- 
algebra of a subalgebra of an E.t. is certainly triangulable on 9’. We formulate 
these observations as follows. 

5.2. PROPOSITION. If 9 is an Et. Lie algebra, then subalgebras and quotients 
of 5.8 are also. 

Note that Cartan subalgebras of 9, being proper Engel subalgebras of 9, 
are triangulable on 9 for any nonnilpotent E.t. Lie algebra 9. Thus, by 
Theorem 2.6, a nonnilpotent Engel triangulable Lie algebra 9 is triangulable 
if and only if it is semitriangular-which we state as follows. 

5.3. PROPOSITION. If 9 is E.t., then 2 is semitriangulable ;f and only if alp 
is nilpotent or 9 is triangulable. 

Henceforth, we are interested only in nonsemitriangulable Engel subalgebras. 

5.4. THEOREM. Let 2 be E.t. but not s.t. and let X be a Cartan subalgebra 
of 9. Then nil .sF = {x E h 1 ad x is nilpotent on -E”> is an ideal of X of codimension 
1. Thus, S is a triangulable subalgebra of 2 of the form .%? = kx + N where 
JV = nil J? is a nil subalgebra of 9 normalized by x. 

Proof. Since every Cartan subalgebra of 9’ is an Engel subalgebra of 9, 
A? is a triangulable subalgebra of 9’. In the Cartan decomposition 9 = 

s=P 0 CasJf Ya, choose for each OL E R a nonzero element x, of -rP, such that 
[A?, xol] = kx, . Then kx, is a one-dimensional X-module, so that Xa = 
{h E ZF ( [h, x=] = O> is an ideal of codimension one in 2. Since nil 2 is not 
of codimension one in A?, yi”, contains an element h, which is not nilpotent 
on 9. Since [h, , x,] = 0, we have cz(h,) = 0. Thus, the proper Engel sub- 
algebra B = ZO(ad h,) contains Yti , 2 (I , .%. Since B is triangulable, g(l) 
is a nil subalgebra of 9 and contains [A?, ZJ = sU, [s, Z,] = $p_, and 
[PU, Z,], whence their elements are nilpotent on 9. This is true for all 01. 
Thus, P is semitriangulable by Theorem 2.10, a contradiction. 1 

A general principle emerges from the above proof. If the Lie algebra 9 
has a triangulable Cartan subalgebra H, then for every root a: and every non- 
nilpotent h, E yi”, , the proper Engel subalgebra &m = 9a(ad h,) contains the 
root subalgebra 9 fa) = Z + x:L: ZU, . It is for this reason that our conditions 
on the Engel subalgebras evoke conditions on these JP) and therefore ultimately 
on 9. 

What is suggested here is that one can study certain aspects of 9 by passing 
to the study of the finite family 8a ( 01 a root) of subalgebras 8, = DEp,(ad h,) = 

s 0 C.eERU 9”. Here, R, = {/3 I/3 is a root and /3(h,) = 0} and Rw contains 
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the root string &a, &2a, etc. The subalgebras 8a are analogous to the reductive 
subgroups {g E G j [g, Z’J = 0} corresponding to the tori T, defined as con- 
nected kernals of roots 01 of a semisimple algebraic group G with maximal 
torus T. Thus, for semisimple Lie algebras of characteristic 0, the 8M are 
reductive, that is, 8, = Y @ 8:’ where 8:’ is semisimple and F is ad- 
diagonalizable on 3’. 

5.5. THEOREM. Suppose that 9 is not semitriangulable. Then every proper 
Engel subalgebra of 9 is a Cartan subalgebra of 9. 

Proof. Let 93 = de,(ad X) be a proper Engel subalgebra of a;P. Then 9 
contains a regular element y of 3’ by Theorem 4.2. The preceding Theorem 5.4 
then shows that ZO(ad y) = ky + JV where JV is a nil subalgebra of 9 
normalized by y. Consequently, .@ = g”(ady) + 3Yrn x ky + .A$ + d” :-~ 
ky +- .A! where No = .%9 n JV” and where J? = .A$ + + is a nil subalgebra 
of 9 normalized by y. Here, we are invoking the triangulability of ~3, which 
implies that gBuj is indeed nil. 

We may change y be a constant factor so that x = y + m with m E M. 
Then B -- kx + A?. Since ad x is nilpotent on a, it follows that a is nilpotent. 
But then 9 is a nilpotent Engel subalgebra of 9, hence a Cartan subalgebra 
OfZ. 1 

5.6. COROLLARY. Suppose that 9 is not semitriangulable. Then the following 
conditions are equivalent: 

(1) 2 is E.t.; 

(2) every nonnilpotent element x of 9 is regular; 

(3) every nonnilpotent element x of 9 satisfies the condition that gO(ad x) = 
kx + JV where A’- is a nil subalgebra of .Y normalized by x. 

In Benkart and Isaacs [I], Lie algebras 9 are studied which are centralizer 
nilpotent (abbreviated cn.) in the sense that the centralizer of every nonzero 
element is nilpotent. 

5.7. COROLLARY. Every centralizer nilpotent Lie algebra is E.t. 

Proof. It is shown in Benkart-Isaacs [l] that a Lie algebra 3’ is centralizer 
nilpotent if and only if every nonnilpotent element x is regular with 9s(ad x) = 
Fx. 1 

5.8. EXAMPLES. We prove in Section 6 that for p > 7, the only simple 
E.t. Lie algebra are the centralizer nilpotent algebras YJZzF and WDF (the 
p-dimensional Witt algebra). It is shown later in this section, assuming Con- 
jecture 6.5, that an arbitrary E.t. Lie algebra 9 can be written as 9 =:: 
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nil X + Tp” where Z=/.M is a simple E.t. Lie algebra (and therefore is .YYY 
or WVF if p > 7) and where M is nil on 9. Conversely, starting with an 
E.t. Lie algebra 8, we can construct the E.t. Lie algebra 2 =: Y. @ $? 
(direct) where V is any nilpotent Lie algebra. (We could, presumably, also 
let 2 = 9’ @ 8 ( semidirect) for certain suitable nonzero subalgebras 9” 
of 9~b 2 which are nil on 9.) Another construction involves taking any nil- 
preserving module Jlr for an E.t. Lie algebra 2? (see Definition 6.1), making 
M into an Abelian Lie algebra so that 9 acts on N by derivations, and letting 
9 = 8 @N (semidirect). Then .4” is a nil ideal of 9 and wc can show 
that .Y is E.t. because every Z”(ad X) is pa(ad X) + Ma(ad x). If x E 8 is 
nilpotent, then 9 = &(ad x). If x E 8 is not nilpotent, ps(ad x) is triangulable, 
so that Y;,(ad X) is triangulable. Finally, if y = s + n with s ~2, n EM, 
ad2 y is nilpotent if x is nilpotent, by an application of Jacobson [lo] to l?v u M; 
and ifs is not nilpotent, (2’/N),(ady) = (9/Jlr),(ad X) = (Zs(ad X) --i M)/&” 
shows that gO(ady) + .N = ZO(ad X) + N is triangulable, hence PO(ady) is 
triangulable. 

5.9. THEOREM. Let 3 be a nonsemitriangulable E.t. Lie algebra. Then every 
solvable subalgebra SI of 9 is triangulable with nil radical nil .?8 of codimension 0 
or 1 in 3. 

Proof. Let %4! = nil 3 and suppose that 93 2 4. Then 9;31& contains a 
maximal abelian ideal &/&I, which is nonzero. Since & is not nil, we can 
take a nonnilpotent element a from ~2 - A. Since [9, a] C & and therefore 
[[B, a], a] C d by the commutativity of d/d, we have &“,(ad a) C ,&‘. Thus, 
.%Y = .%Y,,(ad a) + .X = ha + N + &8’ = ha + nil 33 by Corollary 5.6. 1 

5.10. COROLLARY. Let Y be E.t. Then 

(1) Y is solvable if and only if 9 is semitriangulable; 

(2) if lp is not nilpotent 9 is solvable if and only if 3’ is triangulable. 

5.1 1. COROLLARY. Let 9 be E.t. but not semitriangulable. Then for x’, y E 2 
such that [ y, x] = 01x where (Y is a nonzero element of F, x is nilpotent on 9. 

Proof. .%? -= Fy + Fx is solvable, therefore, triangulable. Thus, :#(I) = Fx 
is a nil subalgebra of 9. 1 

5.12. THEOREM. Let 9’ be Et. but not semitriangulable, and let :# be a sub- 
normal subalgebra of 3’. Then either &? is a nil subalgebra of Y or 39 contains Yp-. 

Proof. Suppose that .G@ is not nil and therefore contains a nonnilpotent 
element x of 2. Then 2 = -P&ad X) + 2ZI(ad x) = gO(ad X) + .W,(ad x) = 
# + g*(ad x) where X is the Cartan subalgebra H = Z,,(ad X) of Y”. (To 
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verify the second equality, observe that (ad X)“(Z) C 2Y for some i since 9? 
is subnormal.) But then 2P = 2&‘*(ad X) C 2?‘. fl 

5.13. COROLLARY. Let 2 be E.t. but not semitriangulable. Then 5? has a 
unique minimal nonnilpotent ideal, namely, S’%, and Z/nil 2? has a unique minimal 
ideal, namely, (9% + nil A?)/nil2. 

5.14. DEFINITION. The core of a Lie algebra 9 is the Lie algebra Core 9 -= 
P’/nil 9”. (Recall that nil ~2~ is nil on 2’ by convention.) 

5.15. THEOREM. Let 9 be E.t. but not semitriangulable. Then nil 229 is 
the radical of YJ-, Core 2 = YiP”jnil Zm is simple, and Core 2’ is isomorphic 
to Y/(Yn n nil 2) for some subalgebra 9’ of Zm containing SY- n nil 9 such 
that ZK’/(9’ n nil 9) = .V/(-ri”” n nil 2’) @ nil gm/(grn n nil 2). 

Proof. We know that 2P- is the unique minimal nonnil ideal of 9. Let 
9 be maximal among the ideals of Y which are properly contained in YA. 
Then 9 is nil on 9 by the minimality of Zac. Thus, 9 = Zrn n nil 2. 
Furthermore, LP/X is d#erentiably simple, by the maximality of Y, so that 
Yp,/4 has a Levi decomposition 2=/Y = Y’j9 @N/S (semidirect) where 
Y/9 is simple and N/9 is the nilpotent radical of 9=/9--by Block [4]. 
Let n E .Y. Then ~2’~ C ZO(ad n) + 9. Since 9 is not semitriangulable, it 
follows that 2 is not solvable, therefore 9’ is not solvable, therefore 
TO(ad n) ( J is not solvable, therefore Zs(ad n) r= 2. Thus, N is nil on Y. 
We conclude that N = nil Pip’, so that Core 2 == SW/nil 2% is isomorphic 
to .Y,/,P and is therefore simple. The other assertions have been proved along 
the way. 1 

Whereas the above results concern the simple Lie algebra Core 9 and the 
structure of the unique minimal nonnilpotent ideal Zm of 9, the following 
theorem concerns the structure of P in terms of 2P. 

5.16. THEOREM. For any Cartan subalgebra X of a nonsemitriangulable E.t. 
Lie algebra 9, 9 = nil X --t J.Yz and 2 = 2% + nil Z. 

Proof. We show first that X n ZP has a nonnilpotent element x. For 
suppose not. Then Z, = X n Z” is nil on 9. But 2.Y is s.s.s.t. by Theo- 
rem 5.7, so that the fact that &$ is nil on 9 implies that 9 is solvable, by 
Theorem 3.5. But 2’ is not solvable (since 2 is s.s.s.t. and 9 is not semi- 
triangulable), so that we may conclude that 2m = Z n Sfrn has some non- 
nilpotent element X. It follows that X = Ps(ad x) = Fx + nil X. But then 
9 = $$? L-- pa _ nil & + 9% and Z = X7, j- nil 2 since x E ..PA and 
XEX~ -XnP~. i 
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6. CLASSIFICATION OF E.t. LIE ALGEBRAS 

In classifying c.n. Lie algebras, Benkart and Isaacs (1979) introduce the 
concept of special module (see below) and study the special modules of Ygp 
and WDF. Since the nonnilpotent elements x of a c.n. Lie algebra L correspond 
to the subalgebras Z = Fx of 5?, the condition that the nonnilpotent elements 
s of 9 be nonsingular on a special module & can also be given by the condition 
that &!a(*) = (0) for every Cartan subalgebra .@ of 2. 

For an arbitrary Lie algebra 3 with Cartan subalgebra 2 and module dfl, 
the condition .,X,(Z) == (0) ensures that % remains a Cartan subalgebra 
in the split extension 9 @ JZ = Z + X+0 ZU + CD+,, &‘s , M being given 
the structure of Abelian Lie algebra. Furthermore, in characteristic 0 with 
-fZ’ semisimple, if one Cartan subalgebra .@ of 2 @ &? is contained in 9, 
then every Cartan subalgebra of 6p @J&’ has trivial intersection with A, 
from which it follows easily that JZ%‘,(%‘~) = {0} for every Cartan subalgebra 
JP of .P’. Finally, we are studying a Lie algebra 5! in terms of the nilpotency 
of its elements, so that it is essential, for this study, that the modules which 
we consider preserve this nilpotency. This serves as motivation for the introduc- 
tion and use of the following concepts. 

6.1. DEFINITION. An P-module -62 is nil-preserving if every nilpotent 
element x of 2 is nilpotent as a linear transformation of A. 

An Y-module & is Z-nonsingular if do(X) = {0), 2 being a Cartan 
subalgebra of .Z’. An Y-module A! is nonsingular if A is Z-nonsingular 
for every Cartan subalgebra %‘. An Y-module &I is special if it is nil-preserving 
and M,(x) = (0) for every nonnilpotent element x of P’. An Z-module JI 
is integral if every element s of .P which is integral on Y in the sense that 
the eigenvalues of adp x are in the prime ring is also integral on J.@ in the 
sense that the eigenvalues of x on ,X are in the prime ring. 

Benkart and Isaacs [I] state for p > 3 that an irreducible module J&’ for 
.Y = .Y’92F is special if and only if Jz’ is even dimensional and therefore 
integral). They prove the “only if” direction of this assertion by taking a basis 
e-r, e, , e, for .Y such that [e-r , e,] = e-r, [e-r , e,] = e, and [es, e,] = e, , 
pointing out that e-r - e, is not nilpotent on 2 and therefore is nonsingular 
on the given special module -&‘. They then show that the nonsingularity of 
e-, - e, on ,X implies that JI is even dimensional. We use this device to 
sharpen their result as follows. 

6.2. THEOREM. Let p > 3 and let .I be an irreducible nil-preserving module 
for Y =-= YZ2F which is X-nonsingular for some Cartan subalgebra # of 9’. 
Then .N is even dimensional and therefore integral. 

Proof. Choose F so that .X,(ad 2) = [O}, and take the basis e-, , e, , e, 
for .Y described above. Then e_, - e, is not nilpotent on .Y, whence F(e-, - er) 
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is a Cartan subalgebra of Y (e.g., since Y is c.n.). But the Cartan subalgebras 
of Sp are conjugate under Aut Y, so that F(a(e-,) - u(er)) = S and u(e-J - 
u(el) is nonsingular on &’ for some automorphism 0 of Y. By applying the 
method of Benkart and Isaacs [l] to the basis a(e-,), u(ea), u(ei), where we now 
know that u(e-r) - u(el) is nonsingular on JY, we find that J! is even dimen- 
sional and therefore integral. m 

The “if” direction of the above Benkart and Isaacs assertion is easily verified 
and is used in the following corollary. 

6.3. COROLLARY. Let p 3 3 and let A! be an irreducible module for Y = 
SPgzF. Then the following conditions are equivalent: 

(I) JZ is nil preserving and nonsingular; 
(2) J&! is nil preserving and H-nonsingular for some Cartan subalgebra S; 
(3) J@ is even dimensional (and therefore integral); 
(4) J&! is special. 

Proof. Condition (4) implies (1) implies (2) implies (3); and (3) implies (4) 
is the assertion of Benkart and Isaacs. 1 

We note in passing that Wilson [15, p. 2901 shows that an irreducible 
restricted module -t. for Y&F such that Va(e,) = (0) has dim V = p - 1 
andbasisv,(l <i.<p-l)suchthatv,e,=iv,+jwherel <i+j<p-1 
and v,e, = 0 otherwise, e-, , ea ,..., ep-a being a preassigned basis for “,F 
such that [e, , ej] = (i - j) e,+, . Moreover, 9” remains irreducible when 
viewed as YLZJ-module, YSJ being the subalgebra Fee, + Fe0 + Fe,. 
Since every nonnilpotent element x of V$ is regular (e.g., since YK9F is c.n.) 
and since the Cartan subalgebras of WDF are conjugate by Brown [6], there 
exists an automorphism u of W=F such that u(e,,) = cx for some c E F. Replacing 
x by (l/c)% so that u(e,) = x, we see that x can be put as eh in a basis ei = u(e,) 
of the same form. Since I/ has only one restricted irreducible representation 
for W>F of dimension p - 1, by Chang [7], it follows that x =- eh is also non- 
singular on V-. Thus, as observed in Benkart and Tsaacs [l] with indications 
of proof without full detail, the unique p - 1 dimensional restricted irreducible 
-ly$-module V is special. Furthermore, it is clear from the above discussion 
that this ,V^ is the only restricted w$-module which is H-nonsingular for 
some Z. This discussion therefore shows that for p > 3 the preceding Corollary 
6.3 is valid for restricted modules .A%! with V&F” in place of “.Y9$” and 
“dim .A? = p - 1” in place of “A%! is even dimensional.” 

A subquotient of $P is any quotient ~81% where .%? is a proper subalgebra 
of Z’ and V? is an ideal of a. 

6.4. THEOREM. Let 6p be a nonsemitriangulable E.t. Lie algebra of charac- 
teristic p > 3 such that every simple subquotient of 9 is isomorphic to .Y-Yz,F 
or WIF. Then 9 is toral rank 1. 
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Proof. Let Z? be a Cartan subalgebra of 9 and consider the root sub- 
algebras 9’ta) = .X + xi”=;’ ZUi . Since 9 is not semitriangulable, it follows 
from Theorem 2.11 that some 9(N) . is not semitriangulable, hence not solvable. 
Let g denote such an 9cn). We may assume that 9 >, 9Y, for otherwise 9 
is toral rank 1. Thus, Core B = &P/Jr/- with .M being the radical of 9 is a 
simple subquotient of 99, so that Core .%9 is isomorphic to .sPJZ~ or w,,F. 
We next observe that JV is nil on 9. For if II EM, then 9a(ad n) $ ,,V 3 gm. 
Since P is not solvable, sO(ad n) is not solvable and therefore ad n is nilpotent 
on 9’. It follows that any irreducible subquotient A of the 9%-module .Ypl,% 
can be regarded as an irreducible P/X-module, since M, being nil on A, 
must be in the kernal of the representation of .P on J&‘. The P/A”-module JA! 
is nil-preserving. For suppose that y + M is a nilpotent element of @/M. 
Then 9s(ad y) + Jlr 19+, and the nonsolvability of 99- implies that ad y 
is nilpotent on 9 (as in a similar argument above), therefore on .A!. Next, 
we note that .z@ n gK has a regular element x of 9; for otherwise, X n .sF 
is nil on 9 and 9 is solvable by Theorem 3.5, a contradiction. Since zc is regular 
and x E A?, we have A? = y;l(ad X) (by the maximal nilpotency property of 
Cartan subalgebras Z, and the fact that 9s(ad X) is nilpotent). Since Ycnj 
has toral rank 1, we may replace ~1’ by [I/ oi x ( )] x and assume that x is integral 
on 9 (cf. Definition 6.1). Furthermore, viewing x as a linear transformation 
of sP/.%?, x is nonsingular, since ZO(ad X) = .% C 9. It follows that the element 
X = .T + Jt’ of @‘“/.M is nonsingular on A’, that is, ,A%‘~(%) = j.0). Since 
.X = &(ad X) is a Cartan subalgebra of 9 and since x E 9?‘“, c%,,c’(ad X) is a 
Cartan subalgebra of GP- and (@K/M)o(ad X) = An is a Cartan subalgebra 
of ,GP/Jv. Since %E A?‘, what we have shown above is that AZ,,(p) =: (01, 
so that A! is A?-nonsingular. Since zZ?‘“/JV is isomorphic to .!Ypdcp or -rv;F, 
Z? must be one dimensional and 2 = Px. Furthermore, in each case, we can 
find elements e-i , e, in ~‘“/JV such that the span Y of e-i, Z, e, is isomorphic 
to YZ2F. The upshot of what we have done is now that for ez?ery irreducible 
subquotient ,K of 913’ as Y-module, A is nil-preserring and A! is Fx;nonsingular. 
(Note that our condition on A now is that of irreducibility over Y, not over 
@-/A”.) It therefore follows from Theorem 6.2 that ,N is even dimensional 
(and therefore integral). Since X is integral on Y (which follows from the fact 
that x: is integral on a), we can finally conclude that x is integral on A! This 
being true for all irreducible subquotients .A&’ of the S-module P/%’ (in 
particular, for those defined by a composition series), it follows that x is integral 
on 9199. But x was chosen integral on %‘. We conclude that x is integral on 9. 
Since x is also regular in 9, it follows that Y = PO(ad X) + Crli q(ad X) = 
Z + xrLil .dq = Lea), so that 9 is toral rank 1. # 

6.5. Conjecture. For p > 7, the only simple toral rank 1 Lie algebras 2 
such that every solvable subalgebra of 9 is triangulable on L are isomorphic 
to .YZ$ or %$F. 
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The only simple toral rank 1 Lie algebras (p > 7) other than Y9aF and 
w$ are the Albert-Zassenhaus algebras 9(G, 0) (see below) and the toral 
rank 1 Block algebras 9(G, f) of type G = G, and 9(G,f, 6) of type G = G, 
described in Block [5]. This is proved in Wilson [15, 171. If 9 is a Zassenhaus 
algebra 9 = 9(G, 6), then G is a finite subgroup of (F, +) of orderpn (rz > 2), 
0 is a homomorphism from G to (F, +), and 9 has basis xol (a E G) over F 
and product [xa, x0] = (ol(e(/3) + 1) - /3(0(a) + 1)) x~+~. It is clear that 
FxO is a Cartan subalgebra and the corresponding root spaces are the Fxa (a E G). 
We claim that d(ol, /3) + p modulo the span of 01 over the prime field n of F 
for some nonzero (Y, fi E G, where d(a, /3) = &9(p) - @(a). To see this, take 
a, p E G, to be linearly independent over the prime field r. rf d(a, /3) = fi 
(modulo ~a), replace ac by 2cu and note that d(201, /3) = 2d(or, p) = 2/3 (modulo ma), 
whence 4(201, p) f /3 (modulo Sol). Thus, there exist 01, fl E G with d(a, /?) + ,!3 
(modulo ,a) (e.g., the 201, /3 E G described above). For such a: and /I, the cofe- 
ficient a(e(p + i,) + 1) - (p + k)(e(g + 1) = ae(p) - Be(,) - p - (i - l)ti 
of xa + (p -+ Eli) in the product [xa , Q+J cannot be zero for any i (0 < i < 
p-l);forotherwiseO=d(a,/3-P-(i-1) 01 and d(~l, /3) = /3 (modulo ,a). 
It follows easily that ad xn is not nilpotent on Fxa + ... -+ Fx~+(~-~)~ . On 
the other hand, .%? = FxO + FxDl is a solvable subalgebra of 9, which cannot 
be triangulable on 9 since ad xa is not nilpotent on 9. We conclude that 
the Zassenhaus algebra 2’(G, 0) is not s.s.t. and is therefore not E.t. 

It remains only to prove Conjecture 6.5 for the toral rank 1 Block algebras 
9(G,f) of type G = G,, and 9(G,f, S) of type G = G, . One can reduce 
proving the conjecture to the case 1 G ) = pz, so that dimL(G,f) = p” - 1 
and dim 9( G, f, S) = pa - 2. 

If Conjecture 6.5 is true, we would have the following theorem. 

6.6. THEOREM (assuming 6.5). For p > 7, the only simply toral rank I 
E.t. Lie algebras 2 are isomorphic to .Yg?F or WpF, 

Proof. Suppose not, and let 9 be a counterexample of minimal dimension. 
Then every (proper) simple subquotient is E.t. (cf. Proposition 5.2) of lower 
dimension than that of L and is therefore isomorphic to .Y’T2F or -WjF by the 
minimality condition on the dimension of 9’. Thus, Y is toral rank 1. Since 
9 is E.t. and therefore every solvable subalgebra of 3 is triangulable, it follows 
(assuming 6.5) that 9 is isomorphic to .Y’Z2F or -tyaF. 1 

7. RESTRICTED AND SEMIRESTRICTED CLOSURES APPLIED 

TO QUESTIONS OF SOLVABILITY 

In this section, we assume that 9 is a subalgebra of a restricted Lie algebra J&‘. 
The restricted closure 8 of 3 is the intersection all restricted subalgebras 
of .4! containing 9’. Since the normalizer Jr’(Y) of 9 in ,K is restricted, 
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5? is an ideal of 8. Since [Jr/-(Z), Y] C Z’, it follows easily that [N(Z), 91 C $P 
and, in particular, that [p, 21 C Y’. Th us p/Z is Abelian. In particular, 
9 is solvable if and only if 2 is solvable. Moreover, if 2 = Pr r) Pa 3 . . . is a 
series of ideals of Y such that [gj , g] C g+, for all i, j, then one sees suc- 
cessively that [gt , g] C g+) and [p*, g] C z+, C g+, . It follows easily 
that 2 is &potent in the closed se?lse that the series 8l = 8, 2Ff1 g [g, gi] 
terminates with {Oj if and only ifL is nilpotent in the usual sense. Using Jacobson’s 
theorem on weakly closed sets [1 I], we also see easily that 9 is nil (that is, 
every element of 2 is nilpotent in 4) if 2 is nil, from which it easily follows 
that 2 is triangulable if 9 is triangulable, Y being triangulable if Y(l) is nil 
(cf. [ 191). 

The following theorem is taken from Winter [19]. 

7.1. ?‘IJIIOREM. Let & be a Cartan subalgebra of 2. Then 2? = 2 + Y. 

Proof. For x E Za(ad Z), ad XD stabilizes all of the 5$(ad Y?), so that 
0 -7 [ad Y, ad x”] = ad[Y, x”] where Y is the maximal torus of ti. Thus, 
0 = [F, [?F 

1 ^ 
, .+‘I], whence .rP E Za(ad Y) = X. Since &?p C X, it follows 

that 2 ~ P has a basis of elements whose pth powers lie in 2 1 2. Thus, 
9’ -; Y is a restricted subalgebra of JZ?’ by Jacobson [lo]. 1 

The above theorem and proof show that 9 can be constructed by taking 
any C‘artan subalgebra X of Y, taking any maximal torus 9 of 8 containing Xs 
(the set of semisimple elements of Z-P), and letting G@ be the Lie p-algebra 
generated by Y and {ZP ( x E Zw(.Y) for some a}. Then 2 = 2 + 2, and ^ 
X is a Cartan subalgebra of 2 which can also be described as the centralizer 
in 2 of .Y by [20]. In passing from Ye to 2, the root space decomposition 
C z(X) is refined: Ym(.%) = Co,, g(Y) and 2 = TO(ad Z’) = CoE_ q(ad Y), 

sometimes nontrivially (e.g., see Examples 2.13 and 3.3 where ZO(ad 7) g P. 
Regard this Lie algebra 2 as imbedded in the Lie p-algebra Der Z’ via ad). 
Here, /3 5 ,X means that /3(h,) is the scalar through which h, acts on Zti(ad &‘) 
for all h t N. 

.F being as taken above, 9 = r + X- + 9 is semirestricted with respect 
to its Cartan subalgebra & = 9 + so(F) in the sense of &hue [12]: &? is 
restricted, (ad h)‘:y =: [ha, X] for all h E z?, s E 2 and (ad x)~ E ad 5 for all 01 
and all .Y E Y&(Y). Here, 2 is the restricted closure of X. We call 2, 2 a 
semirestricted closure of 2, Z. 

We now direct these considerations to the problem of showing that an arbitrary 
Lie algebra Y with Cartan subalgebra X is solvable if X= is nil on 9 or if 
PI) == 2’ -, xzy!il Zti, is solvable for all a. (See questions 2.12, 3.4.) For 
this, we may assume with no loss of generality that Y has center 0, by methods 
such as those in [20]. We then imbed 9 in the restricted Lie algebra Der P’ 
via ad. That is, we may assume that 9 is contained in a restricted Lie algebra 
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in such a way that ad x is nilpotent on 2 if and only if x is nil in the restricted 
Lie algebra containing 2. 

We claim that if &? is triangulable on 9’ and &$ is nil, then L%? is triangulable 
on 2?’ and L@~ is nil on L?, 8, 2 being a semirestricted closure of 9, 2. 
This shows that the problem of showing that “X triangulable on Y and Xm 
is nil on 2’ implies that 2 is solvable” reduces to the same problem for semirestricted 
Lie algebras. Since 2 = F + *s(Y) w h ere Z&F) is certainly triangulable, 
2 is triangulable since 5 centralizes ,@,(Y). And gz = &,, [&$Ku] + 

Co &a [%V-), =%V-11, h t e subspaces [SO, ?&I, 9a(F) being nil on 2 

by the conditions [X, X] nil, &,, nil, respectively. Thus, $r is nil by the 
theorem of Jacobson [7] on weakly closed sets. 

Using the semirestricted closure 8,&?, we also see that the problem of showing 
that “if 3 is a Lie algebra with Cartan subalgebra H such that Pr’ :- 31c + 
~~~I1 gNi is solvable for all 01, then 9 is solvable” to the same problem for semi- 
restricted Lie algebras. To see this, observe that L&sr = Z@ -+ xrIrr 9BpBi(F) 
is contained in F + X + xfirr L&(F) for /3 E LX; so that if all LFN) are solvable, 
then all 9 + 9”) are solvable and therefore all L?(a) are solvable. 
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