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1. INTRODUCTION

Motivated by the paper of Feit et al. [8] on centralizer nilpotent (abbreviated
c.n.) groups, Benkart and Isaacs [1] have studied c.n. Lie algebras & over
an algebraically closed field of arbitrary characteristic p. They show that
ZLnil & 1s simple where nil .# is the nilpotent radical of .#, and that #/nil ¥
is isomorphic to & (which is three dimensional for all characteristics and
isomorphic to S EF for p 5 2), S LF|FI (p = 3) or W F (the p-dimensional
Witt algebra over F, p > 3).

In the present paper, we use Cartan decomposition methods to study Engel
subalgebra triangulable (abbreviated E.t.) Lie algebras %, that is, Lie algebras &
all of whose proper Engel subalgebras & = %{ad x) are triangulable when
represented as linear Lie algebras on .# by way of the adjoint representation.
By the results of Benkart and Isaacs, every c.n. Lie algebra is E.t. In fact,
the E.t. Lie algebras were conceived as generalizations of the c.n. Lie algebras.

We prove in Section 5 that every nonsolvable E.t. Lie algebra F can be expressed
as ¥ = nil # + L~ where H = #, + nil S is any Cartan subalgebra of &
and nil 3 is ad-nilpotent on £ (see 2.1) and of codimension 1 in . Furthermore,
the core Core & = L=[nill L= of ¥ is a simple Lie algebra, nil £> being the
nil radical of #= and also being ad-nilpotent on £. The core Core ¥ of an E.t.
Lie algebra is then a simple E.t. Lie algebra.

In Section 6, we prove that every simple E.t. Lie algebra with characteristic
not 2, 3, 5, or 7 is isomorphic to S LF or W F, assuming conjecture 6.5.

The structural methods (Section 5) are of a different character than those
of Benkart and Isaacs [1]. The classification methods (Section 6) follow a related
approach, with refinements which are needed to pass from a context with
Cartan subalgebras Fx to a context with Cartan subalgebras Fx -} A~ where
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A" is ad-nilpotent on .#. The key classification device is the use of special
modules of S L F and their integrability—introduced and studied in Benkart
and Tsaacs [1]. This is used to show that if the simple (proper) subquotients
of # are only ¥ %F and #,F, then £ is toral rank 1, at which point the
classification theorem of Wilson [15] is used inductively to show that simple
E.t. Lie algebras of characteristic not 2, 3, 5, 7 are X LF or W ,F, assuming
conjecture 6.5.

2. TRIANGULABLE AND SEMITRIANGULABLE SUBALGEBRAS

An element x of £ is nilpotent on & if ad e x 1s a nilpotent linear transforma-
tion of #. A subalgebrafideal A" of % is a nil subalgebrafideal of & if every
element of . 47 is nilpotent on #. A subalgebrafideal # of ¥ is triangulable
on ¥ if ady # = {adp x| xc H) is a Lie algebra of linear transformations
of % which is triangulable over the algebraic closure of F. A triangulable
subalgebra of & is a subalgebra of % which is triangulable on .Z.

Note that the ideal nil % introduced in the following proposition is the
unique maximal nilpotent ideal of &, whereas nil % need not be the unique
maximal nilpotent ideal of #. (Elements of % nilpotent on # need not be
nilpotent on .#.) Thus, it must be emphasized that nil # is defined relative to Z.

2.1. ProposiTiON. For any subalgebra % of £, there is a unique maximal
ideal nil B of # consisting of nilpotent elements of £

Proof. Tt suffices to show that if .# and _# are ideals of # which are nil &,
then .# 4 ¢ is nil on .#. But this follows from Jacobson [10], since ad .# U
ad ¢ is weakly closed. ||

2.2. THEOREM. A subalgebra # of &£ is a triangulable subalgebra of ¥ if
and only if A is a nil subalgebra of £ if and only if #|nil & is Abelian.

Proof. 'This follows as in Seligman [14] or Schue [12] or Winter [22] since
ad AV — (ad #)1 is a nil ideal of ad Z on L. |

It is convenient to use the above theorem to motivate the following defini-
tion. |}

2.3. DermviTiON.  Letting %~ = (Y4 (i = 1, 2,...), we say that a sub-
algebra # of ¥ is semitriangulable (abbreviated s.t.) on % if %> is a nil sub-
algebra of . We say that & is semitriangulable if the ideal ¥ of & is nilpotent.

Note that every semitriangulable subalgebra & of .# is solvable. A nilpotent

subalgebra of .# is always semitriangulable on .#, but need not be triangulable
on 7.
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Note also that, whereas the irreducible nil-preserving representations of a
triangulable subalgebra # of % are one dimensional, the irreducible nil-
preserving representations of a semitriangulable subalgebra % are umivalued
in the sense that every representing linear transformation has only one eigen-
value. Here, a representation of & is nil-preserving if for each x € # which
is nilpotent on %, the representing transformation is also nilpotent.

The following two propositions are straightforward.

2.4. PROPOSITION. # is semitriangulable on £ if and only if #/nil A is
nilpotent.

2.5. PROPOSITION. If A is a triangulable/semitriangulable subalgebra of &
and H# normalizes a nil subalgebra N of £, then # + A is triangulable|semi-
triangulable on ¥ .

2.6. COROLLARY. A semitriangulable subalgebra B of ¥ is triangulable on ¥
if and only if some Cartan subalgebra H# of & is triangulable on ¥ .

Proof. 1f 5 is triangulable on ¥, then # = # + %~ is triangulable
on L by the above proposition. |

2.7. DeFINITION. Let 3# be a Cartan subalgebra of . Then 3, is the
ideal 3€, — # N L of H#.

The following theorem shows that for any Cartan subalgebra # of .# with
root spaces %, (x€ R) £ is the ideal ¥ .z [Z,, L] + Sk Z, studied in
Schue [12] so that, in particular, the ideal Y, p [Z., L] =+ Yacr L, 18
independent of the choice of J#.

2.8. THEOREM. Let A be a Cartan subalgebra of £ with root spaces %,
(x€R).Then ¥ = H + L%, F = H, PDYyer Lo, and H, = L, L]

Proof. It is clear that £ =3 x [%, L] + Yuer £, is the subalgebra
of L generated by 3 ,.r -Z,, and it is an ideal since it is normalized by itself
and by 5. Since [, L) = &, for all o, Y .z &, is contained in #”. Thus,
FCL* Since ¥ — H + #, we see that ¥ = H# -+ ¥ ~; and also that
L[F is nilpotent. The nilpotency of #/# implies that ¥= C.#. Thus,
F? = F It now is apparent that 8, = # N L> =3 L[4 . L. 1

2.9. ProrosiTioN. Let 3 be a Cartan subalgebra of & root spaces Z,
(x€ R). Then . is nil on L if and only if the elements of [ ¥, , ¥L.,) are nil
on £ for all a.

Proof. This is a consequence of Jacobson [10] since 3, ad[.%,, L]
is a weakly closed set. [
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The next theorem is related to work of Schue [12] on semirestricted Lie
algebras 2.

2.10. THEOREM. Let S# be a Cartan subalgebra of & with root spaces £,
(€ R). Then £ is semitriangulable on £ if and only if the elements of [£, , L ]
and £, are nilpotent on L for a € R.

Proof. £= is nil iff the weakly closed set |J,ez (d[%,, L]V ad &)
consists of nilpotent transformations, by Jacobson [10]. |

2.11. CoroLLARY. Let H be a Cartan subalgebra of L with root spaces ¥,
(oc € R). Then & is semitriangulable on £ if and only if the subalgebras ¥ =
N i f are semitriangulable on £ for all o € R.

2.12. Open question. Can ‘“‘semitriangulable on L” be replaced by “solvable”
in 2117

The answer to 2.12 is “‘yes” for . of characteristic 0, by Lie’s theorem
and Corollary 2.11. The answer to 2.12 is “yes” in general if the answer to
2.12 is “yes” for Lie algebras 2 which are semirestricted with respect to the
given Cartan subalgebra 5. (See Section 7.)

2.13. ExamMPLE. Let a vector space ¥ =, + £+ -+ %,_, be a
direct sum of subspaces 5, , % ,..., &,_; where J#, is spanned by a vector
h # 0, %, is two dimensional with basis x, y;, and .%, is spanned by a vector
¥, #0 for 1 =0,2,3,...,p — 1. Here, we regard the indices 7 as elements
of the cyclic group = == Z,, = {0,..., p — 1}. Make the span & of yy, ¥, ,..., ¥,y
into an Abelian Lie algebra. Make x into the derivation xy;, = v,,;, 0 <2 ¢ <
p— 2, xypﬂ1 = yp of &Z. Form the split extension Lie algebra # = Fx + .o/ =
£+ -+ Z,_;1, and note that & is a w-graded Lie algebra since [Z,, %] C
2, for i, j. Let h be the derivation of # such that % | 2 181 times the 1dent1tv
transformation on %, . Since 4 is a graded Lie algebra, h so defined, is a dern a~
tion. Fmall), let L be the split extension ¥ = Fh + % = 5, + Zf o L, =
H DY, 3’ Then % is a Lie algebra of toral rank 1 with respect to the
Cartan subalgebra S (see Section 3), #, = % is nil on & and the element
xe % is not nil on &, .

The above example shows that there exist Lie algebras of toral rank | which
are solvable and which have a triangulable Carian subalgebra H, but which are
not semitriangulable.

In passing, we note the following theorem.

2.14. TuroreM. Let % be a subalgebra which is maximal such that & is
semityriangulable on £ . Let S be a Cartan subalgebra of #. Then H# is a maximal
nilpotent subalgebra of the normalizer N (#*) = {x € L|[x, #*| C &~} of B>
m F.
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Proof. Let A (B-)DH' DH with #' nilpotent. Then H#' -+ #= is
semitriangulable, by an earlier proposition, and contains # = H#° 4 &B*.
Thus, #' + B> = B = H -+ %=, by the maximality of #. It then follows
that #" = . |

3. SuBALGEBRAS OF TORAL RANK | AND AN APPLICATION
We first recall a result of Winter [18] needed for the section.

3.1. THEOREM. Let & be a finite-dimensional Lie algebra graded by a group
A and let # be a Cartan subalgebra of the identity subalgebra Z (1 is the identity
of ). Then %(ad H#) is a Cartan subalgebra of £ if either o/ is torsion free
or if (ad F)? C ad & and A is a p-group; and Z(ad H') is solvable if A is cychic.
In particular, if ¥, = {0}, then & is nilpotent for A torsion free or for (ad £)* C
ad & and A a p-group; and &L is solvable for A cyclic.

The above theorem applies to the study of a Lie algebra % having a Cartan
decomposition of the form & = # + ¥, 1 Ly, since = = H, + Zf_—l -
is then graded by the cyclic group (Z,, +) ={0,1,...,p — p— 1} of order p,
H, being the identity subalgebra i, = (£*); and (£*); being Z,, for
1<ig<p—1.

We use the above theorem to establish the following theorem, which is
related to a result of Schue [12].

3.2. THEOREM. Let % be aLie algebra of toral rank 1, so that & has a Cartan
decomposition & = H -+ Zf:ll L. for some «. Then the following conditions
are equivalent:

(1) & is solvable;
Q) o[£, L)) =0for 1 <i<p—1
(3) theideal S, of H ismilon L.

Proof. As in Schue [12], (1) implies (2). For if % is solvable and if x €
[Lai s Z.0.] With «(x) #= 0, then x € £®; and x € ¥* implies that x € LD
for all & (which is impossible, being in contradiction with the solvability of #)
since £, = [L,,,x]C LW, L, = [£,,&]C LY imply xe[Z,, L.]C
AL To see that (2) 1mp11es (3), simply observe that o(x) = O implies that
ad x is nil on &, so that (J; ad[,?ju , L ] is a weakly closed set of nilpotent
linear transformations, s0 that (3) follows from Jacobson [10]. Finally, (3)
implies that 5, + Zz 1 ., is solvable, by the preceding theorem, when

H A+ I, = H 7 %, is certainly also solvable. ||
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Schue’s theorem reads the same as the above theorem, except that & is
assumed to be semirestricted and condition (3) is replaced by the following
condition (3'):

3y W =N [ Ly Lo + Y13 L, is nilpotent.
i=1

(In our language, #  is #=.) In the following example, a semirestricted Lie
algebra % is constructed whose existence shows that Schue’s theorem cannot
be generalized from toral rank 1 to toral rank 2 (meaning, in Example 3.3,
that the additive group generated by roots has rank 2).

33. ExaMpLE. Let £ = + Y1, %, # = H, + % be the Lic
algebra . with Cartan subalgebra 5# of Example 2.13. Let ¢ be the derivation
t = (ad x)” of &, so that ty, =y, for 0 <Ci <L p— 1, tx = 0, th = 0. Form
the split extension .Z = Ft + %, which has Cartan decomposition £ —
H + L+ L+ L+ % where H =Ft + #, =Ft -+ Fh and
L, =Fy,, o,(h) =1, at) =1 for 0 <7< p—1; and where ¥, = Fx,
BE) =1, B(t) = 0. Since o, = if + oy for 0 <i<p—1, 2 has toral
rank 2. Furthermore, .Z is solvable and .2 is semirestricted with respect to .
However, the above condition (3') that %~ = #* be nilpotent is not satisfied,

since .¥* contains .%; = Fx and ad x is not nilpotent on ¥=.

3.4. Open question. If we drop the condition that £ be toral rank 1 over
is it still true that & is solvable if A, is mil on ¥, H being a specified Cartan
subalgebra of #?

The answer to 3.4 is “yes” if the answer to 2.12 is “yes,” by Theorem 3.2.
In particular, the answer is “yes” in characteristic 0. The answer is also “yes”
if & is s.s.s.t. (see Theorem 3.6 below), as is the case for the Engel subalgebra
triangulable Lie algebras studied in Section 5. Finally, we show in Section 7
that the answer to 3.4 is “yes” for every Lie algebra % and triangulable Cartan
subalgebra & if and only if the answer to 3.4 is “‘yes” for every Lie algebra .#
which is semirestricted with respect to a given triangulable Cartan subalgebra

H of P.

3.4. DeFintTION. A Lie algebra % is solvable subalgebra triangulable
(abbreviated s.s.t.) if every solvable subalgebra of % is triangulable on 2.
And Z is solvable subalgebra semitriangulable (abbreviated s.s.s.t.) if every
solvable subalgebra of % is semitriangulable. (Recall that s.t. abbreviates
semitriangulable.)

3.5. THEOREM. Let . be s.s.s.t. and let H be a Cartan subalgebra of ¥.
Then &£ is solvable if and only if H#, is nil on &.

Proof. If # is solvable, it is semitriangulable on % (since % is s.s.s.t.)
and &= is nil on %, whence S, is nil on .#. Suppose, conversely, that 5,

481/62/2-11
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is nil on %#. Then the subalgebra £ = 3¢ |- Zf:ll Z,; is solvable by
Theorem 3.2, since #°* (that is, 5, as defined relative to .% @} is nil on L',
for all « € R. Thus, £ is semitriangulable on % (since % is s.s.s.t.) for all
o € R, whence & is semitriangulable by Corollary 2.11. ||

4. ENGEL SUBALGEBRAS OF A LIt ALGEBRA L

4.1. DeFINITION. We recall that subalgebras & of % of the form & =
Zy(ad x) for some x € ¥ are called Engel subalgebras of ¥, and that an Engel
subalgebra & of £ is a Cartan subalgebra of ¥ if and only if & is nilpotent. In
this paper, we say that an element x € ¥ is regular if F(ad x) is nilpotent
(and therefore a Cartan subalgebra of £).

The set Feg regular elements of & contains a Zariski dense open subset
of L. (We do not assert that %reg is open, with the present notion of regular.)
It is easily shown that &reg M Freg contains a dense open subset # of & for
any Engel subalgebra & = Z(ad x) of .£. For we can take # = %NV
where ¥ is the nonempty and therefore dense open set of those y in & which,
like x, have nonsingular adjoint action on #/&’; and % is any dense open subset
of &reg. We state these observations for reference as follows.

4.2. THEOREM. FEvery Engel subalgebra & of a Lie algebra ¥ has a Zariski
dense open subset which consists of regular elements of £ .

In passing we note the following consequence of Theorem 4.2.

4.3. CoroLLARY. If £ has characteristic O and & is an Engel subalgebra
of &, then every Cartan subalgebra of & is a Cartan subalgebra of £ .

Proof. The proof is based on strongly nilpotent elements x € ¥, that is,
elements x € ¥ which are contained in Z,(ad y) for some y and some nonzero
root «. For each such x, adg x is certainly nilpotent. The group Adg & of
automorphisms of % generated by {exp adg x/x € &, x is strongly nilpotent}
acts transitively on the set of Cartan subalgebras of & by Winter [21, pp. 92-98].
Since one Cartan subalgebra of & is a Cartan subalgebra of ¥ by Theorem 4.2,
all Cartan subalgebras of & are therefore Cartan subalgebras of . |

5. E.t. LiE ALGEBRAS AND THEIR STRUCTURE
5.1. DeFINITION. We say that a Lie algebra L is Engel subalgebra triangulable

(abbreviated E.t.) if every proper Engel subalgebra & of £ is triangulable
on 2. Here, & is proper if & C 2.
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If I is an ideal of an E.t. Lie algebra %, and if (% (ad x) + #)/.# is a typical
proper Engel subalgebra of #/.#, then %(ad x) is a proper Engel subalgebra
of % and therefore is triangulable on #. Similarly, any proper Engel sub-
algebra of a subalgebra of an E.t. is certainly triangulable on .Z. We formulate
these observations as follows.

5.2. PrROPOSITION. If ¥ is an E.t. Lie algebra, then subalgebras and quotients
of £ are also.

Note that Cartan subalgebras of .2, being proper Lngel subalgebras of &,
are triangulable on # for any nonnilpotent E.t. Lie algebra .#. Thus, by
Theorem 2.6, a nonnilpotent Engel triangulable Lie algebra & is triangulable
if and only if it is semitriangular—which we state as follows.

5.3. ProposiTionN. If & is E.t., then L is semitviangulable if and only if ¥
is nilpotent or £ is triangulable.

Henceforth, we are interested only in nonsemitriangulable Engel subalgebras.

5.4. TUEOREM. Let & be E.t. but not s.t. and let H#° be a Cartan subalgebra
of £. Thennil # = {x € h | ad x is nilpotent on £} is an ideal of 5 of codimension
1. Thus, # is a triangulable subalgebra of £ of the form # = kx + A" where
A = nil A is a nil subalgebra of ¥ normalized by x.

Proof. Since every Cartan subalgebra of % is an Engel subalgebra of £,
A is a triangulable subalgebra of .#. In the Cartan decomposition # =
H D Yuer £, , choose for each a € R a nonzero element x, of %, such that
{4, x,] = kx,. Then kx, is a one-dimensional #-module, so that #, —
{he A | [k, x,] = 0} is an ideal of codimension one in . Since nil & is not
of codimension one in 4, J, contains an element 4, which is not nilpotent
on #. Since [k, , x,] = 0, we have «(h,) = 0. Thus, the proper Engel sub-
algebra # = (ad h,) contains %,, £ ,, #. Since & is triangulable, Y
is a nil subalgebra of % and contains [J, £ = Z,, [#, ¥, ] = £, and
(£, , L ,], whence their elements are nilpotent on .. This is true for all «.
Thus, & is semitriangulable by Theorem 2.10, a contradiction. ||

A general principle emerges from the above proof. If the Lie algebra %
has a triangulable Cartan subalgebra H, then for every root « and every non-
nilpotent h, € 5, , the proper Engel subalgebra &, = %(ad k,) contains the
root subalgebra ¥ = # + 7' ., . Itis for this reason that our conditions
on the Engel subalgebras evoke conditions on these £ and therefore ultimately
on Z.

What is suggested here is that one can study certain aspects of % by passing
to the study of the finite family &, (« a root) of subalgebras &, = Z(ad h,) =
H @ZBeRa % - Here, R, = {8 B is a root and B(k,) = 0} and R, contains
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the root string -a, -+2a, etc. The subalgebras &, are analogous to the reductive
subgroups {ge G | [g, T,] = 0} corresponding to the tori 7, defined as con-
nected kernals of roots « of a semisimple algebraic group G with maximal
torus 7. Thus, for semisimple Lie algebras of characteristic 0, the &, are
reductive, that is, &, =7 @ &™ where &Y is semisimple and J is ad-
diagonalizable on Z.

5.5. THEOREM. Suppose that £ is not semitriangulable. Then every proper
Engel subalgebra of & is a Cartan subalgebra of £.

Proof. Let # = Z(ad x) be a proper Engel subalgebra of .¥. Then %
contains a regular element y of .% by Theorem 4.2. The preceding Theorem 5.4
then shows that %(ady) = Ry + A" where A" is a nil subalgebra of &
normalized by y. Consequently, # = %(ady) + B* = ky + N, - H* —
ky + # where Ay = B N A and where M4 = A - #= is a nil subalgebra
of & normalized by y. Here, we are invoking the triangulability of %, which
implies that #* is indeed nil.

We may change y be a constant factor so that x = y + m with me M.
Then B = kx -+ .. Since ad x is nilpotent on %, it follows that & is nilpotent.
But then & is a nilpotent Engel subalgebra of ., hence a Cartan subalgebra
ofZ. 1

5.6. COROLLARY. Suppose that £ is not semitriangulable. Then the following
conditions are equivalent:

(1) L Ex;
(2) every nonnilpotent element x of %L is regular;

(3) every nonnilpotent element x of £ satisfies the condition that Lyad x) =
kx + N where N is a nil subalgebra of £ normalized by x.

In Benkart and Isaacs [1], Lie algebras % are studied which are centralizer
nilpotent (abbreviated c.n.) in the sense that the centralizer of every nonzero
element is nilpotent.

5.7. CorROLLARY. Euery centralizer nilpotent Lie algebra is E.t.

Proof. It is shown in Benkart-Isaacs [1] that a Lie algebra . is centralizer
nilpotent if and only if every nonnilpotent element x is regular with %(ad x) =

5.8. ExampLES. We prove in Section 6 that for p > 7, the only simple
E.t. Lie algebra are the centralizer nilpotent algebras FHF and #F (the
p-dimensional Witt algebra). It is shown later in this section, assuming Con-
jecture 6.5, that an arbitrary E.t. Lie algebra # can be written as & =
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nil o -+ L= where £~/A" is a simple E.t. Lie algebra (and therefore is ¥ £F
or W, F it p > 7) and where A" is nil on Z. Conversely, starting with an
E.t. Lie algebra &2, we can construct the E.t. Lie algebra ¥ = 7 @2
(direct) where #” is any nilpotent Lie algebra. (We could, presumably, also
let & =7 @2 (semidirect) for certain suitable nonzero subalgebras ¥~
of Zer ¥ which are nil on #£.) Another construction involves taking any nil-
preserving module .4 for an E.t. Lie algebra 2 (see Definition 6.1), making
A" into an Abelian Lie algebra so that .2 acts on .#" by derivations, and letting
¥ = L @ N (semidirect). Then A is a nil ideal of £ and we can show
that & is E.t. because every Z(ad x) is F(ad x) + Ay(ad x). If xe.P is
nilpotent, then & = Z(ad x). If x € & is not nilpotent, Z(ad ) is triangulable,
so that Z(ad x) is triangulable. Finally, if ¥ = x + n with 2 € P, ne A,
ad e y is nilpotent if x is nilpotent, by an application of Jacobson [10] to Fx U A7;
and if x is not nilpotent, (£/A")(ad y) = (L) AN )o(ad x) = (Z(ad x) - YA
shows that Z(ad y) + A" = Z(ad x) + A is triangulable, hence %(ad v) is

triangulable.

5.9. THEOREM. Let £ be a nonsemitriangulable E.t. Lie algebra. Then every
solvable subalgebra B of &£ is triangulable with ml radical nil & of codimension O
or 1 in &.

Proof. let .# = nil # and suppose that B .#. Then %/ contains a
maximal abelian ideal 7/.#, which is nonzero. Since .27 is not nil, we can
take a nonnilpotent element a from &/ — .#. Since [%, a] C .o/ and therefore
[[#, a], a] C .# by the commutativity of .o//.#, we have #,(ad a) C .#. Thus,
B = Byad a) + A = ka + N -} M = ka + nil # by Corollary 5.6. ||

5.10. CoroLLARY. Let ¥ be E.t. Then

(1) & is solvable if and only if F is semitriangulable;
(2) if &L is not nilpotent &L is solvable if and only if £ is triangulable.

5.11. CoroLLARY. Let & be E.t. but not semitriangulable. Then for x,y ¢ ¥
such that [y, x] = ax where o is a nonzero element of F, x is nilpotent on L.

Proof. # = Fy + Fx is solvable, therefore, triangulable. Thus, #V = Fx
is a nil subalgebra of . |

5.12. THEOREM. Let £ be E.t. but not semitriangulable, and let # be a sub-
normal subalgebra of £. Then either B is a nil subalgebra of ¥ or & contains L.

Proof. Suppose that # is not nil and therefore contains a nonnilpotent
element x of £. Then ¥ = Z(ad x) + Z(ad x) = F(ad x) + A, (ad x) =
A+ #B,(ad x) where H# is the Cartan subalgebra # — F(ad x) of Z. (To
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verify the second equality, observe that (ad x)Y(.¥)C # for some i since &
is subnormal.) But then ¥* = #Z,(adx)C#. |

5.13. CoroLLARY. Let £ be E.t. but not semitriangulable. Then & has a
unigue minimal nonnilpotent ideal, namely, L=, and £ |nil ¥ has a unique minimal
ideal, namely, (£* + nil £)mnil Z.

5.14. DeFINITION. The core of a Lie algebra & is the Lie algebra Core ¥ ==
L=nil . (Recall that nil £~ is nil on &£ by convention.)

5.15. TueoreMm. Let & be E.t. but not semitriangulable. Then nil L= is
the radical of ¥+, Core & = L */nil £= is simple, and Core £ is isomorphic
to L(F* N nil L) for some subalgebra & of ¥~ containing L= N nil F such
that L=|[(#* N nil £) = FLHEL> N nil L) D nil L=/(F>* N il £).

Proof. We know that = is the unique minimal nonnil ideal of . Let
# be maximal among the ideals of % which are properly contained in .#~.
Then £ is nil on ¥ by the minimality of ¥>*. Thus, £ = #* N nil Z.
Furthermore, ¥/ is differentiably simple, by the maximality of .#, so that
F*[F has a Levi decomposition F*[I = F[I DA |F (semidirect) where
S| is simple and A7/F is the nilpotent radical of #*/#—by Block [4].
Let ne. #". Then ¥#* C Z(adn) + #. Since & is not semitriangulable, it
follows that % is not solvable, therefore .#“ is not solvable, therefore
Zyad n) | £ is not solvable, therefore Zy(ad #) = £. Thus, A" is nil on Z.
We conclude that A7 = nil #~, so that Core & == £*/nil ¥* is isomorphic
to .¥].# and is therefore simple. The other assertions have been proved along
the way. [

Whereas the above results concern the simple Lie algebra Core % and the
structure of the unique minimal nonnilpotent ideal #* of £, the following
theorem concerns the structure of ¥ in terms of .

5.16. THEOREM. For any Cartan subalgebra J# of a nonsemitriangulable E.t.
Lie algebra L, ¥ = nil # -+ L and H = H, + nil .

Proof. We show first that 3 M £ has a nonnilpotent element x. For
suppose not. Then #, = # N ¥* is nil on &L. But &£ is s.s.s.t. by Theo-
rem 5.7, so that the fact that 3%, is nil on & implies that & is solvable, by
Theorem 3.5. But .# is not solvable (since .Z is s.s.s.t. and & is not semi-
triangulable), so that we may conclude that 5, = # N %> has some non-
nilpotent element x. It follows that & = F(ad x) = Fx 4 nil 5. But then
L = - P =nill# - P and # = H, | nil # since xe. L~ and
xe#r =H#nL |
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6. CrasstFicaTioN ofF E.t. Lie ALGEBRAS

In classifying c.n. Lie algebras, Benkart and Isaacs (1979) introduce the
concept of special module (see below) and study the special modules of & ZF
and #,F. Since the nonnilpotent elements & of a c.n. Lie algebra L correspond
to the subalgebras J#' = Fx of .#, the condition that the nonnilpotent elements
x of & be nonsingular on a special module .# can also be given by the condition
that .#y(3#¢) = {0} for every Cartan subalgebra 5# of &.

For an arbitrary Lie algebra .¥ with Cartan subalgebra 5# and module .#,
the condition .# (o) == {0} ensures that # remains a Cartan subalgebra
in the split extension ¥ @M = H + 3 0 L+ 2 p0# s, H being given
the structure of Abelian Lie algebra. Furthermore, in characteristic 0 with
& semisimple, if one Cartan subalgebra 5 of & @ .# is contained in &,
then every Cartan subalgebra of ¥ @ .# has trivial intersection with .#,
from which it follows easily that .#(#7) = {0} for every Cartan subalgebra
J£9 of #. Finally, we are studying a Lie algebra % in terms of the nilpotency
of its elements, so that it is essential, for this study, that the modules which
we consider preserve this nilpotency. This serves as motivation for the introduc-
tion and use of the following concepts.

6.1. DEFINITION. An #-module .4 is nil-preserving if every nilpotent
element x of % is nilpotent as a linear transformation of .#.

An Z-module # is H-nonsingular if M (H) = {0}, H# being a Cartan
subalgebra of #. An #-module .# is nonsingular if .4 is # -nonsingular
for every Cartan subalgebra ##. An ¥-module .# is special if it is nil-preserving
and .#(x) = {0} for every nonnilpotent element x of .¥. An #-module .#
is tntegral if every element x of ¥ which is imtegral on £ in the sense that
the eigenvalues of adg x are in the prime ring is also integral on .# in the
sense that the eigenvalues of x on .4 are in the prime ring.

Benkart and Isaacs [1]} state for p > 3 that an irreducible module .# for
S = SLF is special if and only if .# is even dimensional and therefore
integral). They prove the “only if” direction of this assertion by taking a basis
e ,,e,e for F such that [e_,,e] =e_;, [e_;,6,] = ¢, and [e;, ;] = ¢,
pointing out that e_, — ¢, is not nilpotent on . and therefore is nonsingular
on the given special module .#. They then show that the nonsingularity of
e_, — e, on ./ implies that .# is even dimensional. We use this device to
sharpen their result as follows.

6.2. THEOREM. Let p = 3 and let A be an irreducible nil-preserving module
Jor & = L LF which is H -nonsingular for some Cartan subalgebra H# of &.
Then # is even dimensional and therefore integral.

Proof. Choose # so that .#(ad 5#) = {0}, and take the basis e¢_;, ¢, ¢,
for .#" described above. Then e_; — e, is not nilpotent on .%, whence F(e_; — ¢;)
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is a Cartan subalgebra of % (e.g., since & is c.n.). But the Cartan subalgebras
of & are conjugate under Aut &, so that F(o(e_,) — o(e;)) = o and o(e_;) —
o(e,) is nonsingular on .# for some automorphism o of . By applying the
method of Benkart and Isaacs [1] to the basis o(e_;), o(e,), o(¢,), where we now
know that o(e_,) — o{e,) is nonsingular on .#, we find that .# is even dimen-
sional and therefore integral. ||

The “if” direction of the above Benkart and Isaacs assertion is easily verified
and is used in the following corollary.

6.3. CoROLLARY. Let p = 3 and let M be an trreducible module for ¥ =
S LF. Then the following conditions are equivalent:

(1) A is nil preserving and nonsingular;

(2) A is nil preserving and H-nonsingular for some Cartan subalgebra 5';
(3) A is even dimensional (and therefore integral);

(4) A is special.

Proof. Condition (4) implies (1) implies (2) implies (3); and (3) implies (4)
is the assertion of Benkart and Isaacs. ||

We note in passing that Wilson [15, p. 290] shows that an irreducible
restricted module ¥ for #,F such that ¥{(e,) = {0} has dim¥ = p — 1
and basis v, (1 <7 < p — 1) such that ve, = 7o, ; where 1 <{7i+4j < p—1
and v,e, = 0 otherwise, e_,, ¢, ,..., ¢,_, being a preassigned basis for #F
such that [e,,e;] = (i —j)e,,. Moreover, ¥  remains irreducible when
viewed as S ZF-module, S ZF being the subalgebra Fe_, + Fe, + Fe, .
Since every nonnilpotent element x of #,F is regular (e.g., since #,F is c.n.)
and since the Cartan subalgebras of #,F are conjugate by Brown [6], there
exists an automorphism ¢ of #,F such that a(e,) = cx for some ¢ € F. Replacing
x by (1/c)x so that oe,) = x, we see that x can be put as ¢ in a basis €; = o(e,)
of the same form. Since V' has only one restricted irreducible representation
for #,F of dimension p — 1, by Chang [7], it follows that & = g is also non-
singular on ¥”. Thus, as observed in Benkart and Isaacs [1] with indications
of proof without full detail, the unique p — 1 dimensional restricted irreducible
W F-module ¥ is special. Furthermore, it is clear from the above discussion
that this #” is the only restricted #F-module which is H-nonsingular for
some . This discussion therefore shows that for p > 3 the preceding Corollary
6.3 is wvalid for restricted modules M with “W,F” in place of “ S EF” and
“dim A4 = p — 17 in place of “M is even dimensional.”

A subquotient of ¥ is any quotient #/% where # is a proper subalgebra
of & and % is an ideal of #.

6.4. Turorem. Let ¥ be a nonsemitriangulable E.t. Lie algebra of charac-
teristic p = 3 such that every simple subquotient of # is isomorphic to L F
or W,LF. Then L is toral rank 1.
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Proof. Let &£ be a Cartan subalgebra of % and consider the root sub-
algebras £ = H# -+ Zf:ll Z,; . Since # is not semitriangulable, it follows
from Theorem 2.11 that some £ is not semitriangulable, hence not solvable.
Let # denote such an £, We may assume that & 2D %, for otherwise ¥
is toral rank 1. Thus, Core & = #=| A" with A" being the radical of % is a
simple subquotient of %, so that Core & is isomorphic to LS %F or #,F.
We next observe that A" is nil on .. For if n e A4, then F(ad n) 1+ V" D A=,
Since #~ is not solvable, #(ad 7) is not solvable and therefore ad # is nilpotent
on &. It follows that any irreducible subquotient # of the #*-module ¥ /%
can be regarded as an irreducible #*/4"-module, since 4", being nil on .#,
must be in the kernal of the representation of #* on .#. The #*[A"-module .4
is nil-preserving. For suppose that ¥ + .4 is a nilpotent element of 4 /A",
Then Z(ad y) + A4 D %>, and the nonsolvability of #* implies that ady
is nilpotent on % (as in a similar argument above), therefore on .. Next,
we note that # N %> has a regular element x of &#; for otherwise, J# N B=
is nil on & and # is solvable by Theorem 3.5, a contradiction. Since « is regular
and x e, we have S = F(ad x) (by the maximal nilpotency property of
Cartan subalgebras 2, and the fact that %(ad x) is nilpotent). Since .#©
has toral rank 1, we may replace » by [1/a(x)]x and assume that x is integral
on # (cf. Definition 6.1). Furthermore, viewing x as a linear transformation
of #|%, x is nonsingular, since Z(ad x) = # C 4. It follows that the element
¥ =x+ A of %4 is nonsingular on .#, that is, .# (%) = {0). Since
H = Zad x) is a Cartan subalgebra of % and since x € £*, #,”(ad x) is a
Cartan subalgebra of #* and (#“/A")(ad ) = # is a Cartan subalgebra
of #=|A". Since xe #, what we have shown above is that () == {0},
so that .# is JF-nonsingular. Since #*/A4" is isomorphic to S LF or W ,F,
J# must be one dimensional and & = Fx. Furthermore, in each case, we can
find elements e_, , e, in #*/A4" such that the span & of e_, , ¥, ¢, is isomorphic
to S ZLF. The upshot of what we have done is now that for every irreducible
subquotient M of L (B as F-module, 4 is mil-preserving and M is FX-nonsingular.
(Note that our condition on .# now is that of irreducibility over .%°, not over
BN} Tt therefore follows from Theorem 6.2 that .# is even dimensional
(and therefore integral). Since X is integral on & (which follows from the fact
that x is integral on #), we can finally conclude that X is integral on .#"! This
being true for all irreducible subquotients .# of the S-module .2/# (in
particular, for those defined by a composition series), it follows that x is integral
on #/%. But x was chosen integral on #. We conclude that x is integral on .%Z.
Since «x is also regular in &, it follows that ¥ = %(ad x) + 23:11 Z(ad x) =
H + Zf:ll o, = L™, so that & is toral rank 1. J

6.5. Conjecture. For p >> 7, the only simple toral rank 1 Lie algebras .&
such that every solvable subalgebra of % is triangulable on L are isomorphic
to S LF or W, F.
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The only simple toral rank 1 Lie algebras ( p > 7) other than ¥ %F and
W,F are the Albert-Zassenhaus algebras #(G, 6) (see below) and the toral
rank 1 Block algebras (G, f) of type G = G, and (G, £, 8) of type G = G,
described in Block [5]. This is proved in Wilson [15, 17]. If % is a Zassenhaus
algebra & = (G, 0), then G is a finite subgroup of (F, +) of order p” (n =2),
6 is a homomorphism from G to (F, +), and & has basis y, (x € G) over F
and product [x,, xs] = ((B(8) + 1) — B(6(cx) + 1)) Xaup. It is clear that
Fy, is a Cartan subalgebra and the corresponding root spaces are the Fy, (x € G).
We claim that 4(«, 8) == 8 modulo the span of « over the prime field = of F
for some nonzero «, B € G, where d(x, ) = aB(B) — BO(x). To see this, take
a, € G, to be linearly independent over the prime field #. If 4(x, B) = B
(modulo 7a), replace o by 2« and note that 42, ) = 24(«, B) = 25 (modulo #a),
whence 4(2a, B) = B (modulo 7). Thus, there exist o, 8 € G with 4(x, B) £ 8
(modulo 7o) (e.g., the 2«, B € G described above). For such « and 8, the cofe-
ficient o(0(8 4- ix) + 1) — (B + ia)(8(c) + 1) = ab(B) — BOH(a) — B — (f — 1)
of y, + (8 + af) in the product [y, , xp...] cannot be zero for any 7 (0 < 7 <
p — 1); for otherwise 0 = A(e, §) — B — (i — 1)aand A(«, B) = B (modulo 7).
It follows easily that ad y, is not nilpotent on Fy; + - + Fxg,(p-1a - On
the other hand, # = Fy, + Fy, is a solvable subalgebra of %, which cannot
be triangulable on % since ad y, is not nilpotent on .¥. We conclude that
the Zassenhaus algebra £(G, 0) is not s.s.t. and is therefore not E.1.

It remains only to prove Conjecture 6.5 for the toral rank 1 Block algebras
ZL(G, f) of type G = G, and ZL(G, £, 8) of type G = G;. One can reduce
proving the conjecture to the case | G| = p% so that dimL(G, f) = p% — |
and dim #(G, f, 8) = p* — 2.

If Conjecture 6.5 is true, we would have the following theorem.

6.6. THEOREM (assuming 6.5). For p > 7, the only simply toral rank 1
E.t. Lie algebras £ are isomorphic to S LF or W, F.

Proof. Suppose not, and let £ be a counterexample of minimal dimension.
Then every (proper) simple subquotient is E.t. (cf. Proposition 5.2) of lower
dimension than that of L and is therefore isomorphic to S ZF or #,F by the
minimality condition on the dimension of .#. Thus, % is toral rank 1. Since
#Z is E.t. and therefore every solvable subalgebra of Z is triangulable, it follows
(assuming 6.5) that .# is isomorphic to L EF or #,F. |

7. RESTRICTED AND SEMIRESTRICTED CLOSURES APPLIED
TO (QUESTIONS OF SOLVABILITY

In this section, we assume that .# is a subalgebra of a restricted Lie algebra ..
The restricted closure £ of ¥ is the intersection all restricted subalgebras
of .# containing .%. Since the normalizer 47(¥) of ¥ in .# is restricted,
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& isanideal of Z. Since [A#(F), L] C %, it follows easily that [4(F), L] C ¥
and, in particular, that [Z, L]C¥. Thus £[¥ is Abelian. In particular,
& is solvable if and only if L is solvable. Moreover, if & — £, 0 %,D - isa
series of ideals of ¥ such that [%,, £JC %, for all 4, j, then one sees suc-
cessively that [%,, £]C %, and [Z,, L]1C %, CZ,,. It follows easily
that 2 is nilpotent in the closed sense that the series P* = P, P+l = [P, P1]
terminates with {0} if and only if L is nilpotent in the usual sense. Using Jacobson’s
theorem on weakly closed sets [11], we also see easily that 2 is nmil (that is,
every element of .Z is nilpotent in %) if £ is nil, from which it easily follows
that . is triangulable if £ is triangulable, ¥ being triangulable if £V is nil
(ct. [19]).

The following theorem is taken from Winter [19].

7.1. Turorem. Let # be a Cartan subalgebra of L. Then P — # + .

Proof. For xe Z(ad #), ad x* stabilizes all of the Z(ad #), so that
0 = [ad .7, ad x?] = ad[.7, x*] where 7 is the maximal torus of 5. Thus,
0 = [7.[7, x"]], whence x"e Fad T) = H#. Since #»CH#, it follows
that # | % has a basis of elements whose pth powers lie in 3# + Z. Thus,
A+ ¥ is a restricted subalgebra of .# by Jacobson [10y. 1

The above thcorem and proof show that £ can be constructed by taking
any Cartan subalgebra 5# of %, taking any maximal torus J~ of .Z containing 7,
(the set of semisimple elements of #°), and letting 5 be the Lie p-algebra
generated by .7 and {x” | xe £(J) for some o}. Then L = # 4 &, and
SF is a Cartan subalgebra of 2 which can also be described as the centralizer
in Z of 7 by [20]. In passing from J# to 5, the root space decomposition
S LA )is vefined: L(H) = T o, BT )and H# — Lad H) — Sy Had T,
sometimes nontrivially (e.g., see Examples 2.13 and 3.3 where #(ad 7) C o#.
Regard this Lie algebra & as imbedded in the Lie p-algebra Der & via ad).
Here, f € « means that B(h,) is the scalar through which £, acts on £ (ad #)
for all he .

7" being as taken above, & = .7 + F - L is semirestricted with respect
to its Cartan subalgebra # = T + ST ) in the sense of Schue [12]: o is
restricted, (ad A)"x == [A#, x] for all he H#, xe ¥ and (ad x),ead J for all «
and all x e £ (7). Here, S is the restricted closure of J#. We call &, # a
semirestricted closure of £, .

We now direct these considerations to the problem of showing that an arbitrary
Lic algebra ¥ with Cartan subalgebra 5 is solvable if 4, is nil on .& or if
L0 = - Zi]:ll &, is solvable for all a. (See questions 2.12, 3.4.) For
this, we may assume with no loss of generality that ¥ has center 0, by methods
such as those in [20]. We then imbed & in the restricted Lie algebra Der &
via ad. That is, we may assume that & is contained in a restricted Lie algebra
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in such a way that ad x is nilpotent on L if and only if x is nil in the restricted
Lie algebra containing £ .

We claim that if # is triangulable on .% and S, is nil, then 5 is triangulable
on # and £, is nil on 2, £, # being a semirestricted closure of &, 5.
This shows that the problem of showing that “‘H triangulable on £ and
is nil on £ tmplies that £ is solvable” reduces to the same problem for semirestricted
Lie algebras. Since S# = T + H(T) where #(T ) is certainly triangulable,
A is triangulable since .7 centralizes (T ). And B, = Yo, [HH ] +
2o 2pea [ZAT), L ,(T)], the subspaces [#5, # ], L(T) being nil on &
by the conditions [, #] nil, #, nil, respectively. Thus, #, is nil by the
theorem of Jacobson [7] on weakly closed sets.

Using the semirestricted closure .2, #, we also see that the problem of showing
that “if ¥ is a Lie algebra with Cartan subalgebra H such that ¥ - H +
Z;:ll Z.; is solvable for all o, then &£ is solvable” to the same problem for semi-
restricted Lie algebras. To sce this, observe that Z® — # + Zf’_ll (T
is contained in I~ + # + Zf:ll Z.(T) for B € «; so that if all £ are solvable,
then all .7~ 4+ £ are solvable and therefore all Z® are solvable.
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