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Introduction 

In general the mathematical model for steady, one-dimensional 

conduction in fins appears as a nonlinear, two-point boundary- 

value problem. The nonlinearities arise due to radiative surface 

heat transfer, temperature dependent thermal conductivity or heat 

transfer coefficient etc. [i]. Often in such cases a numerical 

solution has to be obtained. Examining the literature reporting 

such solutions it appears that the most commonly used numerical 

scheme is based on a standard shooting technique in which a 

succession of guessed values of the missing initial derivative 

are used until the solution which satisfies the specified boun- 

dary condition at the other end is obtained. The disadvantages 

of this iterative process are long computing time, sensitivity of 

the solution to guessed initial condition and occasional lack of 

convergence. With the development of method of transformation 

groups, it has been possible, in some problems, to overcome these 

difficulties. The method transforms a boundary value problem 

into an initial value problem which can then be integrated in one 
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sweep without iteration. The present paper demonstrates that 

this efficient, noniterative scheme can indeed be applied 

successfully to fin problems. A detailed description of the 

method and its application to other engineering boundary value 

problems appear in a very recent book by Na[2]. 

To demonstrate the applicability of the method, a general 

boundary value problem is formulated for one-dimensional conduc- 

tion in a straight fin of uniform thickness. The model allows 

for temperature-dependent thermal conductivity and for simul- 

taneous convection and power-law radiation both from the faces 

and the tip. Using a linear transformation the problem is re- 

duced to an initial value problem which can be subsequently integ- 

rated numerically in one sweep. Sample numerical results are 

presented for three special cases: (i) a purely radiating fin 

with temperature dependent thermal conductivity (ii) convecting- 

radiating fin with constant thermal conductivity (iii) a horizon- 

tal fin heated due to laminar film condensation on its surfaces 

(temperature dependent heat transfer coefficient). These results 

match very closely with those obtained via the conventional 

shooting technique. 

Fin Boundary Value Problem 

Consider a straight fin of length L and thickness w at cons- 

tant base temperature T b. Let the perimeter and cross-sectional 

area be P and A respectively. The fin is assumed to lose heat by 

convection to an environment at temperature T with heat transfer a 
coefficient h for the top and bottom surfaces and h for the 

e 
tip. Additionally, allowance is made for power-law type radia- 

tion from both the surfaces and the tip to a sink at temperature 

T s. The surface emissivity for radiation is denoted by Eg. The 

general form of the power-law term encompasses the cases of (i) 

constant-property radiating fin, (ii) radiating fin with thermal 

conductivity and emissivity varying as powers of temperature [3], 

(iii) convecting fin with temperature-dependent heat transfer 

coefficient, a situation which arises when the fin is cooled by 

natural convection, film boiling or nucleate boiling [4] or 

heated by laminar condensation on its surfaces [5]. Since the 
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effect of temperature dependent emissivity is much smaller com- 

pared to that of thermal conductivity [6], only the latter is 

assumed to vary with temperature. A linear variation of the 

form 

k = kr[l + 8(T - Tr) ] (i) 

is assumed. Based on the foregoing the boundary value problem 

governing the fin temperature distribution can be written as 

{ de} 
d~ [i + ~(8 - 0r)] ~ - N 1 (0 - 8 a) 

- N 2 (8 m- 0 m) = 0 (2) 

d_~8 = _ HI(0-0a)+H2 (Sm -0~) 
X=0, 8=i, X=l, dX 1 + ~(0-0 r) (3) 

N 1 = hPL2/kr A, 

= 6T b, H 1 =heLlk r 

where 0 = T/T b, X = x/L, 

Tbm-i N 2 = Ego pL2/kr A, 

and H 2 = EgO Tb m-I L/k r. 

Solution Method 

To reduce equations (2,3) to an initial value problem, we 

introduce the linear transformation 

e I - e 2 - 
X = C X, 0 = C 0 (4) 

where -C is taken as the missing initial derivative i.e. 

C = _ ~d~ X=0 and e I, e 2 are constants to be determined. Subs- 

tituting (4) into (2,3) the transformed equations remain indepen- 

dent of C provided 

~I = - i, e 2 = 0, N1 = N1/c2' N2 = N2/C2 

... (5) 
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Since N1 = N1 C2 and N2 = N2 C2 it is observed that N1/N 2 = 

Nl/N2,which means this combination of physical parameters is 

invariant under the transformation. As suggested in [2,7] we 

put 

N1 N1 
- - n (6) 

N2 N2 

The transformed equations now appear as 

ddx {[l+9(e-Sr)] d~xS-}- N2[n(8-Sa)+ (era-8sm)] = 0 (7) 

= 0, e = i, x = o, --de = - 1 (8) 
dX 

Equations (7,8) are to be integrated until the condition 

d~ 

d~ 

HI(~ _ ea ) + H2(~m _ 8 m) 

X[I + 9(8 - 8r)] 

(9) 

is satisfied at a certain X. This value of X equals C in accor- 

dance with (4). The solution procedure is as follows: 

(i) Assign values for n,9, H I , H2,ea,Ss and m depending 

upon the problem. 

(2) Assign a range of values to N2 and integrate (7) subject 

to (8) until (9) is satisfied. The value of X at this 

point equals C. 

(3) Obtain the corresponding values of N 2 and N 1 from 

N 2 = N2 C2 and N 1 = n N 2 

Sample Results 

To illustrate the computational scheme, results are presented 

for three special cases. 
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Case I: Purely radiatin9 fin with temperature 
dependent thermal conductivity 

For this case, N 1 = 0, m = 4. 

and insulated fin tip i.e. HI=H2=0. 

de ~4 
d__ [(i + 9~) --j] - N2 = 0 
d~ dX 

Further assume e = 8 = 0 
r s 

Equations (7,8) reduce to 

(10) 

= 0, 8 = i; X = 0, d_~e = _ 1 (ii) 

d~ 

The integration of equations (i0,ii) is carried out until d_~8 = 0 
dX 

where X = C. For numerical computation the values of v chosen 

are - 0.5, 0 and + 0.5. For each v, a set of values of N2 are 

chosen and integration carried out to obtain the corresponding 

set of values of C. The values of N 2 follow from N 2 = N2 c2" 

The fin efficiency n is related to C as follows 

n = (i + 9)C (12) 
N 2 

For brevity, results for temperature distributions are omit- 

ted and only the values of C and corresponding values of ~ are 

presented in Table i. To check the accuracy, values of C and N 2 

were used to integrate the original untransformed equation and 

the insulated tip condition was always found to be satisfied 

within 10 -5. As seen in Table 1 the values of N 2 are not syste- 

matically spaced but this is not a serious drawback because one 

can readily interpolate either graphically or numerically. The 

question of choosing the range of N2 to cover the desired range 

of N 2 is easily resolved with a few trials. 

Case II: Convectin~-radiatin~ fin with 
constant thermal conductivity 

For this case,9 = 0, m = 4. Assume 

and insulated fin tip i.e. H 1 = H 2 = 0. 

e r =e =0 = @a s 
Equations (7,8) become 

d2~ 
dX 2 N2(n 8 + ~4) = 0 (13) 
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= 0, 0 = i; x = 0, d0 _ 1 (14) 
d~ 

Following the procedure outlined for case I equations (13,14) 

are integrated numerically until d_~ = 0 where X = C. Results 
dX 

of calculations for n = 0.i, 0.5 and 1.0 are given in Table 2. 

In this case n is related to C as follows 

C 
= ~;'l+n'N2 (15) 

Remarks made earlier regarding the check on accuracy, the uneven 

spacing of N 2 values and the choice of range of %,also apply 

here. 

Case III: Horizontal fin heated by 
laminar condensation 

Lienhard and Dhir [5] have shown that a fin can be effective 

in supporting condensation. For a horizontal, the average heat 

transfer coefficient is of the form 

-0.25 
h = n (Tsa t - T) (16) 

where Tsa t is the saturated condensate temperature and n is 

a constant which can be determined using Nusselt-Rohsenow theory 
3 

[5]. By putting ~ = N 1 = H 1 = H2=Ss=0, N 2 = E, m = ~, 

equations (2,3) reduce to the form given in [5]. The parameters 

8 and E follow their definitions in [5]. The transformed equa- 

tions become 

d28 ~ ~3/4 = 0 (17) 

dX 2 

= 0, 0 = I, X = 0, d_~0 = _ 1 (18) 
d~ 

As before equations (17,18) are integrated numerically until 

d~0 = 0 where X = C. The value of E follow from E = E C 2 . In 
dX 
this case n is related to C as follows 

n = C/E (19) 
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Table 3 records the values of C and n for a range of values of 

E. A plot of n versus E from present data virtually coincides 

with the plot in [5] which is based on shooting type numerical 

solutions. 

Concludin@ Remarks 

With the use of transformation groups, a large class of non- 

linear fin boundary value problems can be reduced to initial 

value problems and subsequently integrated without iteration. 

Since the method dispenses with the guess work associated with 

the shooting technique, it is computationally more efficient. 
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TABLE 2 
Values of C and n for Case II 

n 

0.i 

~2 C N 2 n 

6.75 0.1598 0.1723 0.8431 
6.25 0.1800 0.2025 0.8081 
5.75 0.2000 0.2300 0.7905 
5.25 0.2198 0.2535 0.7882 
4.75 0.2497 0.2961 0.7666 
4.25 0.2999 0.3822 0.7133 
3.75 0.3598 0.4854 0.6738 
3.25 0.4700 0.7179 0.5952 
2.75 0.6599 1.1976 0.5009 
2.25 1.2700 3.6290 0.3181 

0.5 4.8 0.1599 0.1227 0.8688 
4.4 0.1695 0.1264 0.8940 
4.0 0.1999 0.1599 0.8334 
3.6 0.2196 0.1736 0.8433 
3.2 0.2597 0.2159 0.8019 
2.8 0.3097 0.2686 0.7686 
2.4 0.3898 0.3647 0.7125 
2.0 0.5300 0.5618 0.6289 
1.6 0.7999 1.0238 0.5209 
1.2 1.9200 4.4237 0.2893 

1.0 2.6 0.2300 0.1375 0.8364 
2.4 0.2498 0.1498 0.8338 
2.2 0.2799 0.1723 0.8122 
2.0 0.3097 0.1918 0.8073 
1.8 0.3598 0.2330 0.7721 
1.6 0.4299 0.2958 0.7267 
1.4 0.5199 0.3784 0.6870 
1.2 0.6699 0.5386 0.6219 
1.0 0.9399 0.8835 0.5319 
0.8 1.6699 2.2309 0.3743 
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TABLE 3 
Values of C and n for Case III 

C E 

1.0000 1.6499 2.7221 0.6061 

0.9500 1.8999 3.4290 0.5540 

0.9000 2.3999 5.1835 0.4630 

~'0.8900 2.6200 6.1093 0.4288 

0.8800 3.0600 8.2400 0.3714 

0.8790 3.1500 8.7219 0.3612 

0.8780 3.2700 9.3884 0.3483 

0.8770 3.4400 10.3781 0.3315 

0.8760 3.8200 12.7829 0.2988 

0.8759 3.8900 13.2542 0.2935 

0.8758 4.0000 14.0128 0.2854 

0.8757 4.1600 15.1545 0.2745 

0.8756 4.6700 19.0959 0.2445 


