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Abstract—In an earlier paper the authors presented results for eigenfunction—expansion solutions
to the forward Fokker-Planck equation associated with a specific, non-linear, first-order system
subject to white noise excitation. This work is concerned with eigenfunction-expansion solutions
to the forward and backward Fokker-Planck equations associated with a specific, non-linear,
second-order system subject to white noise excitation. Expansion terms through the fourth-order
have been generated using a digital computer. Using this new information, inverted Domb-Sykes
plots revealed a pattern in the coefficients for certain values of the parameters. Through this pattern,
Dingle’s theory of terminants was used to recast the series into a more favorable computational
form.

I.LINTRODUCTION

In his review article Caughey [1] outlined an eigenfunction expansion procedure for
obtaining the response statistics of a weakly non-linear, second-order system undergoing
white noise excitation. The present work builds on and extends Caughey’s outline for a
specific second-order, weakly non-linear system. This is achieved by means of tools devel-
oped elsewhere for the analysis and improvement of perturbation series (see Van Dyke
[2]). Also, the theory of terminants developed by Dingle [3] is utilized.

The eigenfunction expansion procedure presents the response statistics as perturbation
series. The spirit of this approach is to obtain a sufficient number of computer generated
terms of the series that a pattern, if it exists, emerges for the series coefficients. This pattern
is then used to recast the expansion into a more favorable computational form. Using this
approach, new information is presented on the steady-state, mean square response of a
specific second-order system to a white noise excitation. In an earlier paper [4], the authors
gave results for a first-order system.

2. EIGENFUNCTION EXPANSION SOLUTIONS

The system considered is

d?x dx a_
rir +Ba?+x+ex =n(t) (1)

with initial conditions
x(0)=x,

x(0)=x, @
where X =dx/dt.

Here ¢ is a small parameter and n(t) is a white noise process with the properties:

(i) n(z,),i=1, 2, ...are mutually independent,

(ii) n(t) has a Gaussian probability distribution with E[n(t)]=0, E[n(t)n(s)]=2D(t —s),
E denoting expected value, 6 being the delta function and D a constant which measures the
white noise intensity.
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The response x is modeled as a Markov process and the forward and backward Fokker—
Planck equations associated with equation (1) are respectively

dp _

-a;—LP 3)
[7) .
o, Lp (4)

where L and I* represent the following spatial operators

L——'—Q¢ﬁ(ﬁ'+ +ex®)+D i (5)
ST TR T XTEX ox?
.0 . 0 c?
* v Hh_
*=x, e (Bxo+ xo+8x3) %e +D o (6)
and the transition probability density p(x, X, t|x,, X,) must satisfy
lim p(x, X, t|xg, Xq; €)= 8(x — X)X — X) (7)
=0
J J P(x, X, t]xq, Xo; e)dxdx =1 (8)
lim J‘J- plx, X, leo, Xo; E)P(xg, Xo)dxqdxy=p(x, X) (9)
t—0

for any continuous function ¢(x,, X,). The region of definition of {x, x} will be taken to be
infinite and boundary conditions for the FPK equations are not necessary since an infinite
time is required for any sample path of {x, x} to reach the boundary.

It can readily be shown that the steady-state solution of the FPK equation is

CXPI:—i(x'Z+x2+e£>}
2D 2 ] (10)
J]exp[ (’1 +n*+e ):Idfld’?

The non-steady state solution of the FPK equations is sought in the form

px, X; €)=

p(xs xs t|x07 x()s 8)= Z C"juu(x, X, S)Ui](xo, XO’ 8)7:‘,‘([, 8). (11)
i,j=1

Substituting this expression into (3) and (4) gives

TAt; &) =exp [ —Afe)] (12)
Luyfx, %; &)+ 4 {e)u, {x, X; £)=0 (13)
L*v,{x, X; £)+ A ) {x, X¢; €)=0. (14)

Caughey [1] notes that (12) through (14) define an eigenvalue problem where u;; and v;;
are the eigenfunctions of L and L*, respectively, and 4,; are the corresponding eigenvalues.
Furthermore it can be shown that L and L* are adjoint in that

”‘ (u;Lv;j—vi;*u; Jdxdx =0

so that L and I* have the same eigenvalues. o
It is convenient to substitute for L and its eigenfunctions y;; the operator G and its eigen-
functions w;;, where

Gwij=ps—1Lpswij’ wij=ps_1uij' (15)
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Then G and L* will be adjoint operators with respect to the following inner product

(£.9)= [[ pioc 2:.911x, % i %: haxaz (16)
By (5) and (15) we have
G= —xa —(fx—x— 8x3) .4+ D =— az (17
- ox ' 7 ox?

Equations (6) and (17) show that I* can be obtained from G by replacing x by —x. Their
eigenfunctions are then related by

wiix, X; &)=v,{x, —X; €). (18)

Assume the eigenfunctions form a complete bi-orthonormal set subject to the normalization
conditions

J‘J’ ps(x, x-; S)W,-J(X, x’; E)Uk,(x, Jé; S)dxdx = 5ik5jl (198)

jj pdx, X; el fx, X; e)v;{x, X; e)dx dx=1 (19b)

where J,; denotes the Kronecker delta.
When w;; is substituted for u;; the initial conditions and normalization conditions
indicate that the non-steady-state solution can be written

px, X, t|xq, Xo; €)=px, X; ) Z wi{x, X; €) X v;{Xq, Xg; €) exp[-—l &) (20)

where for the existence of py(x, X; €) it is necessary that
Agole)=0 @D
and
UgolX, X5 €)=wqe(x, X; €)=1. (22)

The spatial operators G and I* are now written in the forms

G=G,+:G, 23)
[*=L%+eLt 24)
where
. 0 ; 0 02
Go= —xa —(fx—x) a'ﬁ'Dé‘;z (25)
i)
=3 7
G=x' L 26)
, 0 5, 9*
L3=x-6; —(fx+x) ax+DW (27)
0
__y3d 2
L=-»2. 28)

Then (13) and (14) can be written
(Go+eG)wifx, X; )+ 4 {e)w;{x, X; €)=0 (29)
(L§ +eLY)ifx, X; &)+ A, fe); {x, X; €)=0. (30)
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Now expand w;{x, X; &), v;{x, X; &) and 4;{e) in the forms

W,-_,-(x, x’ £)= Z) W‘*jk(x, X)Ek (31)
K=o
vidx, X; &)= kZO v, x)e* (32)
Aife)= Z iijkgk Lj=12,.... (33)
k=0

Using (31) and (33) in (29) and equating the coefficients of like powers of € to zero results in

Gowin+ G Wi - 1)+
k

jingk

SN —k—DA w;=0 N=0,1,2,...

0

where a negative subscript indicates a zero value of the entire subscripted quantity. By
using the properties of the delta function and rearranging we obtain

Gowijo+4ijoWijo=0 (34a)
Gowijn+AijowWin=—G Wijin-1)— kil AW — iy (34b)

Likewise using (32) and (33) in (30) results in
L3vijo+ 4ijovijo=0 (35a)
L3vijn+ Aijovijn= — LI -1)— kil Aiplijo - vy (35b)

Equations (34a) and (35a) are the equations for the eigensolutions of the system for ¢=0.
Assume that the eigenvalues of (34a) and (35a) are discrete and distinct. Then from (2)

J‘J‘ ps(x, X)Wuo(x, X)v“o(x, x)dxdx = 5ik6jl (36)
J‘J‘ ps(x, X)U,JO(X, X')GOW,‘,O(X, x)dxdx= —iijoél'kéﬂ (37)
J.J. ps(x, .X.)W,'jo(x, X)Lavuo(x, X) d.x = _iijoéikéjl' (38)

The eigensolutions of the system for ¢ =0 are those corresponding to the two-dimensional
Hermite equation. By using the change of variable

{=x/{/D (40)
and by defining
§=p/2 (41)
v=\/zz_—1 (42)
pi=E&+v (43)
Hp=E—v. (44)

Atkinson [5] has demonstrated that the eigensolutions of (35a) are

Aijo=Hyi+ ) (453)
and

vi0(l, 0= Ci;Gif1. L) (46)
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where
__(__l)i/z v\1/2
and G; is the Hermite polynomial
v o't
Gifly, ()=(=1)" exp(¢/2) énonl [exp (—¢/2)] (48)
where
¢=280¢*+Y) 49)

and the coordinates ({,, {,) and n,, n,) are related to ({, {) via the transformations
- £
{Cz - w2uy? )¢ 50)
ml_ [E]-u'?  wi?]fC
{712}— v [ pi? —pd \Ef G1)

The second eigenfunction, that for (34a), can be expressed in terms of the other of the

Hermite polynomials by using (18), (50) and (51). It is
wioll, O=(—~1YCyH {L,, L) (52)

and

where
Hifls L =(= 1" exp (#/2) 65—& [exp (—$/2)]. (53)
2

The eigenfunctions for the e =0 system form a complete, bi-orthonormal set of functions.
When ¢+ 0, but small, one may think of the process as perturbing the ¢=0 eigensolutions.
Within this conceptual framework the following expansions are set forth (see Courant and
Hilbert [6]):

Winlx, X)= Z i jimWimo(Xs X) (54)
i,m=0
and
uk(x X Z buklmvlmo(x’ X) (55)
Im=0

Two requirements on a; j,,, and b, ., present themselves immediately. First, (54) and (55)
lead to

Qijoim= bij01m= 5;‘15,'".- (56)

Second, the existence of p(x, X; €) requires wy,=veo=1. By using (22), (31), (32), (54),
(55) and (56) we have

Ao0um=boom=10 k=1 (57)

A recursion relation for the coefficient a;;,, can be developed by using the expansion
(54) in (34b). If each term in the resulting equation is multiplied by v,,,p,, integrated over
the entire space and summation is interchanged with integration then (36) and (37) can be
used to give

- Z auNlm}'rsoérlasm-l' z auNlm'q'uOérlasm

Im=0

@

== Z au(N l)lm(vrsO’ le!mo Z Z au(N k)lm ukérlalm (58)

im=0 Lm=0k=1
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where (—, —) is the inner product defined as

(u, v)= J' f px, X)u(x, X)o(x, X)dxdx. (59)

By using properties of the delta function, (58) can be written as

o) N
aiers('lijo—"'{rsO)= - Z aijiN- l)lm(vrso? G 1 Wimo) — Z aij(N-k)lm"{ijk' (60)
Lm=0 k=1

Performing similar operations on (35b) gives
@ N

biers(/lijo—‘/lrso)= - Z bij(N- l)lm(wr507 Lfvzmo)‘— z bij(N~k)rslijk' (61)
k=1

Im=0
By requiring i#r and j# s in (60) and (61) and then allowing i=r and j=sin these equa-
tions, the following recursion relations result:

1 [ «© N ] ) )
aier:=TT Z al’j(N~1)lm(vrsO’ lelm0)+ Z aij(N-—k)rsA'ijk]’ 1%",]#5 N= lw 2~~
rsO ~2ijo Lim=0 k=1
(62)
1 [ o N )
biers=l ) Z b.’j(N~ l)lm(WVSO’ LY01mo) + Z bij(N—k)rs)'ijk]’ i#rj#s N=1,2, ..
rsQ ijO Lim=0 k=1
(63)
AijN': “% Z [aij(N— 1)lm(vij0a G, Wlm0)+bij(N— l)lm(wijoa LTU(mo)]
Im=0
N-1
"% Zo [aij(N—k)ij+ bu(N-k)ij])*ijk N=1,2,.... (64)
k=

The recursion relations for a;jy;; and b;;y;; must now be derived. Begin by applying (40)
and (41) to the normalization conditions (19) and to the steady state density (10) to get

D J f P G ewifL, G Bull, §; e)dldl=6,3,, (65)

D J' f pdl. G ewi L, & gL, G edldl=1 (66)

Pl bym P [-UC+TeDY2) (67)
D ff exp [ — & +n? +eDn*/2)])dndr

{2, exp [ —ax?]dx=./(n/a) to get

exp [ — &% + (V]2 o (—EDL4/2)e )

. 68
DJ(mE)EE . o —ED2V(Em") T2 exp [ — EntTn"dn (68)

pdC, Lse)=

Evaluate the integral in the denominator and perform the indicated division of series
to get

P Eo=pL ) T (:2—0) & " g pengrem )

!
nm=0 n-
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where B,, is defined by

By=1
B,,,=—Z AB, _; m=1 (70)
i=1
and
1 i=0
A= . 71
! {1'3-5---(4i—1)/4'i! i#+0 (1)
and

pdl, O=pSL E;0).
Consider (65). Use (31), (32), (54), (55), (59) and (69) in (65) to get

4 n+m rn—m @
D Z (— g) g;'_ B"‘ Z al'.iPrsbqulu (C4nwr30’ vlu0)£"+m+p+q=5"‘5ﬂ' (72)
nm=0 . prs.qtu=0
Let i=k and j=I. Group according to powers of ¢ and set the coefficient of ¢° equal to
unity and the coefficients of all higher powers of € equal to zero. It can be shown by (56)
and (59) that the coefficient of &° equals unity. Consider coefficients of ¥, N> 1. Equation
(72) becomes

N D n+m én—m
D X 5(N—n—m-p—q)<~5) ~—B,
n,m,pqg=0 n.

X Z aijprsbithu(c4"wrso’ UIMO) = 0 N> L. (73)

r.su=0

Performing similar operations on (66) results in

N n+m gn—m
D Y 6(N—n—m—p-—q)(—D> %—Bm

n,m,p,g=0 2

x Z bijprsbiquu(c4nvr50’ V10) =0 Nz=1 (74)
r,s,6,u=0

By systematically isolating a;y;; and b;;y;; in (73) and (74) and using (56), (59) and (70),
the definition of the delta function, and orthogonality properties of Hermite polynomials
the recursion relations for a;y;;and b;y;; can be obtained. The recursion relations are quite
lengthy due to the multiple series in (73) and (74). For convenience they are contained in
the Appendix.

The recursion relations for the eigenvalues and eigenfunctions can be used once the inner
product expressions have been evaluated. Before doing this an expression for the mean
square response of the system will be developed. The response is assumed to be a stationary
Markov process. Its autocorrelation function is

Ro(1)= m f X XDl g 4T X o 010,05, 0%, (75)

-

Introduce (20) and (40) into (75) and use the Markov property of the response to get

Ru0=D ﬁ CndPdlove Eraei )

xS Wiflove Coaet D0AL0 £ ) xp (= Adyle))]

i,j=0
@

x [Py C.r; €) Z Wil Ce C.x; 1 (S éo; &) exp ( —_lkl(s)t)]dctdéldgx+tdét+r‘ (76)

k=0
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Since the response is stationary R,,(t)=lim R_(1), a fact that affects only the second
t—w

[ =] term in (76) which reduces to p({, {,: ¢) by using (22) and (45). The autocorrelation
can now be written as

Ra(t)=D° T afa)ffo) exp [~ 77)
where .
1) = ﬁ Pl L Xl £ 2L, 78)
and N
Bs0r= ([ pto Lot € acidd, (79)
Therefore the mean square response is
R,(0)=D fo % fE)B. o). (80)

Consider «;;and §;;. From (46),(47),(48),(52) and (53) it can be shown that vy g9 =wggo = 1.
Using this along thh (31), (32), (54), (55), (59), (69), (78) and (79) become

s o} D n+m n—m
aij(s)= z <__> 5 B, Z aum(C ’So,vooo)gn+m+k (81)

nm=0 2 n k,rs=0

S DY én—m +1 n+m+k
b= L (-3 2 bisrs C2" Wo00s Drso)E . (82)

nm=0 krs 0

By using (81) and (82) R, .(0) can be written in the convenient form
Ru0)=D> Y Ay;" (83)

N,i,j=0

where Ay;; are defined by

N D n+m+p+gq
Anij= Y 5(N——n—m—p-—q—k—l)<— 5)

n,m,p,q.ki=0

§n+p m-gq

———— B,,B, Z ijmbijnu(C“ " 1W,500 Uooo)(c“’ " Wo00s Vruo)- (84)

r.stu=0

The recursion relatlons involve inner products of the forms
(C"Wum Ukio)s (C"U.‘jo’ Usio)s (vijo’ G Wuo) and Wijos LYvyo)-

It will be demonstrated that the inner products involving G, and L} reduce to the general
form ({"w,jo, Uxi0)- Equation (59) defines the inner product. By using (26), (40) and then (46)
and (52) with (59) we get

d

3t H,((,, {;)dedE. (85)

(O Grwao) =D~ 1PC,Cor [ [ &, 06t 2
Equations (28), (40) and then (46) and (52) with (59) give

v Livuo)= ~DH—1YC,Cu [[ PG OB G, G 57 Gultn Lokdtal 80

where C,; are given by (47) and ¢, ¢ and {,, {, are related by (50).
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Using (50) the partial derivatives in (85) and (86) are

] 1/2
3¢ Hulss L= (5) (u}” 5. Huds L+ a3 Hulls, cz) (87)
1
and
0 c 1/2 P
at Gully, ¢, )=(;> e T — G(ly, )+ 3 o 3, Gu(Cl,Cz)) (88)
1
From Appell [7] we have
0
a Gl §)=kG_ 1y, £2) (89)
1
51;_2 le(Cb C2)=leu— 1)(C1’ Cz) (90)
0 4 1
aC] Hkl(cl» C ) ; kH(k—l)l(gl’ Cz)" ; IHk(l—l)(Cp Cz) (91)
0 1 £
5C—2 Hkl(cl’ Cz)‘—‘ - ; kH(k— l)l(cl’ CZ)J"; IHku— 1)(C1, Cz) (92)

Finally, using (87) through (92) in (85) and (86) and then (46), (52) and (59) we get

2Ckl ¢ s —k 1/2 1/2y73
(vijo» GyWio)=D* —| = ——— (32 & — 3 K030, Wik— 1y10)

VY Cu-1x
+C TS THe (& Vijos Wi - 1)0)] 93)
k(i-1)
and
* — 1 £\ k 1/2 ! 1/2
(Wijo,leuo)— —D°Cy = (C Wijor Uk - 1)10)+ ( Wijos Uk - 1)0)
v Ci—1y Ck(l»l)

(%4)

Thus inner product evaluation reduces to developing expressions for ({"wjo, Uy) and
(£"0;50» Viso)- The development for ({"w; o, v4o) Will be outlined.
Set e=0in (67) to get

¢ :
Pl O=—7exp [-&¢*+ ) ©5)

Equations (46), (52), (59) and (95) combine to give

(EWijor b0} =(=1'CiiCu ;% U exp — &L+ H L1 £)GulLy, L)l (96)

From Appell [7] we have the relationships

e ™D (= 1) (—k, P(—1,7) v v
Gy, {z)=(5/")“‘ 2 ’go Erpl Hk—r(\/% C1>H1~r<\/',€_ ‘::) 97
min (i,j) ( _; .

where H () is the nth order Hermite polynomial in one variable, {,, {, and n,, 1, are defined

and

NAMOIS T D
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by (50) and (51), respectively, and (n, m) is Pochhammer’s symbol, defined by

[(n+m)
I'(n)

(n,0)=1 and (1, m)=m!, T'() being the gamma function.
We also have Appell’s general expression for the Hermite polynomial

m<n/2 (_l)m(_n’ 2m)

(n, m)= =nn+1)n+2)...(n+m—1) (99)

Z)= Z"—Zm.
H(z) ,.};o S (100)
Define the function E(n) as
0, n odd
E(n)zJ“” exp (— Ex?)'dx = J@/&), n=0 (101}
- 1'3.5...(’1_1)
W \/7!, neven

Use (50) and (51) in (96) to make the integral uniform with respect to variables of integra-
tion; then use (97), (98), (100) and (101) and the binomial theorem to give

) é é (i+j+k+1)/2 minz(i,j)nin (k1)
({"Wijos Vo) =(—1)'CijCu — (‘) Z
Y YR aD \ v 520 =0
(—-l)’(——l, S)(—j, S)(—‘k, r)(—l r) PSU—8)/2 qS(j—s)2 tstk—r)j2 us(l~r)2
X

¥ )3
& oris! o

p=0 q=0 t=0

x(——i+s, 2p—j+s, 2gK—k+r, 2L =14 r, 2ufi—s—2p)ij—s —2q)(k —r —21)!

(=2)pra+t*uplglely!
i—5—2p j—s—2qk-r-2tl-r-2u

x(—r—2u)! Y > ooy Y
a=0 =0 e=0 p=0
o+j—s—2q—P+o+1—r—2u—p i—s—2p—a+f+k—r-2t—0+p
1 2 HZ 2
alflolpli—s—2p—a)l(j—s—2q—B)Uk—r—2t—0)(—r—2u—p)!

(_1)i-s—2p—u+ﬂ#

x E(@+B+0+p)En+i+j+k+1=2(s+r+p+q+t+u)—a—B—0c—p) (102)

A similar development for ({"v; o, Uyy0) results in

é)(i+j+k+l)/2 min (i,]
r=0

(—-1)’+’(—i, r)(—j, r)(—k, S)(—l, s) ps(iz—r)IZ qSU=r)2 t<k—5)/2 ug(l-5)/2

. ¢
(€ Vijo» Vkio) = Cijckl ‘71‘:5 (;

n (k)
)
=0

3

r+s
f rls! p=0 q=0 t=0 u=0

(—i+r, 2pK—j+7r2gX —k+5, 2t =1 +5,2u)i —r —2p)(j —r — 2q) (k —s — 20)!'(/ —s — 2u)!
% (—2p e+ uplgliy]

i—r—2p j—r—2q k—j—-2tl~5s-2u
x LY X X
a=0 =0 =0 p=0
a—B+o—p+j+l—r—s—2q—2u —a+f—-0c+p+itk—r—s—2p-2
X Wy 5 Hy 5

x E(a+p+o+p)Em+i+j+k+1-2r+s+p+qg+t+u)—a—Bf—oc—p). (103)
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By means of (102) and (103), the recursion relations for the eigenvalues and eigenfunctions
and the perturbation expansion for the mean square response can be calculated to desired
order using a digital computer.

3. COMPUTER EXTENSION OF PERTURBATION SOLUTIONS

- The recursion relations to obtain the eigenvalues and eigenfunction expansion coef-
ficients and the formulas for the perturbation expansion of the mean square response were
programmed on the Ford Motor Company Honeywell 6000 computer. The programming
involved considerable effort, and the authors would be pleased to supply interested readers
with details on program listings and organization.

Because of the large number of multiple power series in these expansions the computation
time and cost of very high order perturbation expansions were prohibitively large. Fourth-
order expansions in the perturbation quantity & were carried out for white noise excitations
of intensities D =0.001 and 5.0. The value of damping factor £ was taken to be 2.0. This new
information on the coefficients of the perturbation expansion for the mean square response
is given in Table 1.

Table 1. Mean square response perturba-
tion coefficients for two values of the
intensity D and for the damping factor

£=20
D=0.001 D=50
a, 0.2499999E-03  0.1249999E01
a, —09418733E-04  0.3242193E01
a, —0.1697558E-03  0.4785780E03
as —0.7050253E-03  0.2856254E04
a, —0.4432641E-02  0.7554378E06

These results, valuable in themselves, can be made considerably more useful by means of
the theory of terminants advanced by Dingle [3], and recently used by Buchanan 8] in
a study on improvement of series representations. A basic aim of Dingle’s work is the
analysis and improvement of divergent asymptotic series, and inspection of Table 1
indicates that the series at hand are divergent. Each series is a single sign series for all terms
of order greater than or equal to unity, although of opposite signs.

Further insight can be gained by constructing Domb-Sykes plots, that is, plots of a, . ,/a,
vs 1/n, a feature impossible before this work since sufficient data was not available. Figures
1 and 2 show these plots. Figure 1 is a typical result for the Domb-Sykes plot of a divergent

8.0
6.0 |-
T
€ a0t
o
2.0}
0.0 ] J
0.5 1.0
I/n

Fig. 1. Domb-Sykes plot for mean square response coefficients, { =2.0, D=0.001.
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Fig. 2. Domb-Sykes plot for mean square response coefficients, £=2.0, D=5.0.

asymptotic series. Figure 2 is judged to be inconclusive toward establishing the analytical
structure of the expansion for D=5.0. It appears that, while all the a, coefficients for n> |
have changed from a negative to a positive value as D increased from 0.001 to 5.0, they have
not all increased at the same rate. This accounts for the large ‘dip’ in Fig. 2. Higher order
perturbation coefficients will be necessary before a stable relationship is established between
coefficient magnitudes for this D= 15.0 case. This will not be pursued further in this work.

Aninverted Domb-Sykes plot, that is, a plot of a,/a, _ ,, for the coefficients of the D = 0.001
expansion is shown in Fig. 3. This plot is typical for that of a divergent asymptotic series in
that a linear relationship between coefficient ratios is becoming established as n increases.
Here this pattern is developing for n>3. The information available from a fourth-order
expansion is obviously limited and conclusions must have some degree of qualification.
Nevertheless, it is known that a small number of terms can supply a close approximation to a
function represented by an asymptotic expansion, and the viewpoint is taken here that
results drawn from the fourth-order expansion will provide a close approximation to the
mean square response of the system.

The dashed line on Fig. 3 is the limiting slope towards which the inverted Domb-Sykes
plot is progressing as it approaches the origin. Graphically we obtain a,_,/a,=0.6(1/n),
behavior which is reproduced by taking a,=c(1/0.6)'n! where c is a constant and has been
calculated from the knowledge of the fourth-order coefficient to be c= —0.2393626E-04.
The general form of the coefficients for the D=0.001 expansion is now taken to be

a,= —0.2393626E-04 x ((—)—16) n! (104)
0.8
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Fig. 3. Inverted Domb-Sykes plot for mean square response coefficients. £ =2.0, D=0.001.
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With this information the theory of terminants can now be employed. (104) allows writing
4 ©
R,.(0)= Y a,e"—(0.2393626E-04) Y
n=0 n=3

the series, (83), as
—€
1
i (0.6)
where q, through a, are listed in Table 1.
Using Dingle’s terminant for a single-sign asymptotic series, (105) can be written in the
much more useful form

(105)

5 —
Ro0)= 3 a"—0. 23936265-04)(5')( ) KSo‘é) (106)
n=0 ‘
where the terminant A, a tabulated function, is given by
> {me”t
A (- 107
o(—X)= =5 ¢ (107)

P denoting principal value.

Dingle has also developed an absolutely convergent expansion for the A terminant.
Using this, an absolutely convergent representation for the mean square response can be
found and is given by

5[ (¢/0.6) (¢/0.6) (£/0.6)*
R, (0)= 2 a,e"—(0.2393696E-04)5!) (os) [— s {1+ ot }
_ (5/0.6) 020: (—&/0.6)(Y(t)—In (s/o.e))] (108)
50 5 t!
where
W= e+ 109
t)_m—)E (t+ ( )

I' denoting the gamma function.

For purposes of comparison, calculations based on (i) linear system, (ii) first-order per-
turbation expansion, (iii) second-order expansion and (iv) terminant expansion were
carried out for D=0.001 and for values of the non-linear parameter ¢ ranging between 0.01
and 0.3. Results are shown in Table 2.

Table 2. A comparison of mean square response according to the linear system,

first-order expansion, second-order expansion and terminant expansion for

intensity D=0.001, damping factor {=2.0 and various values of the non-linear
parameter ¢

Mean square response

Linear Ist order 2nd order Terminant

£ system expansion expansion expansion
0.3 0.249999E-03 0.2217437E-03 0.2064657E-03 0.1618777E-03
0.1 0.249999E-03 0.2405812E-03 0.2388836E-03 0.2377460E-03
0.06 0.249999E-03 0.2443487E-03 0.2437375E-03 0.2435284E-03
0.03 0.249999E-03 0.2471743E-03 0.2470215E-03 0.2469989E-03
0.01 0.249999E-03 0.2490580E-03 0.249041 1 E-03 0.2490403E-03

Several observations can be made. Note that for £<0.03 the linear portion of the system
is dominant and that the first-order expansion essentially gives the response of the non-
linear system. The second-order and terminant expansions adjust the accuracy for third or
higher order significant figures. As the non-linearity of the system increases a deviation
from linear response should occur, a result borne out by the data of Table 2 and the contribu-
tion of the terminant approach toward the accuracy of the mean square response calculation
increases. This is illustrated by € 20.1 in Table 2. Finally, when using a terminant approach
values of € must be used to insure the system is weakly non-linear since this is the mathe-
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matical basis of the perturbation solution. Large values of & can be expected to give erron-
eous results for perturbation expansions of any order as well as for a terminant expansion.
The value of ¢=0.3 in Table 2 is very likely the upper limit of the non-linear parameter for
that system.
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APPENDIX
Recursion relations

This appendix presents the recursion relations for the a, jx, ;and by ;; coefficients for the eigenfunctions of the weakly
non-linear, second order system described by (1).
For convenience of notation the following definitions are made:

(_D)n+m+ lén_mBm
. 2n*mp! )
Y, i jopogor, sl w)=b, b0l 00l O tolss )

Z(n. iy e g 1o S, 6 W) =0, b el T W0l &), UruolC. )

where (-, -) is the inner product (16), and D, ¢, B, v,40((, (:) and w,,,(C, C') are defined as before.
The recursion relation for b jy;; is

N N-1 =1 j-1
bin=—1% ZO Y (S(N—n—m—p—q)F,,,,,{zo Zo (Y, isjop,gorsc i)+ Ynoijop.g.iojor b
Am=0 p.q=0 r=0 s=
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i-1 x
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j-1

+ Y Ynijopogiss i)+ Ynoi o pq i o0y )+ Yin, i jopog. i j i j)]
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(Y, i po g bos i )+ Y00 fopuguin o iy )

+
M5

“
n

-
+
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5=0

-

+

.Mg lng
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"
+

+

(Y(n i j.p.gurj, i)+ Yn i j, pog.isjor, Y]

R

X
[Y(n,i,j,p,q,r‘s,i.j)+Y(n,i,j.p‘q.i,j,r,S)]}-—% Y  MN—n—m—p—qF,,
nmpg=0

+
L3t

r=i+l s= 1
i-1 i-1 j-1
x Yo ijpogrsitw+ Y Y (Y ijpgrstj+Yonijpgrjts)
r1=0 s,.u=0 rt=0 s=0
i-1 j=1 o
+ Y [Yijopogorostw+ Y jpogruts)
rd=0s=0 u=j+1
i-1 i—1 o

+ Yo ijop gttt LY [Yijpgrjtsi+Ynijpgrsi)
0

ri=0s=j+1



Solutions of a Fokker-Planck equation—II 55

i-1 i1 j-1
+ ¥ Z M ijopogors w+ Y 3 [Ynijpgrnsiu+Ynijpagisru)
rd=0 su=j+1 r=0 s.u=0
i-14-1
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i-1j-1 ©
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The recursion relation for a;;y;; 1s

aijnij= —bijnij+ 2{The right hand side of the recursion relation for b,y with Y(n, i, j, p. q. r. s, t, u) replaced by
Z(n i, j.p.g.r s tu).
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Resume:

Dans un article precedent (1), les auteurs ont prescnte des
resultats pour les solutions en developpement de fonctions
propres a l}'equation directe de Fokker - Planck associee a
un systeme particulier non lineaire du premier ordre soumis
a une excitation avec un bruit blanc. Ce travail concerne
les solutions en developpement de fonctions propres des
equations de Fokker - Planck directe et inverse associees

a un systeme particulier non lineaire du second ordre soumis
a une excitation avec un bruit blanc. Les termes du
developpement jusqu'au quatrieme ordre ont ete generes en
utilisant un ordinateur. Avec cette nouvelle information,
des graphiques inverses de Domb - Sykes revelent un modele
dans les coefficients pour certaines valeurs des parametres.
On a alors utilise avec ce modele la theorie de Dingle pour
refondre les series sous une forme plus favorabie au calcul.

Zusammenfassung:

Eine fruhere Arbeit der Verfasser (1) befasste sich
mit Losungen mit Eigenfunktionsentwicklungen fur die
vorwarts wirkende Gleichung nach Fokker und Planck,

die ein bestimtes, nichtlineares Systems erster Ordnung
unter Erregung durch weisses Rauschen beschreibt. Die
vorliegende Arbeit befasst sich mit Losungen mit Eigen-
funktionsentwicklungen fur die vorwarts und ruckwarts
wirkende Gleichung nach Fokker und Planck, due ein
bestimmtes, nichtlineares, durch weisses Rauschen erregtes
System zweiter Ordnung beschreibt. Unter Verwendung

eines Dgitalrechners wurden Entwicklungsglieder bis

zur vierten Ordnung bestimmt. Mit Hilfe dieser neuen
Information zeigt sich in umgekehrten Domb-Sykes Diagrammen
ein Muster fur die Koeffizienten fur bestimmte Werte

der Parameter. Dindles Terminantentheorie wurde benutzt

um mit Hilfe dieses Musters die Reihen in eine fur die
Berechnung besser geeignete Form zu bringen.



