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Abstract-Materials, such as elastic-plastic, which exhibit distinct regimes of response are usually 
modeled by different constitutive equations in each regime. The present paper explores a method 
for the construction of a unified constitutive equation from these separate relations. The main idea 
is to write this unified equation in an implicit form which contains these separate solutions as non- 
unique solutions. The form is chosen in order to utilize the notions of branch points and branches. 
Different solutions, corresponding to constitutive equations for different regimes of response, are 
then regarded as bifurcations at branch points from the fun&mental response. The choice of the 
appropriate branch at a branch point is governed by a selectivity condition which depends on the 
nature of the response under consideration. A detailed example is provided for elastic-plastic 
response, with and without the effect of strain rate dependence. 

I. INTRODUCTION 

Most of the constitutive equations which have been developed express the stress in terms 
of the history of the deformation gradient using operators which are in some sense very 
smooth. That is, in models for elastic and viscoelastic response, the operators are assumed 
to be at least differentiable. An important exception is the constitutive equation for elastic- 
plastic response. Here, one expression is given for the elastic range and another for the 
plastic range, along with a conditionality statement for switching from one to the other. 
The expressions for the two ranges can be interpreted, in a sense to be described more 
fully later, as branches of a single constitutive equation. Thus while the stress-strain rela- 
tions are continuous they are not differentiable everywhere, namely where the branching 
takes place. 

There are other phenomena for which the constitutive operator may consist of several 
branches. One example would be provided by a uniaxial stress-strain graph with kinks. 
This could represent the response of a matrix embedded with slack fibers. The initial part 
of the curve represents the response of the matrix. The kink is produced when the fibers are 
sufficiently extended so that they offer resistance. Another example would be associated 
with a uniaxial instability observed in polyethylene filaments. At a certain strain, the fila- 
ment undergoes a sudden redudion in diameter and becomes stiffer. The pre- and post- 
necked states have been regarded by Zapas [l] and Ericksen [2] as changes in material 
phase. Separate stress-strain relations apply to each phase. 

There have been studies of constitutive equations which incorporate branches into a 
single expression. The essential mathematical device is to write the constitutive equation in 
implicit form. This introduces a non-linear equation whose solution for stress in terms of 
strain is not unique. Morgan [3] considered equations of the form f(a, E)=O where f is an 
isotropic polynomial in two matrix arguments. The branches arise through a failure of the 
condition necessary for the stress to be found uniquely in terms of the strain. However, this 

study was confined to assumed or general forms of the implicit constitutive equation. It 
would be more desirable to have a constructive approach in which the various branches are 
combined into a single constitutive equation. One may then use this approach to model 
material behavior in the light of experimental results. One method of achieving this was 
presented by Bernstein [4] in a unified constitutive equation for elastioplastic response. 
The model relates non-linear differential operators on stress and strain. The Lipshit 
condition for uniqueness of the solution to this equation for stress in terms of strain fails to 

hold when the yield condition is satisfied. There are two solutions, one for elastic unloading 
and one for which the yield condition continues to be met. When unloading is to occur, 
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only the elastic solution is stable, while the same holds for the plastic solution during load- 
ing. Thus, the model not only has several branches, but also a preference for the branch 
which is appropriate to the solution. 

The purpose of the present work is to explore further the possibility of developing a 
theory for a unified constitutive equation which is not only capable of modeling branching 
of response but also of selecting an appropriate branch. 

Our point of view is that such a selection process is characteristic of every material which 
shows distinct regimes of response. That is, for every material there is some range of deform- 
ation in which the stress-strain relation has one characteristic shape, say linear, while for 
larger deformations the stress-strain relation has a distinctly different shape, say non-linear. 
We interpret this deviatory behavior by the material of branching from one characteristic 
response to another as a selection process which the material is required to make due to 
certain a priori restrictions placed on its behavior. These restrictions, of course, have to be 
physically meaningful. A material is then completely characterized by means of an implicit 
constitutive equation and an additional ‘decision making’ constraint. Thus, two different 
materials which can be classified as elastic-plastic, and which have the same elastic modulus, 
are distinguished by their ‘decision’ about when to yield. This ‘decision’ would, of course, 
be based on a criterion which is common for materials belonging to the same category and 
would differ from one category to another. 

The ideas presented here are an outgrowth of those of Bernstein [4], and those presented 
by Stakgold [S] m a review paper on the branching of solutions of nonlinear equations. 
For the sake of simplicity, attention is confined here to constitutive equations for one- 
dimensional response. Extensions to higher dimensions will follow in the near future. 

The essential notions regarding branching are introduced by means of examples in 
Section 2. A precise mathematical statement is presented in Section 3. An application to 
elastic-plastic response, including strain rate effects, is given in Section 4. 

2. EXAMPLES OF BRANCHING 

In order to introduce the notions of branching and selectivity, consider the well known 
uniaxial response of metallic materials which are loaded at constant strain rate. In loading 
in tension or compression from the undeformed state, there is typically a set of values of E 
for which the stress-stram relation is linear. This is followed by another set of values of E 
for which stress and strain are related by a different expression. The new expression reflects 
a change in the nature of the processes underlying the response of the material. 

One approach to the modeling of this response is to write a relation of the form 

0 = EE + g(E), (2.1) 

which is to hold for the complete set of values of s under consideration. An example of such 
an approach is an inverted form of (2.1) known as the Ramberg-Osgood equation [6]. The 
function g(s) is very smooth. Its values are negligible compared to the first term in (2.1) for 
161 <a. They become large only for 1st > a in order to yield the desired values for 6. This 
approach has been used in modeling elastic-plastic response. It depends primarily on one’s 
cleverness in constructing a satisfactory function g(s). 

As an alternate approach, consider an implicit relation between stress and strain, 
F(o, E) = 0, of the form 

F(a, E)= [Co- Eb)2 -(E -b,][(o+ Eb)‘+(.s+ b)][a-EE]=O. 

The pairs (a, E) which satisfy this relation are shown in Fig. 1. 

(2.2) 

Starting from the unstretched state, suppose E is increased until E= b. Since the first two 
factors in F(a, E) in (2.2) do not have real solutions in this range, the stress-strain curve is 
given by the last factor. This appears as curve 04. When E is increased further, it is possible 
that the stress-strain curve could be any one of the three curves shown. However, the 
material ‘selects’ one of these three available responses, say Al, due to a criterion based on 
certain restrictions which are placed on material behavior. With appropriate restrictions, 
one can obtain the usual stress-strain curve from the choices shown in Fig. 2. Within this 
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Fig. 1. LOCUS of the equation (2.2). showing the branches. 

Fig. 2. The graphs of the solutions of equation (2.6) in the (u. 1) plane. 

category of material response, it is seen that different materials can be modeled by selecting 
different values for b and E and different coefficients in (2.2). 

A point such as A in Fig. 1 will be called a branch point and the possible response curves 
passing through A will be called branches. This terminology is deliberate, since the problem 
of modeling the response is viewed, not as one of determining an analytic correction as 
suggested by (2.1), but as a branching problem in mathematics. In fact, the above example 
is a special case of the more general stress-strain relation 

F(u, e)=L(u)f(a, E)=O, (2.3) 

where u = Q - EE and L is a linear operator. It follows that u = 0 is a solution of (2.3) and thus 
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one of the branches is the linear elastic response. This shall be considered the ‘fundamental 
state.’ Deviations from linear elastic response then correspond to the mathematical problem 
of the determination of branching from the fundamental state. 

Certainly, other forms of implicit stress-strain relations could also be concocted. For 
many materials, they could be reduced to the form 

Au - I(.+ = 0, (2.4) 

where u = Q - EE. The operator A is, in general, completely continuous with nice smoothness 
properties at the origin. It is then possible to use the approach in the article by Stakgold 
[5] to study such materials. The existence of branch points of the basic solution for such 
operators is related to the multiplicity of the eigenvalues of the linearized operator LEA’(O). 

While there is no choice of the non-linear operator A for which the preceding example 
can be put in the form of (2.4), the following example shows that stress-strain relations of this 
form can be used to model important material response. Consider the piece-wise-linear 
stress-strain relation for elastic-strain hardening response shown in Fig. 3. Operator A is 
defined as 

(2.5) 

where a1 and ii are constants such that q > 0 and ti < EEL. Let A(s)= E. Then (2.4), (2.5) reduce 
to 

Au-A(&)U= (,,-+)(~,+~-u+E)u=o. 
In addition to the null state u =0 there are the solutions 

II 
I 

UC-KS-~ and u=-L & +ri. 
El 

El 

(2.6) 

(2.7) 

The graph of the solutions in the (u, A) plane is shown in Fig. 2 and the (a, E) plot is shown 
in Fig. 3. The branch point is at E=E,. The condition li < Eel ensures that branch 2 has 
positive slope, which can be varied by choosing different values of ii. 

With these examples in mind, a precise presentation can now be given. 

Fig. 3. The graphs of the solutions of equation (2.6) in the (a, E) plane. 
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3. MATHEMATICAL FORMULATION 

For convenience, the following definitions refer to stress-strain equations of form (2.3). 
Their modification for other forms, such as (2.4) is straightforward. Let 9? denote the real 
numbers. 

Definition 1 (branch point, branches) 

A point (u,,, EJ is called a branch point of (2.3) if in every neighborhood of (uO, se) E 9? x 9 
there exists a solution (6, E) of (2.3) such that c- E&#O. If there exist closed balls Ci c91! 
which contain E,,, and differentiable functions gi: C,-+B such that (gi(e), E) solves (2.3), we 
say that gi(e) is a branch at Q,. 

Thus in Fig. 1, while Al, A2, A3 would qualify to be branches at A, OAl would not qualify 
to be a branch, because it does not meet the differentiability requirements of bring a branch. 

Attention will be confined to relations F in (2.3) which lead to only finitely many branches 
at each branch point. Also implicit relations (2.3), which at any branch point give rise to 
more than one branch with a particular slope, will not be considered. 

As the examples of the preceding section show, the physical stress-strain equation is a 
subset of points constructed from the mathematical branches. A rational method of obtain- 
ing this subset depends on the notion of selectivity discussed earlier. It is assumed that there 
is a natural selection process for each class of material behavior. Its specification is part of 
the modeling process and is based on an understanding of the mechanisms underlying the 
observed mechanical response and the mathematical form of the branches representing 
these processes. The selectivity criterion presented in the following definition appears to be 
appropriate for a large class of material response, including elastic-plastic behavior. 

Definition 2 (response function) 

A function 4: 49+97 is said to be a response function only if (1) [4(s), E] satisfies (2.3); 
(2) dr$/ds>,O; (3) (Selectivity condition) at any point (&E,,), se) which is a branch point, 
&E) is such that 

m = g&J if 4&J d&a0 
g”(e) if &.Qds<O 

where gt and go are branches at (&,), E,,) such that* 

dg, dgi i=l 2 

~EG~E, , ,...,n, 

dg,,dgi i-l 2 

dE 0~9 - , ,...,n. 

(3.2) 

(3.3) 

Restriction (2) is based on the experimental observation, and the expectation based on 
thermodynamics, that the increments in stress and strain have the same sign during loading 
or unloading. Restriction (3) expresses the selectivity condition. At any branch point, the 
response function is selected from among the branches in order to minimize the increment 
in expended energy on loading, or to maximize the increment of recovered energy on un- 
loading. In this context, gr. and gu represent the loading and unloading response functions, 
respectively. 

There is a class of material behavior for which the above selectivity criterion is definitely 
not appropriate. Consider the example, referred to in the introduction, ofa matrix embedded 
with slack fibers. The stress-strain relation passing through the origin represents the effect 
of only the matrix and has a relatively small slope. This is intersected by a steeper branch 
at the strain where the slack in the fibers is removed. The increased slope represents the 
effect of the added fiber stiffness. A different selectivity criterion is now required, perhaps 

*Our assumption that there does not exist more than one branch with a particular slope assures us that the 
branches gL and g, are well defined. 
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one based on the concept of maximizing the stiffness. This will not be pursued any further 
in this paper, and attention will be confined to the former criterion. 

4. ELASTIC-PLASTIC MATERIALS 

The concepts just introduced are now applied to the development of a constitutive 
equation for elastic-plastic behavior, including the effect of strain-hardening. Strain rate 
independent response is considered first. The incorporation of strain rate effects will be 
discussed at the end of the section. 

Elastic-plastic response can be characterized by an implicit constitutive equation of 
form (2.3). Let L andf(a, E) be defined by 

L = d/dt 

f(a, c)=(cr-h+k)(a-h-k), (4.1) 

where 1 and k are constants with 0 G I < E. Equation (2.3) then becomes 

[&-Ei?)](o-L+k)(o-h-k)=O. (4.2) 

Clearly, a relation between 0 and E such that 

; (u-EEe)=O 

or 

a-h-k=0 

or 

o-h+k=O, (4.3) 

will meet the requirements of (4.2). We find that the solution (4.3), represents elastic loading 
or unloading, depending on the initial conditions. The solutions (4.3)2,3 represent plastic 
response, where k is the yield stress and I measures the amount of strain hardening. If 
A=O, we find (4.3),., represent the plastic yielding corresponding to an elastic-perfectly 
plastic material. 

Let us consider the response to loading from the initial state (0,O) of a material modeled 
by the implicit constitutive form (4.1). Then, referring to Fig. 4, as the strain E increases, the 
response curve follows OA, (solution (4.3),), until it reaches the branch point A where the 

Fig. 4. Branches of equation (4.2) for the elastic-plastic model with no strain rate dependence. 
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strain is E,,= k/(E -1). When the strain E is increased further, the response follows branch 
AB by virtue of the selectivity condition. Suppose the loading is stopped at point B, (a,, Em), 
and the straining is reversed, i.e. ds < 0. Firstly, we note that any point (a, E) which satisfies 
(4.3), [or (4.3),] is a branch point, the branches satisfying either solutions (4.3), or (4.3),, 
[or (4.3),]. Since d&CO, the response could proceed along BA or BC, which would then 
satisfy (4.3), or (4.3),, respectively. However, due to the selectivity condition, the response 
proceeds along BC until the branch point C is reached. On further unloading, the response 
proceeds along CD, by virtue of the selectivity condition. Suppose the straining is reversed 
at point D (i.e. d.s > 0). At the branch point D, the response could proceed along the branch 
DO or DC, which respectively meet (4.3), and (4.3),. The selectivity condition requires, that 
the response proceeds along DO. Continuing in this manner, one can always determine the 
response of the material based on the condition of selectivity. 

Experimental evidence suggest that the values of the strain hardening paramenter J. for 
most materials, and the range of strains in normal applications, are sufficiently small so 
that the dashed line portions of branches (4.3)2,3 shown in Fig. 4 are never encountered. 
In other words, solutions of (4.3), with 0 < 0 or of (4.3), with 0 > 0 are not expected. If this 
turns out not to be the case for some materials, then the selectivity condition must be 
modified. Otherwise, for example, #&J~E could become positive during unloading. This 
difficulty is avoided by modifying the selectivity condition to be: 

Let (&Jr .se) be a branch point. Let (4(&g), E;) be a point on the branch just followed. 
Let (4(&O+), EJ) be a point on the branch to be followed next. Then this branch is such that 

#w= ;z) 1 if C~(E,)-8(E~)IC(~,‘)-~ol~~~ 
where gL and gu are branches at (&J, ee) such that 

d&dy, 
de d.s 

, i= 1,2,. . . , n. (4.5) 
dg,,dgi 
ds ‘de 

Recall that the criterion in (3.2) depends only on the present value of the stress. On the 
other hand, the condition in (4.4) incorporates the idea of a short time history of the material 
through the expression &J-&E;). The apparent independence of the former relation 
from stress history is only illusory. Because of the restrictions on the anticipated stress- 
strain states, it was found that this condition was satisfactory regardless of the stress 
history. The condition in (4.4) which is valid for all stress-strain states, makes this depend- 
ence explicit. However, the expression in (3.2) may be preferred under normal circumstances 
because of its simplicity. 

The constitutive equation (4.2) can be modified to include the effects of strain rate depend- 
ence. Such effects were discussed in a review article by Perzyna [l] on viscoplasticity. For 
the sake of simplicity, only the yield stress is considered to be strain rate dependent. Thus, in 
(4.2) let k=i(& i: 6849 where d denotes the strain rate. According to Perzyna [7], it 
is reasonable to assume, by virtue of experimental observation that, 

L(X) 7 &y) if x 7 y. (4.6) 

Branches (4.3)2,j now become 

a-~-/&O, (4.7) 

a-1&+&)=0. (4.8) 

Suppose E is increased from the initial state at-a constant strain rate 8,. Then the response 
follows the branch c= EE until the yield stress k(d,) is reached. At the branch point A,, the 
selectivity condition determines that the response follows the branch given by (4.7) with 
i= k,, (see curve OA,B, of Fig. 5). If the process is repeated with strain rate d,7 6,, the 

response function follows OA,B,, by similar reasoning. 
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$?$?y i.i, 
Fig. 5. Branches of equation (4.2) for the elastic-plastic model with strain rate dependence. 

Let the strain be increased from the initial state at constant strain rate t, until point B 1 
is reached. On changing the strain rate to d, > 8,, (4.7) with d= i, is no longer a solution to 
(4.2). The response curve must then proceed along the solution to (4.3), through point B, 
until point B, is reached. This is a branch point of the current branch and of (4.7) with 
i=l,. By the selectivity condition this latter branch is followed until d is changed again. 
If loading is reversed so that d= d,tO at C,, the response must follow the appropriate 
solution to (4.3), until point D, is reached. This is a branch point of the elastic unloading 
curve and of (4.8) with i= I& which is now followed. 

5. CONCLUSION 

It is seen that an implicit form of the constitutive equation, based on the notions of 
branching and selectivity, can be used to unify the equations which describe the response 
of an elastic-plastic material. In the case of elastic materials, one might consider the more 
elegant constitutive form 

Au - A(&)U = 0, 

where the ideas of branching theory can be more gainfully employed. This, and an extended 
range of applications of the implicit form of constitutive equations will follow shortly. 
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Resume 

Les materiaux, tels les elastiques-plastiques, qui montrent 
des regimes de reponse distincts sont habituellement 
representes par des equations fondamentales differentes dans 
chaque regime. Le present article explore une methode pour 
construire une equation fondamentale unifiee a partir de 
ces relations independantes. L’idee principale est d’ecrire 
cette equation unifee sous une forme implicite qui comporte 
comme solutions multiples ces relations independantes. On 
choisit cette forme de maniere a utiliser les notions de 
noeuds et de branches. Les differentes solutions, corres- 
pondant aux equations fondamentales pour differents regimes 
de reponse, peuvent alors etre considerees comme des 
branches de la reponse fondamentale aux noeuds de ramifica- 
tion. Le choix de la branche appropriee a un noeud est regi 
par une condition de selection qui depend de la nature de la 
reponse cons ideree. On fournit un exemple detaille pour une 
reponse elastique-plastique avec et sans l’effet de 
dependance du taux de deformation. 

Zusammenfassung: 

Stoff, wie z.B. elastisch-plastische, die deutlich 
verschiedene Verhal ten,sbereiche aufweisen, werden 
gewohnlich mit einer verschiednen Bestimmungsgleichung fur 
jeden Bereich beschrieben. In dieser Arbeit wird eine 
Methode zur Aufstellung einer einheitlichen 
Bestimmungsgleichung von den verschiedenen Beziehungen 
untersucht. Der Hauptgedanke besteht darin, diese 
einheitliche Gleichung in impliziter Form anzuschreiben 
wobei diese verschieden Losungen als nichteindeutige 
Losungen enthalten sind. Diese Form wird gewahlt, urn den 
Bergriff der Verzweigungen und Verzweigungspunkte zu 
benutzen. Verschiedene Losungen, die den Bestimmungsgleich- 
ungen der verschiedenen Verhaltensbereiche entsprechen, 
werden dann als Abzweigung vom Grundverhalten an den 
Verzweigungspunkten betrachtet. Die Auswahl der 
entsprechenden Abzweigung an einem Verzweigungspunkt wird 
durch ein Auswahlkriterion bestirmnt, das von der Art des 
betrachteten Verhaltens abhangt. Ein ausfuhrliches 
Beispiel fur elastisch-plastisches Verhalten wird angegchen 
mit und ohne Berucksichtigung des Einflusses der 
Dehnungsgeschwindigkeit. 


