On the Eigenvectors of Schur's Matrix

PATRICK MORTON*

Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109

Communicated by D. J. Lewis
Received November 1, 1978

A basis of eigenvectors is given for the matrix \(\mathcal{U} = (e^{2\pi i mn/q}) \), \((1 \leq m, n < q)\).

The eigenvectors arise from the characters on the reduced residue class group \((\text{mod } q)\).

In this note we exhibit a simple basis of eigenvectors for the matrix

\[\mathcal{U} = (e^{2\pi i mn/q}) \quad (1 \leq m, n < q), \]

where \(q \) is a positive integer. The eigenvalues of \(\mathcal{U} \) are well known. They are contained among the numbers \(\frac{\sqrt{q}}{4^a} \) for \(0 \leq a \leq 3 \) (see [1]), a fact which follows from the observation that \(\mathcal{U}^4 = q^2 I \). Schur [3] used these eigenvalues to evaluate the familiar Gaussian sum

\[S = \sum_{n=1}^{q} e^{2\pi i n^2/q}, \]

which is the trace of the matrix \(\mathcal{U} \).

The eigenvectors we give arise from the characters of the reduced residue class group modulo \(q \). We begin by recalling a few well-known facts about characters; these can be found in Hasse [2, Sects. 13, 20].

Let \(\chi \) be a character modulo \(q \). The least positive divisor \(f = f(\chi) \) of \(q \) with the property that

\[\chi(n) = 1 \quad \text{for every } n \equiv 1 \pmod{f} \text{ for which } (n, q) = 1, \]

is called the conductor of \(\chi \). The character \(\chi \) can be uniquely defined on the integers \(m \) relatively prime to \(f \) if one sets

\[\chi(m) = \chi(n), \quad \text{where } m \equiv n \pmod{f} \text{ and } (n, q) = 1. \]

* The author was a National Science Foundation Predoctoral Fellow at the time this article was written. The author's present address is: Department of Mathematics, California Institute of Technology, Pasadena, California 91125.

0022-314X/80/010122-06$02.00/0
Copyright © 1980 by Academic Press, Inc.
All rights of reproduction in any form reserved.
With this definition \(\chi \) becomes a character modulo \(f \). In this note we always consider \(\chi \) defined modulo its conductor, and we set

\[
\chi(n) = 0 \quad \text{if} \quad (n, f(\chi)) > 1.
\]

We shall also need the main properties of the Gaussian sum

\[
\tau(\chi) = \sum_{r=1}^{f} \chi(r) e^{2\pi ir/f}
\]

(2)

associated with \(\chi \). We have that

\[
\tau(\chi) \tau(\bar{x}) = \chi(-1) f(\chi),
\]

(3)

and

\[
\sum_{r=1}^{f} \chi(r) e^{2\pi iar/f} = \overline{\chi(a)} \tau(\chi), \quad \text{for any integer } a.
\]

(4)

Finally, we recall the orthogonality property

\[
\sum_{n=1}^{q} \chi(n) \overline{\psi(n)} = \begin{cases} 0 & \text{if } \chi \neq \psi, \\ \phi(q) & \text{if } \chi = \psi, \end{cases}
\]

(5)

where \(\chi \) and \(\psi \) are any characters (mod \(q \)) and \(\phi \) is the Euler \(\phi \)-function.

We now define a \(q \)-dimensional vector \(X_d \) for every character \(\chi \) and every divisor \(d \) of \(q/f(\chi) \). Let the \(n \)th component of \(X_d \) be

\[
X_d(n) = \begin{cases} \chi(n/d) & \text{if } d \mid n, \\ 0 & \text{if } d \nmid n, \end{cases} \quad \text{for } 1 \leq n \leq q.
\]

(6)

For each character \(\chi \) there are \(d(q/f) \) such vectors, where \(d(n) \) is the number of divisors of \(n \). If \(p(f) \) is the number of characters with conductor \(f \), we see that there are in all

\[
\sum_{f \mid q} p(f) d(q/f) = \sum_{d \mid q} \sum_{f \mid q/d} p(f)
\]

such vectors. Since there are exactly \(\phi(q/d) \) characters (mod \(q/d \)), and since every character with conductor dividing \(q/d \) gives rise to a character (mod \(q/d \)), it follows that the total number of vectors is equal to

\[
\sum_{d \mid q} \phi(q/d) = q.
\]

We now prove the following
Lemma. The q vectors X_d are independent.

Proof. Assume that

$$\sum_x \sum_{d|q/f(x)} c_{x,d} X_d = 0,$$

where the first sum ranges over all the characters (mod q). From (6) we then have that

$$\sum_x \sum_{d|q/f(x)} c_{x,d} \chi(n/d) = 0 \quad \text{for} \quad 1 \leq n \leq q. \quad (7)$$

If n is relatively prime to q, then (7) reduces to

$$\sum_x c_{x,1} \chi(n) = 0. \quad (8)$$

We now multiply through in (8) by $\psi(n)$, where ψ is any character (mod q), and we sum over the reduced residues (mod q). By (5) this gives

$$0 = \sum_x c_{x,1} \sum_{(n,d)=1} \chi(n) \psi(n) = \phi(q) c_{x,1}$$

Hence $c_{x,1} = 0$ for every χ.

Now let d_1 be any divisor of q and assume that $c_{x,d} = 0$ for all the divisors d of q which are less than d_1. Let m be any integer satisfying

$$1 \leq m \leq q/d_1 \quad \text{and} \quad (m,q/d_1) = 1. \quad (9)$$

If we set $n = md_1$ and note $(n,q) = d_1$, then by (7) and the inductive assumption we have

$$\sum_x c_{x,d_1} \chi(m) = 0. \quad (10)$$

This sum is over all the characters which are defined modulo q/d_1. If we multiply through in (10) by $\psi(m)$, where ψ is any character (mod q/d_1), and sum over the integers m in (9), then we find from (5) as before that $c_{x,d_1} = 0$ for every χ with $f(\chi) \mid q/d_1$.

It now follows by induction that $c_{x,d} = 0$ for all χ and d, and this implies the assertion of the lemma.

In order to give a basis for the eigenvectors of \mathcal{A} we first compute the vectors $\mathcal{A}X_d$. From (1) and (6) we see that the mth component of $\mathcal{A}X_d$ is
EIGENVECTORS OF SCHUR'S MATRIX

\[\sum_{n=1}^{q} e^{i\pi nmq/n} \chi(n/d) = \sum_{n=1}^{q/d} e \left(\frac{mn}{q/d} \right) \chi(n) \quad (e(\theta) = e^{2\pi i\theta}) \]

\[= \sum_{r=1}^{q/d} \chi(r) \sum_{k=0}^{q/fd-1} e \left(\frac{mr + kf}{q/d} \right) \]

\[= \sum_{r=1}^{q/fd} \chi(r) e \left(\frac{mr}{q/d} \right) \sum_{k=0}^{q/fd-1} e \left(\frac{mk}{q/fd} \right) \]

\[= 0, \quad \text{if} \quad q/fd \not\equiv m \]

\[= \frac{q}{fd} \sum_{r=1}^{f} \chi(r) e \left(\frac{r}{f} \frac{mdf}{q} \right), \quad \text{if} \quad q/fd \mid m. \] (11)

By (4) the last expression is equal to

\[\frac{q}{fd} \chi \left(\frac{mdf}{q} \right) \tau(\chi), \]

thus (11) and (6) give that

\[\mathfrak{A} X_d = \frac{q}{fd} \tau(\chi) \bar{X}_{a/fd}. \] (12)

Using (12) we may write down a basis for the eigenvectors of \(\mathfrak{A}. \) If \(\chi \) is real and \(d^2 = q/f \), then (12) implies that \(X_d \) is an eigenvector of \(\mathfrak{A} \) corresponding to the eigenvalue \((q/f)^{1/2} \tau(\chi) \). Otherwise let \(\lambda = \pm (\chi(-1)q)^{1/2} \), and consider the vector

\[E(\chi, d, \lambda) = d^{1/2} X_d + \frac{\lambda}{\tau(\chi)} d^{1/2} \bar{X}_{a/fd}. \] (13)

By the lemma \(E(\chi, d, \lambda) \neq 0 \), and by (12) and (3) we have

\[\mathfrak{A} E(\chi, d, \lambda) = \frac{q}{f} d^{1/2} \tau(\chi) \bar{X}_{a/fd} + \frac{\lambda}{\tau(\bar{\chi})} d^{1/2} d \tau(\bar{\chi}) X_d \]

\[= \lambda \left(d^{1/2} X_d + \frac{q\tau(\chi)}{\lambda f} d^{1/2} \bar{X}_{a/fd} \right) \]

\[= \lambda E(\chi, d, \lambda). \]

Thus \(E(\chi, d, \lambda) \) is an eigenvector of \(\mathfrak{A} \) corresponding to the eigenvalue \(\lambda \).

An easy computation using (13) shows that

\[E(\bar{\chi}, q/fd, \lambda) = W(\chi, \lambda) E(\chi, d, \lambda), \] (14)
where $W(\chi, \lambda) = [\lambda/\tau(\chi)](f/q)^{1/2}$. Since $|\tau(\chi)| = f^{1/2}$, $W(\chi, \lambda)$ has absolute value 1, and $E(\chi, d, \lambda)$ and $E(\bar{\chi}, q/\lambda, \lambda)$ are dependent vectors. However the lemma implies easily that (14) is the only set of dependence relations between the vectors given in (13). It follows that a quadruple $(x, \bar{x}, d, q/\lambda)$ contributes the independent eigenvectors

$$E(\chi, d, \pm(\chi(-1)q)^{1/2}), E(\bar{\chi}, d, \pm(\chi(-1)q)^{1/2}), \quad \text{if } \chi \neq \bar{\chi}, d^2 \neq q/\ell;$$

$$E(\chi, d, \pm(\chi(-1)q)^{1/2}), \quad \text{if } \chi \neq \bar{\chi}, d^2 = q/\ell \text{ or } \chi = \bar{\chi}, d^2 \neq q/\ell; \quad (15)$$

$$X_d, \quad \text{if } \chi = \bar{\chi} \text{ and } d^2 = q/\ell.$$

By pairing the eigenvectors in (15) with the pairs (χ, d) $(d \mid q/\ell(\chi))$, it is easy to see that the total number of eigenvectors listed in (15) is

$$\sum_{\chi} \sum_{d \mid q/\ell(\chi)} 1 = \sum_{f \mid q} p(f) d(q/\ell) = q.$$

Hence we have the following result.

Theorem. The vectors listed in (15) (with X_d and $E(\chi, d, \lambda)$ defined by (6) and (13)) form a basis of eigenvectors for \mathfrak{A}. The respective eigenvalues are

$$\pm(\chi(-1)q)^{1/2}, \pm(\chi(-1)q)^{1/2}, \text{and } \left(\frac{q}{\ell}\right)^{1/2} \tau(\chi),$$

where $\tau(\chi)$ is given by (2).

We note the following corollary of the theorem, which is a consequence of the fact that the trace of \mathfrak{A} is equal to the sum of its eigenvalues:

$$S = \sum_{n=1}^{q} e^{2\pi in^3/q} = q^{1/2} \sum_{\chi \mid q/\ell(\chi)} \frac{\tau(\chi)}{\ell^{1/2}(\chi)}.$$

This can also be proved directly.

Similar results can also be proved for the matrix

$$\mathfrak{A}' = (e^{2\pi i S(\chi y n)}) \quad (x, y \pmod{q}),$$

where S denotes the trace from a fixed algebraic number field K to \mathbb{Q}, q is some integral divisor of K, x and y are integers of K which run through a complete residue system (\mod{q}), and η satisfies

$$\eta = \frac{n}{q^d}, \quad (n, qd) = 1,$$
where \(b \) is the different of \(K/Q \) and \(n \) is an integral divisor in \(K \). As before, the eigenvectors of \(\Phi' \) arise from the characters on the reduced residue class group \((\text{mod } q)\) in \(K \).

Acknowledgment

Finally, I would like to thank Professor H. Montgomery for suggesting this problem to me.

References