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FRICTIONAL SLIP BETWEEN A LAYER AND A 
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Abstract-An elastic layer that rests on a substrate and is subjected to a concentrated normal force is used 
to investigate some aspects of frictional slip between two bodies. The formulation using known results for 
glide dislocations leads to a singular integral equation of a Cauchy type that must be solved numerically. 
Results for various quantities of interest are given graphically. 

1. INTRODUCTION 

THE ELASTIC layer resting on a substrate provides one of the simpler and more lucid examples for 
a receding contact between two bodies[l]. As such it has received considerable attention[2-121, 
but only under the assumption that the contact is frictionless. None the less, the layer can also 
be used to give tractable examples for the effect of friction in contact problems. Since there are 
very few elasticity solutions and even fewer general results for frictional contact, it is 
instructive to investigate the various aspects of frictional slip between the layer and the 
substrate. 

We consider in this article a layer that is pressed uniformly against a substrate. The initially 
uniform pressure between the two bodies may be due to gravity or loading at the surface of the 
layer. If the surface of the layer is also subjected to some other loads, the distribution of the 
normal tractions is modified, and the contact interface has to transmit shearing tractions. When 
the level of these loads is gradually raised, slip, separation or both eventually take place. In the 
present article we treat the loading by a concentrated force applied to the surface of the layer. 
We consider both a compressive and a tensile force, restricting the magnitude of the latter so 
that no separation occurs. For mathematical simplicity we assume that the layer and the 
substrate consist of identical materials. 

2. FORMULATION 

Consider a layer of thickness a pressed against the semi-infinite substrate with the same 
shear modulus p and Poisson’s ratio V. The initial distribution of pressure between the two 
bodies is uniform and is denoted by PO. Suppose that a normal concentrated force P exerting 
tension is applied to the surface of the layer at x = 0, as indicated in Fig. 1, that P = P(t) is a 
monotonically increasing function of time t, and that P(0) = 0. The tractions transmitted by the 
interface in the bilateral problem, which places no restriction on the nature of these tractions, 
are obtained from the Flamant solution[l3] as 

2P a3x 
o&, 0) = -- 

ra(a2+ 

2P a4 
%(X, 0) = -po + - 

7ra(a2 (2) 

These tractions are also acceptable in the ‘unilateral problem as long as the appropriate 
inequalities are not violated, and neither slip nor separation occur. The conditions for stick 
without separation are 

&% 0) < 0, bXY(S 011 < fb,,(xv O)l (334) 
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Fig. 1. Geometry of the layer and substrate, and the expected slip zones. 

where f is the coefficient of friction (no distinction is made here between static and kinetic 
friction). The inequalities show that there is no separation for 

Plp0a < 7d2 (5) 

and that no slip takes place provided 

p < 87$[3 t 2f* -f(3 t 4f2)“2]2 
p0a 27V + (3 t 4f2)“2] ’ (6) 

If (6) is eventually violated upon a gradual increase of the applied concentrated force P, slip 
starts at 

x = ;a[(3 + 4f2)“2 - 2f] (7) 

It can be shown from (l-4) that slip begins before separation for any value of the friction coefficient 

f. 
The case of a compressive concentrated force P can be analyzed similarly. The condition for 

stick is then 

p < 87JW(3 + 4f2)“2 + 3 -t- 2f2]2 
p0a 27[(3 t 4f2)1’2 - fl (8) 

and slip starts at 

x = ;a[(3 + 4f2)1’2 t 2f] (9) 

where P is reckoned positive for a compressive force. It is clear that there is no separation in 
this case. 

In the sequel, we examine the problem of frictional slip without separation. The equations 
are written only for the tensile load, but numerical results will be presented for both tensile and 
compressive applied forces P. 

The solution of the unilateral problem is constructed by correcting the bilateral elastic fields 
derived from the Flamant solution. This is done by representing the slip zones as continuous 
distributions of edge dislocations with Burgers vectors that lie in the interface (glide arrays). 
Consider for this purpose a discrete edge dislocation with the Burgers vector 6, (slip parallel to 
the surface) situated at x = 6, y = 0 in an elastic half plane, with the coordinate axes placed 
exactly as in Fig. 1, so that y = a is the free surface and the dislocation is at a depth a from the 
free surface. Of interest in the formulation are only the tractions acting on the slip plane of the 
dislocation, or y = 0. The needed expressions are readily extracted from the results given in 
Refs. [M-16]. Thus the required traction components are 

(10) 

16/A 7Jx, 0) = - 
( 

3a’ 16a’ 
7r(K+l) [4a2t(x-~)2]2+~) 

- (11) 
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where K = 3 - 4~ for plane strain. The tractions induced by an array of continuously distributed 
edge dislocations are obtained by replacing b, with B,(l)d[, where Z&.(t) is the density of the 
distribution, and integrating with respect to 5. The distributed dislocations lead to a tangential 
shift in the slip plane 

h(x) = t&(x, 0’) - u,(x, o-) (12) 

where u, denotes the x-component of displacement corresponding to the dislocation array. 
The tangential shift is related to the dislocation density by 

Bx(x) = -?a (13) 

The formulation using dislocations automatically incorporates continuity of tractions on 
y = 0, as well as displacements outside the slip zones. Thus there only remains to consider the 
normal tractions 

and the shearing tractions 

N(x) = %(X9 0) + T&, 0) (14) 

S(x) = c%,(x, 0) + 7X,(X, 0) (15) 

in the slip zones. They must satisfy at all times the conditions 

IS( = fW<x>l (16) 

N(x) < 0 (17) 

sgn S(x) = sgn? (18) 

in these zones. 
Due to the symmetry of the problem, two slip zones symmetrically placed, as shown in Fig. 1, 

will appear when (4) is violated. The location and extent of the slip zones are determined by the 
parameters b and c which are unknowns. Predicting the algebraic sign of S(x) from the 
Flamant solution, (16) can be replaced with 

and (18) with 

S(x) = f sgn xN(x), b < 1x1~ c (19) 

sgn S(x) = sgn h(x), b < 1x1~ c (20) 

for monotonically increasing P(t). However, (19) must be verified a posteriori. 
The symmetry of the problem implies that 

&x(x) = &4--x) (21) 

and consequently (19) yields the integral equation 

&(Z)kdx, 5)&t = b<x<c (22) 

where 

k,(x, 5) = --!- x-5 x+z 12a2(x - 5 + 2fu) 
x+5+4aZ+(X-#+4a2+(X+5)2- [4a2+(x-5)2]2 

_12a2(x + 5 + 2fu) + 64a4(x - [ + 2fu) + 64u4(x + I+ 2fu) 
r4a2 + (x + 5)232 r4u2 + (x - 0213 [4u2 + (x + &)2]3 * (23) 
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In addition we must require that 
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(24) 

in order to have slip restricted to the two zones b < lx/< c. 
The Cauchy singular integral equation (22), subject to condition (24), must be solved 

numerically for B,(x). Once this is done, the shearing tractions in both the slip and stick zones 
follow as 

The normal tractions are similarly 

where 

3. NUMERICAL SOLUTION AND RESULTS 

Putting the integral equation (22) in a dimensionless form by the change of variables 

where 
@a = Sr + cr, x/a =&?+a 

we obtain 
6 = (c - b)/2a, u = (c + b)12a 

MW(r, s) dr = ’ 
-l<s<l. 

(27) 

(28) 

(29) 

(30) 

The regular kernel K(r, s) follows readily from (23), (28) and (29), and we refrain from 
recording the result. Equation (24) becomes 

I 
I 

B,(r) dr = 0. 
-1 

(31) 

For the numerical integration of (30) we foilow the method of Erdogan and Gupta[ 171. Since 
S, is a bounded function, we set[lI?] 

(32) 

where 

The discretized form of (30) becomes 

+R@. &) 

” 1 
where 

i?r 
ri = COS - ( > n+l ’ 

i= ,...,n 1 (35) 

.=co,[-], k=I,...,ntf (36) 
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A =P/poa (37) 

is a dimensionless loading parameter. Note that the consistency condition that must be satisfied 
for a bounded solution[l9] is already included in (34). Finally, the discretized form of (31) 
becomes 

F=g(l-rf)p(ri)=O 
i=l 

(38) 

The unknown parameters S and u make the system (34) and (38) nonlinear. To simplify the 
iteration procedure we specify S, while leaving u and the loading parameter A as unknowns. 
With S fixed, we guess a value for u and choose n equations from the system (34) to solve for 
p(ri). The remaining equation in (34) is used to determine A. We then substitute into (38), which 
in general is not satisfied. We next iterate for u until F is made to vanish. In practice, we 
choose n as an even number and use the (1/2n + 1) equation in (34) to solve for A. Once the n 
values of q(ri) are obtained, we compute the discrete values of &(r) from (32), and h(x) from 
(13) using the trapezoidal rule of integration. The shearing tractions are obtained from the 
discretized form of (25). In the slip zones, (25) contains a Cauchy integral and the method of 
Erdogan and Gupta must be used, but in the stick zones the choice of the collocation points is 
open. The normal tractions in the slip zones are obtained from the shearing tractions on account 
of the boundary condition (19), and in the stick zones from the discretized form of (26). 

Finally we must also check the various unilateral conditions. It was veritied numerically in 
all cases considered that the normal tractions remained compressive, that 

IW < flW>l (39) 

in the stick zones, and that also (20) is satisfied. The reason why (20) implies (18) for a 
monotonically increasing concentrated force becomes clear once the solution is constructed: 
Both S(x) and h(x) are multiplied by P(t) and, if (20) holds, (18) is satisfied as long as P(t) and 
dP(t)/dt are of the same sign. 

The extent and location of the slip zones for various values of the friction coefficient are 
shown in Fig. 2 as functions of the loading parameter A for a tensile concentrated force. It may 
be noted that the curves intersect the vertical axis at the separation load. The tangential shift, 
and the normal and shearing tractions are depicted in Figs. 3-5 for S = 0.2. The corresponding 
results for a compressive force are presented in Figs. 6-9. The shearing tractions do not show 
much variation with friction and are only plotted for f = 0.25. It may also be remarked that the 
normal tractions are hardly affected by slip and are practically the same as in the bilateral 
problem. 

O 02 0.4 0.6 

Fig. 2. Fig. 3. 

Fig. 2. Extent and location of the slip zones for a tensile force and different coefficients of friction. 

Fig. 3. Tangential shift for tensile force and 8 = 0.2. 



136 M. COMNINOU et al. 

-0.8 

0.25 

\ 

-0.2 

t 
S/x/ o/P 

-1.0 

NlXlO/P 
Fig. 5. Shearing tractions for tensile force and S = 0.2. 

Fig. 4. Normal tractions for tensile force and 6 = 0.2. 

Fig. 6. 
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Fig. 7. Tangential shift for compressive force and S = 0.2. 

Extent and location of the slip zones for a compressive 
force and different coefficients of friction. 
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Normal tractions for compressive force and S = 0.2. 
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Fig. 9. Shearing tractions for compressive force and 
6 = 0.2. 

The case of the layer and substrate consisting of different materials can be treated in a 
similar fashion. The only Werence is that the solutions of the bilateral and dislocation 
problems would have to be constructed by means of Fourier transforms. The counterparts of 
(1,2) and (10, 11) then are infinite integrals which will enter the right side and the regular kernel 
of the governing integral equation (22). 
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