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Abstract-The article discusses the reelection and refraction of a plane horizontally polarized (SH) stress 
pulse by an interface that can slip when the incident pulse is sufRcienUy strong to break friction. The 
mathematical nature of the problem depends on the velocity with which the slip zones propagate along the 
interface. If this velocity is supersonic with respect to both soliis, the problem can be solved in cloud 
form. Otherwise, the formulation leads to singular integral equations. A parabolic stress pulse is used to 
illustrate the result. 

I. INTRODUCTION 

We have recently treated the interaction of plane harmonic and horizontally polarized (SH) 
waves with a unilateral interfacetl, 21 between two solids. Such waves lead to a periodic array 
of slip and stick zones. In the present article we consider the reflection and refraction of a plane 
SH stress pulse that may result in an irregular array of slip and stick zones propagating along 
the interface. 

Suppose that the incident pulse has the phase velocity CO and that its angle of incidence with 
respect to the interface normal is 6,. Then the interface disturbance propagates with the 
velocity 

u = c&in 00. (1) 

In the analysis one must distinguish between two cases. When u is greater than the phase 
velocities in both solids (supersonic case), the pulse retains its shape upon reflection and 
refraction from a bilateral interface that does not slip. Moreover, when local&d slip starts, the 
shear stresses remain unchanged outside the slip zones, and the solution can be obtained by 
elementary means. When u falls between the speeds of shear waves in the two solids (transonic 
case) the interaction is more complicated, and the formulation leads to singular integral 
equations. In the following sections we consider each case separately. 

2. SUPERSONIC CASE 

We consider two elastic solids that are held together by the applied pressure pm and are 
subjected to the applied shear tractions q” as shown in Fig 1. The shear modulus is denoted by 
~1, c = (p/&in is the phase velocity of an SH-wave and bars are used to refer to the physical 
constants and field quantities associated with the upper half space. The indices n = 0, 1,2 are to 
distinguish between the three waves in Fii. 1. 

The displacement of the incident wave is taken as 

UP = CORYO) (2) 

where 

yo = ko(x - $0) - cot). 
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Fig. I. Reflected and refracted SH-pulse. 

The unit vector p’“) defines the direction of propagation of the incident wave[3], and CO is a real 
constant. The waves reflected and refracted by the bilateral (welded) interface are of the same 
form as (2), but the vector p and the argument y of the function 

[agO + agl,~o t qm = a$gs-o + qm = dl&g) + q- (4) 

where, with c = co, 

Tj = ko(x,p,‘O’ - ct) (5) 

is a coordinate moving along the interface with velocity u = c/sin 00, and 

m=y . I x2=0 

The amplitude s& of the shear tractions in the bilateral problem is 

with 

Moreover, since 

one must have 

4 = cccokl 
2r cos eo cos e* 

ycos0o+rcose~ 

r = da y = c/c. 

r)o=7)1=7?2=11, 

(6) 

(7) 

(8) 

(9) 

k,,c = k,c = k2E 

sin f& sin 8, sin 0, -=- =- 
C C c - 

(10) 

(11) 

We take Co >O, so that do> 0. We also assume that the two solids adhere before the pulse 



strikes the interface, so that 
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q= < LP” (12) 

where fs is the coefficient at static friction. 
When the amplitude S& is sufficiently large, localized slip takes place, and the bilateral 

solution (4) is no longer applicable and must be corrected. We construct the corrective solution 
by viewing the slip zones as distributions B(q) of screw dislocations moving with velocity u 
along the interface. The shear traction due to this dislocation distribution is [4] 

where 

[T = ($ 1)“2, [T = ($- I)? 

(13) 

(14) 

The slip veocity is related to the dislocation distribution by 

V(v) = uB(7)). (1% 

The boundary conditions at the interface involve the slip velocity V(g) defined by (15), and 
the total shearing tractions S(q) which are nothing else but the sum of (4) and (13). Thus in the 
stick zones 

V(rl) = 0 (16) 

Ph)l <LP" (17) 

and in the slip zones 

IWI = fkP" (18) 

SenS(TI) = %nv(rl) (19) 

where fk is the coefficient of kinetic friction. 
If the slip velocity in the slip zones is positive, (18) can be replaced with 

S(7) = fkP” 

or 

J-4af~s) + 4 “-=B(q)=f@“. 
gT + riT 

The amplitude Sa, of the bilateral shear tractions may be expressed as 

From (16). (15) and (21) the dislocation distribution is obtained directly as 

2cokoc z [M(q) + q* - f&l, in slip zones 
B(q) = 

(20) 

(21) 

(22) 

(23) 
in stick zones. 
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The shear tractions are 

M. COMNINOU and J. DUNDURS 

37) = 
fkP”v in slip zones 

&l!(n) + 4=, in stick zones 

and the slip velocity 

2c&J 
7 [U(T) + q” -f&I, in slip zones 

V(q) = (25) 
0, in stick zones. 

The location and the extent of the slip zones are determined by the inequality (17) and the 
signurn condition (19). The reasoning and the results are quite similar to those for plane 
harmonic waves[l], and they are shown schematically in Fig. 2 for an incident pulse of a 
parabolic shape. We note that discontinuities in the slip velocity and shear tractions occur at the 
leading edges of the slip zones if fS >6. This behavior was also observed in [I] and is 
characteristic of the supersonic case. 

An interesting situation evolves when f& < @” < fgm. Once the incident pulse breaks static 
friction in such case, slip will theoretically not stop after the passage of the pulse. 

3. TRANSONIC CASE 

Assuming that the upper solid is acoustically faster than the lower, the transonic case occurs 
for angles of incidence in the range 

c< 
C 

-<CT, or c<v<C 
sin e, 

In this range, total reflection is observed, S& as defined by (7) is complex, and the interface 
shear traction in the bilateral problem does not retain the shape of the pulse[5]. Since only the 
effect of localized slip is of interest in this paper, the total reflection of a stress pulse will not be 
pursued further. Instead the transmitted shear traction is simply taken in the form of (4), but 
with the understanding that (6) or (7) no longer apply. The dislocation stress is now[4] 

(27) 

Fig. 2. Shear traction and slip velocity for a parabolic pulse in the supersonic range. 



where 

(28) 

and B(q) is non-zero only in the stip zones. For the purpose of ~lust~tion and without loss of 
generatity we assume that only one slip zone a < q <p is generated. Applying the boundary 
conditions as in the previous section, we obtain a Cauchy singular integral equation for B(q): 

where we have set 

b=+ (30) 

and 

For the solution of (29) we follow 161. The inequality precludes stress singularities in the 
transition from slip to stick, and a bounded solution must be sought, The characteristic function 
of (29) is then 

w(9) = (B - #(ll - aPA 

tannA=-b, ($A< 1). 

The solution of the integraf equation is 

provided the consistency condition 

(32) 

(33) 

(34 

(35) 

is satisfied. 
Equation (35) together with the inequality conditions determine the parameters Q and 8. To 

proceed however with the analysis we must specify f(v). We may take, for instance, a 
parabolic shape 

It is desirable to obtain a soIution in closed form to show clearly the effect of the comity 
conditions. Thus we assume that the level of the applied loads and the combination of materials 
are such that the slip zone falls within the range of the interface tractions in the bilateral 
problem, or that jai < 1 and &!I < 1, The integrations involved are then eIcmentary and can be 
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found in [I. Using (36) in (35) we obtain the following equation for a and p 

The dislocation distribution is obtained from (34) as 

The shear traction in the stick zones is 

(37) 

(39) 

Carrying out the integrations in (39) yields 

It can be verified from (40) that at a and /? the shear traction is continuous. Thus the transition 
from stick to slip will be effected before static friction is reached, We cannot include the effect 
of static friction without introducing an extra zone along which the transition from static to 
kinetic friction is achieved according to some continuous friction law. A similar situation was 
encountered in 123. It seems that the discontinuous transition required by Coulomb’s law can 
only be accommodated in the supersonic case where the fields exhibit local dependence. In the 
transonic range, total reflection leads to a smearing out effect which is inconsistent with 
Coulomb’s iaw of friction for fS f fh. For the purpose of this paper we will adopt the corn 
assumption of equal coefficients of friction 

fJ = 6 =f* 

The conditions (17) and (19) must now be enforced. 
B(q) > 0 or that 

In view of (IS), (19) requires that 

A@-a)+2a>O. (42) 

To satisfy (17) we must require that the maximum of S(q) in the stick zones does not exceed (in 
absolute value) fp”, This is achieved by making the slope of S(q) vanish at a, yielding 

A@-a)+2a=& (43) 

The parameters a and @ can be determined by solving (37) and (43). From (43) we obtain 

and from (44) and (37), 

a = - (45) 

Note that for slip to start, one must have SaO t qm - fpm > 0. Also 6A - 3A2 - 2 c 0 for the given 
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Ifp”-q’D~/jqo 
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Fig. 3. Variation of o( and @ witb up”- q”)fsfo with A = 0.7 for a parabolic pulse in the transonic case. 

range of A. In addition, for u, #4 to fall between (- 1, l), A, qm and (~.D”/J&) are restricted by 

Figure 3 shows how CY and @ vary with (jp”- 4~1~~ for A = 0.7. 
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