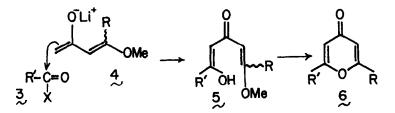
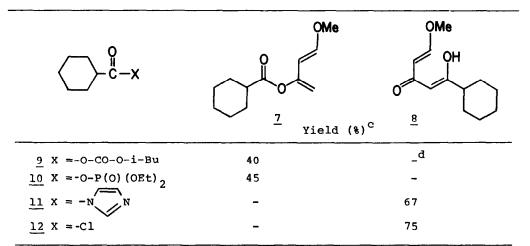

A CONVENIENT SYNTHESIS OF SUBSTITUTED γ -PYRONES

Masato Koreeda* and Hiroshi Akagi

Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109


Summary: An efficient and general synthetic method for various 2-mono- and 2,6-disubstituted γ -pyrones has been developed. This utilizes the C-acylation (70-85%) of β -methoxy- α , β -enone lithium enolates 4 by acid chlorides 3 followed by the acid-catalyzed cyclization (>80%) of the resulting enols 5 to γ -pyrones 6.

A large number of natural products possessing a γ -pyrone moiety have been isolated from various sources.¹ Of particular interest as synthetic targets are γ -pyrone-cyclohexane epoxides such as LL-Z1220 1,² an antibiotic isolated from an unidentified fungal species, and tridachione 2,³ a propionate-derived metabolite from a mollusk, Tridachiella diomedea.



Although a variety of synthetic methods for γ -pyrones are available,⁴ essentially all of them employ strongly acidic conditions for the cyclization of openchain 1-ary1-⁵ or 1-carbomethoxy-1,3,5-triketones,⁶ followed by thermal decarboxylation in the latter case. These often proceed only in moderate yields. In connection with our synthetic efforts toward the acid- and heat-sensitive antibiotic LL-Z1220 <u>1</u>, we developed an efficient and mild method for the synthesis of alky1- and/or ary1-substituted γ -pyrones which uses an acid chloride and a β methoxy- α , β -enone as the building blocks.

The basic strategy undertaken is outlined below:

<u>Table I.</u> Acylation Reactions of the Anion 4^{a} (R = H) with Cyclohexanecarboxylic Acid Derivatives.^b

a. See <u>Typical Procedure</u>. For <u>9-11</u>, the lithium enolate solution was added to these acid derivative solutions, whereas the acid chloride <u>12</u> solution was added to the former.

b. All reactions were carried out in dry THF under nitrogen initially at -78° C and gradually warmed up to room temperature and was kept at room temperature for 2 - 3 hrs.

c. Yields based on the material isolated by column chromatography or TLC.

d. The designation - in the Table indicates the absence of the corresponding product analyzed by NMR of the crude reaction mixture.

entry		R'-C=0 I e CI <u>3</u>	R'OH 5 Viel	$\vec{R' \circ R}$
1.	$R = H (\underline{E})^{b}$	R' = Me	70	85
2.	$R = H (\underline{E})$	$R' = PhCH_2$	74	83
3.	$R = H (\underline{E})$	R' = t - Bu	81	80
4.	$R = H (\underline{E})$	$R' = \underline{c} - C_6 H_{11}$	72	85
5.	$R = H (\underline{E})$	R' = Ph	83	90
6.	$R = Me(\underline{Z})$	R' = Me	55	65
7.	R = OMe	R' = Ph	50 ^C	80

Table II.	Synthesis	of Substi	.tuted	γ-Pyrones.

a. Yields based on isolated material which was >98% pure.

b. Stereochemistry of the enolate.

c. See text.

<u>Typical Procedure</u>: The solution of acid chloride (1 mmol) in 2 ML of dry THF was added, under nitrogen, to the solution of lithium enolate $\underline{4}$, prepared by the dropwise addition of 4-methoxy-3-buten-2-one (2 mmol) to 2 mmol of lithium bis(trimethylsilyl)amide⁷ in 8 mL of THF at -78° C for 30 min. The mixture was gradually warmed up to room temperature and was kept at room temperature for 2 hrs. The reaction mixture was treated with saturated aqueous NH₄Cl solution and was extracted with ether. The organic layer was washed with saturated aqueous NaCl solution, dried over sodium sulfate, and evaporated under reduced pressure providing the enol 5 which was purified by column chromatography or TLC

The enol 5 (1 mmol) in 10 mL of dry benzene was treated with two drops of trifluoroacetic acid at room temperature for 12 - 18 hrs. The mixture was then evaporated to dryness under vacuum, and was subsequently purified by column chromatography or TLC to give the γ -pyrone $\underline{6}$.

Acknowledgment: We thank the National Institutes of Health for support of this work.

References and Notes

- Dean, F. M. "Naturally Occurring Oxygen Ring Compounds"; Butterworths: London, 1963; Chapter 4.
- (a) Borders, D. B.; Shu, P.; Lancaster, J. E. J. Am. Chem. Soc. <u>1972</u>, <u>94</u>, 2540; (b) Borders, D. B.; Lancaster, J. E. <u>J. Org. Chem</u>. <u>1974</u>, <u>39</u>, 435; (c) Vogel, E.; Altenbach, H. J.; Schmidbauer, E. <u>Angew. Chem. int. Ed</u>. 1973, 12, 838.
- (a) Ireland, C.; Faulkner, D. J.; Solheim, B. A.; Clardy, J. <u>J. Am. Chem.</u> <u>Soc.</u> <u>1978</u>, <u>100</u>, 1002; (b) Ireland, C.; Faulkner, D. J.; Finer, J. S.; Clardy, J. <u>ibid</u>. <u>1979</u>, <u>101</u>, 1275.
- Livingstone, R. In "Rodd's Chemistry of Carbon Compounds"; Coffey, S. Ed.; Elsevier: Amsterdam, 1977; Vol. IV, Part E, Chapter 20.
- 5. Light, R. J.; Hauser, C. R. J. Org. Chem. 1960, 25, 538.
- 6. Dorman, L. C. J. Org. Chem. 1967, 32, 4105.
- 7. The use of lithium diisopropylamide provided somewhat lower yield of the enol 5.

(Received in USA 27 December 1979)

<u>Typical Procedure</u>: The solution of acid chloride (1 mmol) in 2 ML of dry THF was added, under nitrogen, to the solution of lithium enolate <u>4</u>, prepared by the dropwise addition of 4-methoxy-3-buten-2-one (2 mmol) to 2 mmol of lithium bis(trimethylsilyl)amide⁷ in 8 mL of THF at -78° C for 30 min. The mixture was gradually warmed up to room temperature and was kept at room temperature for 2 hrs. The reaction mixture was treated with saturated aqueous NH₄Cl solution and was extracted with ether. The organic layer was washed with saturated aqueous NaCl solution, dried over sodium sulfate, and evaporated under reduced pressure providing the enol <u>5</u> which was purified by column chromatography or TLC.

The enol <u>5</u> (1 mmol) in 10 mL of dry benzene was treated with two drops of trifluoroacetic acid at room temperature for 12 - 18 hrs. The mixture was then evaporated to dryness under vacuum, and was subsequently purified by column chromatography or TLC to give the γ -pyrone <u>6</u>.

<u>Acknowledgment</u>: We thank the National Institutes of Health for support of this work.

References and Notes

- Dean, F. M. "Naturally Occurring Oxygen Ring Compounds"; Butterworths: London, 1963; Chapter 4.
- (a) Borders, D. B.; Shu, P.; Lancaster, J. E. J. Am. Chem. Soc. <u>1972</u>, <u>94</u>, 2540; (b) Borders, D. B.; Lancaster, J. E. <u>J. Org. Chem</u>. <u>1974</u>, <u>39</u>, 435; (c) Vogel, E.; Altenbach, H. J.; Schmidbauer, E. <u>Angew. Chem. int. Ed</u>. <u>1973</u>, <u>12</u>, 838.
- (a) Ireland, C.; Faulkner, D. J.; Solheim, B. A.; Clardy, J. <u>J. Am. Chem.</u> <u>Soc.</u> <u>1978</u>, <u>100</u>, 1002; (b) Ireland, C.; Faulkner, D. J.; Finer, J. S.; Clardy, J. <u>ibid</u>. <u>1979</u>, <u>101</u>, 1275.
- 4. Livingstone, R. In "Rodd's Chemistry of Carbon Compounds"; Coffey, S. Ed.; Elsevier: Amsterdam, 1977; Vol. IV, Part E, Chapter 20.
- 5. Light, R. J.; Hauser, C. R. J. Org. Chem. <u>1960</u>, <u>25</u>, 538.
- 6. Dorman, L. C. J. Org. Chem. 1967, 32, 4105.
- 7. The use of lithium diisopropylamide provided somewhat lower yield of the enol 5.

(Received in USA 27 December 1979)

1200