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We develop a systematic method of isolating the effects of virtual heavy particles in 
renormalizable field theories. With a q54-type field-theory model involving two real scalar 
fields (one with a heavy mass M, and the other light), we show in detail that, up to order 
1/M 2 (but to all orders in renormalized couplings), effects of ~irtual heavy particles can 
be completely incorporated into pure light-particle theory via effective local vertices 
which involve operators of canonical dimension at most six. All the coupling strengths 
for such effective local interactions are of order 1/M 2 (the decoupling theorem) and are 
systematically calculable in renormalized perturbation theory. We also derive a closed 
set of Callan-Symanzik equations which are satisfied by these coupling strengths. Using 
these equations, we explicitly sum all the leading logarithms (i.e., g log M ~ O(1)) which 
appear in the perturbative calculations of the effective coupling strengths. 

1. I n t r o d u c t i o n  

In field-theoretic studies of strong interaction physics, there has been much inte- 
rest recently in isolating genuine large-momentum processes from complicated long- 
distance dynamics like confinement - so called factorization. This has been studied 
in terms of the operator product expansion [1 ] or from the viewpoint of mass singu- 
larity cancellation [2]. In the language of the former, genuine large-momentum pro- 
cesses are described by the so-called coefficient functions, and long-distance dyna- 
mics by the matrix elements of various local operators. In an asymptotically free 
field theory like QCD, the coefficient functions may be reliably calculated through 
perturbation theory and further improved by using the renormalization group [3]. 
In this paper, we discuss another kind of factorization: heavy particles versus light 
particles. Specifically, we wish to calculate systematically effects of virtual heavy 
particles on light-particle Green functions in renormalizable field theories, when all 
the external momenta are much smaller than the masses of heavy particles. 

In renormalizable field theories without spontaneous symmetry breaking, Appel- 

* Supported in part by the Department of Energy. 

171 



172 C. Lee / Theory of virtual heavy particle effects 

quist and Carazzone [4] have shown that the heavy particle (of mass M) decouples 
from light-particle physics, except for renormalization effects and corrections of 
order 1/M 2 (the decoupling theorem). Since renormalization effects are absorbed 
into the very definitions of physical parameters of the theory, this theorem prac- 
tically denies any observable effects due to the existence of virtual heavy particles, 
to the zeroth order in M -1 . However, we do want to understand the low-energy 
manifestations of the heavy particles: for instance, effects of heavy muon loops 
in QED, the influence of heavy quarks in total e+e - annihilation, and, in fact, the 
whole subject of the weak interaction. These are order 1/M 2 effects and, in this 
paper, we present the precise theoretical framework to study them systematically. 

We develop a simple theoretical formalism to isolate all the order 1/3/12 effects 
via a set of effective local vertices with calculable coupling strengths. Thus, let m 
denote the physical light masses and g the coupling strengths among these light 
objects, defined at appropriate normalization points. Let M be the heavy masses and 
G be the coupling strengths which involve at least one of the heavy particles. Let 
Tn(g, m, G, M) be the amputated n light-particle Green functions. Similarly, let 
Tn(g' m) be the same Green functions calculated with all heavy-particle lines taken 
out. We will show that, to order 1/M 2, we have the factorization: 

where C i (g, m, G, M) are universal coupling strengths which can be systematically 
calculated in renormahzed perturbation theory. Oi are local vertices involving opera- 
tors made up of the light-particle fields alone and with canonical dimension at most 
six. Tn(Oi, g, m) denote amputated Green functions with Oi once inserted, in the 
pure light-particle theory. 

In renormalized perturbation theory, the effective coupling strengths Ci(g, rn, G. 
M) are at most of order (log(M2/m2)) n (n; a non-negative integer), with n in general 
increasing as the number of loops in relevant Feynman diagrams increases. It is often 
desirable to sum such powers of log(M2/m 2) in a systematic fashion. This can be 
most easily achieved if one can write down a set of closed Callan-Symanzik equations 
[5] for C/(g, m, G, M). However, the situation here is more complicated, compared 
to that in previously known uses of the Callan-Symanzik equations. Complications 
are due to the facts that: 

(i) the usual right-hand sides (up to twice light-mass insertions) of the Callan- 
Symanzik equations must not be neglected; 

(ii) the Callan-Symanzik coefficients/3(g~ 7(g), etc., also obtain O(1/M 2) contri- 
butions from virtual heavy particles. 
We have resolved these difficulties by using the homogeneous Callan-Symanzik equa- 
tions developed by the author [6]. 

To present the main theoretical ideas without worrying too much about techni- 
cal complications (like the consideration of local gauge invariance), in the present 
paper we have chosen a simple renormalizable field theory to prove the above state- 



C. Lee / Theory of  virtual heavy particle effects 173 

ments: a ~4-type field theory involving two real scalar fields, one with a heavy mass 
M and the other light. Extension to realistic field theories (e.g., QED with a heavy 
muon or QCD with an extra heavy quark) and physical applications will be dealt with 
in forthcoming publications. With our formalism, we are now able to study systema- 
tically the influence of  heavy quarks in e+e - annihilation (or in deep inelastic scat- 
tering processes) when the incident energy is much below their production thresholds. 
We hope that after some extensions to incorporate spontaneously broken theories, 
we may be able to express arbitrary higher-order effects of  virtual heavy particles in 
unified or grand-unified models, in terms of  simple effective local vertices of the cor- 
responding light-particle theory alone * 

The plan of our paper is as follows. In sect. 2, we derive the factorization (1). In 
sect. 3, we derive the Callan-Symanzik equations satisfied by the effective coupling 
strengths. In sect. 4, we present explicit lower-order calculations and explain how the 
complete leading log sum can be obtained from these calculations by using the Callan- 
Symanzik equations. In sect. 5, we summarize and discuss our results. Brief discus- 
sions on more realistic field theories will be also given here to give a rough idea on 
the scope of  physical applications of  our formalism. In appendix A, we discuss tile 
factorization analogous to eq. (1) for the heavy-particle two-point function, and 
also for the four-point function with two external heavy particles and two external 
light particles. These results are used in sect. 3. In appendix B, we briefly indicate 
necessary modifications when different renormalization prescriptions, other than 
the ones used in the main text, are employed. 

2. Factorization 

We consider a scalar field theory (the ¢-~b theory) which involves two real scalar 
fields, ¢ and 4, interacting via quartic couplings. The action for the system may be 
written as 

I 1 
s = f d 4 x  ½ p~ (a.,~) = + ½p ~ ( a .  ¢,)= - ½u=poe ~ - ½M=R¢ ~ - ~. ~p& ~4 

1 q 
/3p~ 4 ,2 - k Vp~P, ~h ~ ¢2 + .ec J (2)  

4]  

where 01, M), (Pc, P@ ) and (a,/3, 7) denote renormalized masses, renormalized wave- 
function parameters, and renormalized coupling constants, respectively. Here, ~c  
denotes renormalization counterterms. Since the lagrangian counterterms &?c con- 
sist of  local operators of  canonical dimension at most four, the action (2) may also 

* Some interesting papers which deal with related problems may be found in refs. [ 12,13]. Brief 
discussions are also given in sect. 5. 
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be written in the following multiplicative form 

-- ~/aB/-,Bq~ -- ,~MBPB~ p 

1 ~ p ~ 4  1 ~4 1' 4! -4 .v  flBp2q ¢ -- I')'B P BO PBgg ~2 1]/2 (3) 

where (PB, MB), (PB~, PBqJ ) and (a B, /3B, 7B) denote bare masses, bare wave-func- 
tion parameters, and bare coupling constants, respectively. We assume that the mass 
of ~-particle, M, is much larger than the mass of q~-particle,/~. In this limit, we are 
interested in calculating effects of virtual heavy particles, here described by if, on 
light-particle Green functions with external momenta much smaller than M. 

We denote the renormalized (n + N)-point proper vertex function with n exter- 
nal C-legs and N external ~k-legs by ['n,U(Pl ..... Pn, P1, "",PN). (See fig. 1). As 
our convention, dotted lines will be used to indicate qMines, and solid lines to indi- 
cate if-lines throughout the paper. Also, all the external momenta will be specified 
with respect to incoming directions. Then, the renormalization counterterms in the 
action (2) may be chosen such that the following normalization conditions are satis- 
fied: 

= F2,o (P, -P~I2= ° --ill2p¢ , (4a) 

~_2 Fz,o(P, -P)  I = ip(~ , (4b) 
OlD p2= 0 

Fo,2 (P, - P )  I = O ,  ( 4 c )  
p2=M2 

~p2 ro,2 (P, - P )  I = i pe ,  (4d) 
p2=M2 

F4,0(Pl, P2, P3, P4) I = - iaog , (4e) 
Pi=O 

Fo,4(P1, P2, Pa, P4) py=M 2 =--i~P~ , (4f) 

(Pl +P2) 2 = (P2 +P 3) 2 = 4M2 

F2,2(Pl ,  P2,)  1 2 2 2 -=-iTp~po.  (4g) 
Pi=O,PI=P2-M 

Precise details of these normalization conditions are not important, as long as one 
chooses the normalization points for light particles (i.e., qS-fields) at momenta much 
smaller than M. (The latter is necessary for the decoupling theorem to be valid in 



C. Lee / Theory of  virtual heavy particle effects 

Pz " ' " ~ - . 4  r" ~ - 

Fig. 1. A (n + N)-point proper vertex function. 
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the first place). Also, in eqs. (4a -g )  we renormalized the theory at zero momenta  
for external ~,b-fields, only for the sake of simplicity. In appendix B, cases with dif- 
ferent normalization conditions will be considered. 

We now address ourselves the following question: For the function Fn,o (P 1 . . . . .  Pn) 
in the limit of//, p 1, ..., Pn < <  M, is it possible to describe the effects of  virtual 
heavy particles in terms of some simple quantities of  pure light-particle theory? 
According to the decoupling theorem [4], the effects are in general of  order 1/M 2. 
But, do these order 1/M 2 effects appear in a certain systematic fashion? To be more 
precise, let us consider a theory of  light particles (the ~b theory) with the action 

or, in a multiplicative form, 

{ 1~2~ 1 ~B~B2bCb4 } = f d 4 x  ½5 Be (~,~)2 _ ~/~ a '  2e~2 -- ~ .  • (6) 

Denoting the n-point proper vertex function in this theory by I'n(Pl ..... Pn), we 
may impose the following normalization conditions: 

F2 (P, -P) lp  2=0 = -0/2/2e , (7a) 

ap2 F2(P, - P )  ] = iO0,  (7b) 
p2= 0 

F4(P1, P2, P3, P4) I =--i0Q0~ , (7C) 
Pi=O 

namely the same values as those in the ~b-~ theory with the action (2) at the com- 
mon normalization points. (See the conditions (4a), (4b), and (4e)). Here, we have 
assigned the same values for observed (i.e., renormalized) parameters in both theo- 
ries since renormalization effects are not directly observable. (This also implies that 

Z c, 
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; ~,, & • : , . p=' ,p~ P= :& ',p, "~ 

Fig. 2. Tree vertices for 61, 92, 93 . 

We now introduce the function 

Hn (Pl . . . . .  Pn) = Fn,o(Pl ..... Pn) - Fn (Pl . . . . .  P n ) ,  (8) 

and then the question we have just addressed ourselves may be put as follows: Is 
there any systematic method of expressing H n (Pl . . . . .  Pn)  in terms of some simple 
quantities of the pure light-particle theory only? To all orders in renormalized per- 
turbation theory, we will now show that, for p, p 1 . . . . .  Pn < <  M *, 

Hn(Pl  . . . . .  pn )  = ~ GiFn(~gi, p l  . . . . .  pn )  + , (9) 
i 

where the Gi's are of order 1/M 2 and Oi denotes certain local vertices in the ~b-field 
theory as specified below. 

In Oi, one should in general include all the local vertices involving operators of 
canonical dimension not larger than six. However, with the normalization conditions 
(4a-g), (7a-c)  and the normalization conditions for Oi's as specified below, the 
most convenient set of the local vertices are provided by the following vertices 
which involve only dimension-six operators, 

0 1  = ? / d 4 x  N[~(32) z q~(x)], (10a) 

p2 
0 2 = --  ~ / d 4 x  N [~3 Oz q~ (x)] ,  (10b) 

b3 = P~ f d4x N [q~6(X)] (10c) ~. 

Precise definitions of these local vertices can be given (traditionally in momentum 
space) by specifying the corresponding tree vertices and appropriate subtraction 
rules in calculating higher-order inatrix elements involving these new vertices. The 
tree vertices are shown in fig. 2. Assuming minimum subtractions (i.e., subtract 
only for the purpose of making certain divergent subgraphs finite and no further 

* Here, the notation P l  ..... Pn < <  M implies that every individual component  of  the four-momen- 
ta p 1 . . . . .  Pn is much smaller than M. 
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finite renormalizations), the subtraction rules for the above operators can be com- 
pletely specified by the following normalization conditions: 

1"2(0i, p, -p)lp2=o = O, (i = 1, 2, 3 ) ,  (1 la) 

1"2(0i, p, --p) [p2=O = O, (i= 1,2,  3 ) ,  ( l l b )  OpZ 

1"4(Oi, Pl,  P2, P3, P4)lPi= 0 = 0 ,  (/'= 1, 2, 3 ) ,  ( l l c )  

Fz(OI,  p, - p )  = po[(pZ) z + O((p2)3)1,  ( l l d )  
p2--~ 0 

1"4(01, Pl ,  P2, P3, P4) = O ( p 4 ) ,  ( l l e )  
p i-~O 

1'6(01, P1, P2 ..... P6) = O(p~) ,  ( l l f )  
pi-*O 

1'2(02, P, - p )  = 0 ( (p2 )3 ) ,  ( l l g )  
p2-* 0 

1'4(02, Pl,  P2, P3, P4) 2 2 ~ = p4~[pl +p2 +p2 +p2]  + O(p4) ,  ( l l h )  
p i---~O 

1'6(02, f l  . . . . .  P6) = O(p2) ,  ( l l i )  
pi--~O 

1'2(O3, P, - P )  = O((p2)3) ,  ( l l j )  
p 2---~ 0 

I'4(O3, Pl ,  P2, P3, P4) = O(p4) , ( l l k )  
pi.-~O 

r6(O3,  Pl ..... P6) = Pg + O(p~).  (11~) 
p i--~O 

The normalization conditions (11a-c)  are for the subtraction of quartic and quadra- 
tic divergences and, as will be seen later, are closely related to original renormaliza- 
tion subtractions in the O-~b theory with the action (2). 

To prove the factorization (9), it is convenient to adopt the elegant language due 
to Zimmermann in defining renormalization subtractions [7]. But, in the present 
paper, we use a slight deviation from Zimmerman's original approach to facilitate 
our discussions. 

Let us first look at the ~b-ff theory. The action (2) with .(2 c = 0 provides Feyn- 
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. . . . .  .> . . . .  . i > . 
V ~ ( pZ-p2+ ie) p ~ (  p z - H z  + iE) 

""":'"".-"" "'-. : -i~z X " -i/S~z 

Fig. 3. Feynman rules for the qS-q: theory. 

man rules for unrenormalized Green functions, with the rules for tree graphs shown 
in fig. 3. Higher-order, unrenormalized, Green functions are expressed in terms of  
the tree-graph Feynman rules by using the Gell-Mann-Low theorem and Wick theo- 
rem [8]. The proper vertex function ['n,N(plu ..... Pn, P1 ..... PX)  is in general ill- 
defined due to ultraviolet divergence problems. To make them well-defined, we may 
regulate those unsubtracted functions by well-known regularization methods, either 
by the Pauli-Villars regularization or by the dimensional continuation method. To 
be definite, let us take the Pauli-Villars method with the typical regulator mass 
denoted by A. Then the renormalized function Fn, N ( P l  . . . . .  Pn, P1 ..... PN)  is given 
by the forest formula [7] 

Fn, N(P l ,  Pn, P1, PN)  lim ~ l-I (o) u . . . . . . . .  = (--t~ )I 'n,  N ( p l  .... P n , - P l , ' " , P N ) ,  
A2--,~ a ~,~a (12) 

where the sum goes over all the forests of each Feynman graph contributing to I'nUN . 
Let us explain the formula (12) briefly• A forest ~2 is defined as a set of  non-over- 

lapping proper subgraphs, % of a given Feynman graph G. (Note that Zimmermann 
[7] defines a forest in terms of  non-overlapping renormalization parts, rather than 
in terms of arbitrary non-overlapping proper subgraphs. Instead, we will put some 
restrictions upon the Taylor operator t(v°) ). Thus, any two elements % 7' in a forest 

• " C r t t , . satisfy either 7 3, or 7 D ~, or 7 n ~ = 0. A forest ~2 containing the whole graph 
G itself is callet L full, and a forest not containing the whole graph is called normal. 
A proper subgraph ~' is defined by a non-empty set of  lines of  G which are connected 
and one-particle-irreducible. According to this definition, the empty set or a trivial 
diagram consisting of  a single vertex and no line is not a proper subgraph. On the 
other hand, the one-particle-irreducible whole graph G is considered as a proper 
subgraph if G does not correspond to a tree graph. Also, fZ may be empty set, and 
it is important to include this empty set in the sum over forests in eq. (12). The 
Taylor operator t (°) operates on the part of  the integrand which precisely represents 
the proper subgraph % (The superscript '(0)'  in t (°) indicates minimal or normal sub- 
tractions). Let the proper subgraph ~, correspond to a (k + K)-point vertex function 
with the external momenta q l ,  ..., qk, Q1, ..., QK, and then we may denote the cor- 
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. . . . .  ~. . . . .  i " ' "  - 

Fig. 4. Feynman rules for the q~ theory. 

responding Feynman amplitude simply by u (q qk, Q1, QK) in a represen- 
tative sense. Then the Taylor operator t(v°) is l-'k'Kspecifiedl' -..,by .... 

t(o)P~,o(q'-q) = P~, o(q'-q)q 2=0[ + q 2 I +  I~ ,o(q ' - -q) l  q 2[ 0 ' (13a) 

t(°)F~,o(ql, q2, q3, q4) = P~,o(ql, q2, q3, q4) I 
qi = 0 

(13b) 

t(°)F~,2(Q,-Q)=P~,2(Q,-Q) ] + ( Q 2 - M 2 ) I + F ~ , 2 ( Q , - Q )  ] 
~2 2 =M 2 

i 
Q2=M2 

(13c) 

- F u  t(°)P~,4(Q1, Q2, Q3, Q4)-  o,4(Ql, Q2, Q3, Q4) I 
Q2=M2 

(QI +Q2)2=(Q2+Q3)2=(Q 1 +Q3) 2=4M2 

(13d) 

t(°)F~,2(qt, q2, Q1, Q2) = I'2U2(qx, q2, Q1, Q2) [ , (13e) 
0 ~2 ~2 M 2 

qi = ,~dl =~d2 = 

t(°)F~,K(ql ..... qk, Q1 ..... Or)  =0 , (k + K >  4) • (13f) 

In the product II(- t  (°)) in the forest formula (12), the factors are ordered such 
that t (°) stands to the left of t(q ), if 7 ~ 7'. For the empty forest, the product II(- t  (°)) 
is simply reduced to 1. With these prescriptions, one can show that the expression (12) 
has a well-defined limit and satisfies the normalization conditions (4a-g). It is also 
matter of combinatorics to show that these renormalization subtractions correspond 
to multiplicative renormalizations, as are manifest in the second form of the action, 
eq. (3). 

Almost parallel considerations may be given for the ~b-field theory with the action 
(5). Tree-graph rules for unsubtracted Green functions are shown in fig. 4. The renor- 
malized proper vertex function I'n(Pt . . . . .  Pn)  in this theory is given by the forest for- 
mula 

Fn(Pt ..... Pn) = lim ~ I-I (o) -u  ( - t .  r ) r , , (p t  ..... p,,),  (14) 
A2 ~ I2 "y~I2 
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(0) specified by with the Taylor operator t. r 

t (O)[ '~(q , -q)= F~(q , -q )  q2=OI + q2~uoq ~ ( q '  -q)]q~:O ' (15a) 

t(°)F,](ql ,  q2, q3, q4) = - u  F4(ql, q2, qs, q4) I , (15b) 
qi=O 

t (°)F~(ql  ..... q k ) = 0 ,  ( k > 4 ) .  (15c) 

The renormalized functions F~ defined by the formula (14) satisfy the normaliza- 
tion conditions (7a-c). Also, renormalized proper vertex functions with a certain 
operator vertex insertion may be defined in an analogous manner, if the tree-graph 
rule for the operator vertex to calculate unsubtracted functions has been given. 
In particular, the renormalized vertex functions Fn (Oi, P 1 ..... Pn) with the opera- 
tor vertices 0 i (see fig. 2 for the tree-graph rules) are given by the forest formulae 

Fn(()i, Pl,  Pn) = lim ~ 1-[ " ,(o) -u  Pn (Oi, P .... Pn) (16) .... ( - , ~  ) l ,  , 
A2..~, ~2 "),E~ 

with the Taylor operator t (°) specified as follows: 
(i) If the proper subgraph 7 corresponds to a vertex function which does not 

include the Oi vertex, t(7°) is given by eqs. (15a-c). 
(o) is determined by (ii) If the proper subgraph 7 includes the Oi vertex, t v 

a 
t (O)P~ (Oi, q, --q) = F~(~)i, q, --q) I + q2 _ _  F~(~)i, q, --q) I 

qZ:o 8q2 qZ =0 

02 1 +1 , La(q2) 2 q2=o' 

t(O)F~(Oi, ql,  q2, q3, q4) = F~(Oi, ql ..... q4) I 
qi=O 

k4 : l  qi 0 

+ 1 ~  q~ ~ i_,4(Oi, ql ..... q4 qi[O , 

t(°)F~(()i, ql ..... q6) = F~(~)i, ql ..... q6) I 
qi = 0 

t(°)F~ (()i, ql  ..... qk) = O, (k > 6).  

(17b) 

(17c) 

(In eq. (17b), the variable qk may refer to any ofq lu ,  q2u, q3u, q4# with an arbitrary 

(17d) 
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Lorentz index.) Again, it is a simple matter to show that ['n(Oi, p , ,  .... Pn) defined 
by the forest formula (16) satisfies the normalization conditions (1 l a -~ ) .  

We are now ready to prove the factorization (9). The proof  which follows is based 
on the adaptation of Zimmermann's  algebraic identity to our problem [7]. Let us 
define the unsubtracted function 

U U ~ t l  
I "  n g n ( P l  ..... Pn) = Fn,o (Pl ..... Pn) - (Pl ..... Pn) (18) 

which is represented by all one-particle-irreducible Feynman graphs with n external 
q~-legs and some internal V-lines. Then, the renormalized function Hn (Pl ..... Pn) 
as defined by eq. (8) can be given by the forest formula 

Hn(Pl  ..... pn) = ~ I~ ( t (°) )HU(p I ..... Pn) ,  (19) 

where the limit A 2 -~ oo is implicitly assumed (here and henceforth) and the sum 
goes over all the forests in the ~b-~ theory. If fl  is not an empty forest, the elements 
7 in general correspond to a certain proper vertex function, FnUN . When a proper 
subgraph 7 E ~2 corresponds to Pu,0 , it is convenient to separate the case when 7 
includes some internal ~b-lines from the case when 7 includes only ~b-lines. Hence, 
for the latter case we shall say that 7 corresponds to ~u,  and for the former case 
to H u. We may then say that the elements 7 with t (°) ~ 0 correspond to one of 

U U U U U U U 
Fo.4. F2.2, I~2, F g , H  2 ,H,~, 1-'o.2 , 

To prove the factorization (9), it is useful to consider the oversubtracted func- 
tion ffln(pl ..... Pn) which may be written as 

Hn(P l  ..... pn) = ~ [-I (- t .y)  HnU(pl .... ,Pn) .  (20) 
fZ 3'E ~2 

The Taylor operator ?-7 is given by 

u II .(2) if 7 corresponds to H2,  H 4 or H~ and there are 
no internal q/-lines left outside 7, (2 la) 

t7 = t~  ) ,  otherwise.  (218) 

The Taylor operator t (2) indicates oversubtraction and is precisely specified by (cf. 
eqs. (l 7a -d ) )  

q2 [~q2 H~ (q' - q  ) 1 _ t(2)H~(q, - q )  =H~(q, - q )  qzl:o + q2[_ 0 

~2 )1 q2l= ° 1 - t q 2 ~ 2 F - - -  - q  
+ 2, , Lo(q2)2 H~ (q, (22a) 

t(2)H~(ql, q2, q3, q 4 ) = H ~ ( q ,  ..... q4) I + 1  qkql 4(ql, q4 [__ 
qi =0 q i  0 
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1 q2 H,~ ( q4 q l ,  [ (22b)  +~  k "", , 
k qi  = 0 

t(2)H~(ql ..... q6) = H ~ ( q l  . . . . .  q6) ] , (22c) 
qi=O 

t(2)H~(ql,  ..., qk) = O, (k > 6 ) .  (22d) 

Here, for any forest, we may consider the set c~ consisting of  all the proper sub- 
graphs satisfying the condit ion (21a). Then, any two elements 7, 3,' E c)~ must satis- 
fY 7' C 3, or 3,' D 7, since there should not  be any internal ~b-lines left outside 

3' (or 3,'). 
We now rearrange the formula (20). Let us first define the set of  all forests ~ for 

a given Feynman graph as W(~2). Then, for any forest ~2 E U(~2) which includes at 
least one element belonging to c); we may split 

77  = t(0) + (t(2) (0) -- t 7 ) for any 3, C cl~ . (23) 

Substituting eq. (23) into eq. (20), we obtain 

~In(pl ..... Pn) = ~ ~ [ l  F.rH u (Pl ..... Pn) , 
Y~EU(~2) FEF(~2) - r~2  

where F ( ~ )  is the family of  the functions with the property 

(24) 

(0) or --( t  (2) (o) either - t  7 ' (25) - t 7 ) ,  i f 3 ,E  cl~ 

F7 = (o) if 7 q~ c)y -- t  7 , 

(o) for all 3, E ~2. For any ~2, there must be a function F o in F(~2) which assigns - t  7 
Taking out all terms with F = F o and using the forest formula (19), we find 

H n ( P l  . . . . .  Pn) = Hn(Pl ..... Pn) + Xn (Pl . . . . .  Pn) ,  (26) 

where 

Xn (Pl ..... Pn) : ~ ~ I-I F~HU(pl ..... Pn) ,  (27) 
~EU'(Y~) F e F ( n )  7e~2 

F4:F 0 

with U'(~2) denoting the set of  all forests which have at least one element belonging 
to c)y. 

In the sum (27), we now note that, for any ~2 and F 4: Fo ,  there is a smallest ele- 
ment r E cl~ which gets the assignment 

F r = - ( t  (2) - t (°)) .  (28) 

Thus, for given ~2 and F ,  we may decompose 

~2 = YZ 1 + ~22 + ( r ) ,  (29) 
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where 

~21 : the set of all 3' E fZ (3' 4: r) with 3' D r or 3' ¢q r = 0 ,  

f22 ~. the set of  all 3' E ~2(3' 4: r) with 3' C r .  

Note that f22 is a normal forest of  r, i.e., ~22 ~ W(r) with tA(r) denoting the set of  
all normal forests of  r. The decomposition (29) implies that, for a given forest ~2, 

2 [~ F,~H u = [ [I (-t.r) ] [-(t (2)- t(°))] [ ,el~I a (-t(q))] H u .(30) 
FE F(I2) "yE~ 3,E~ 1 2 
F~F o 

With this information, it is a simple matter to write X n ( P l  . . . . .  Pn) in the form 

Xn(Pl ..... Pn) = ~ 2 ~ [1 (-T~,)] • [ - ( t  (2) - t(°))] 
~'~T ~21~JVl f ~22Eu('r ) ~yGI21 

" [ - /F~  (-t~°))l  H u '  (31) 
2 

where 
T: the set of  all proper subgraphs ~- having the property that r corresponds to 

H~, H~, or H~ and there are no internal t~-lines left outside r, 
Mr: the set of  forests ~2~ having the property that each 3, E f2~ satisfies 

r C 3' or r N 3' = 0 (Mr may be empty),  
U(r): the set of  all normal forests of  r. 
From eqs. (26) and (31), we conclude that 

Hn(P, ..... Pn) = - ~ ~ ~ [ 1-[ (-T.r) l - [ - ( t  (2) - t(°))] 
7"~T ~l~3VI.r ~2~U(r )  7E,~l 

" Iv ,_  I-I_~st (--t(q))] HU(p, ..... Pn) * Hn(P l  ..... Pn). (32) 
2 

In the expression (31) for Xn(Pl ..... Pn), we note that all the internal if-lines are 
inside the proper subgraph r. Then, we may define the constants G1, G2, G 3 by 

normal 

(t (2) t (°)) ~ 11 (o) u - ( - t .  r ) H  2 (q, - q )  = p~(q2)2G 1 , (33a) 

normal 

(t (2) t (°)) ~ 11 (--t(°))H~(ql, q2, q3, q4) = 2 2 - P*(ql +q~ +q~ + q l ) G 2  ' 
,yEI2 

(33b) 
normal 

(/.(2) __ f(0)) ~ H (-- t  (°)) g ~  (ql . . . . .  q6) = PgG3, (33c) 
~2 3,EI~ 

where z~ormal indicates the sum over normal forests only and in eq. (33b) we have 
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used the Bose and Lorentz symmetries. It is now a simple matter to write the expres- 
sion (31) in the form 

3 

x . ( p , ,  .... p . )  = g l  .co)) . . . . .  p . ) O ,  
i = 1 ~2 y ~ 2  

3 

= ~ Fn(()i, P l  . . . . .  Pn) G i ,  (34)  
i = 1 

where the local operator vertices ()i(i = 1, 2, 3) are given in eqs. (10a-c) .  Note that 
oversubtractions for H u in eq. (32) turned into minimal subtractions for Fu(Oi, P l, 
• ",Pn) in eq. (34). Due to the decoupling theorem, the constants G1, G2, G3 
defined in eqs. (33a-c )  are all of  order 1/M 2 . On the other hand, it is a simple exer- 
cise in application of  the Weinberg power-counting theorem [9] to prove that the 
oversubtracted f u n c t i o n  H n ( P l  . . . . .  Pn)  in eq. (32) is at most of  order 1/344. Thus, in 
the limit of/1, p 1 ..... Pn < <  M, eq. (32) yields the factorization 

3 

Hn (pl ..... Pn) = ~ I 'n(OiPl  ..... Pn) Gi + O{ ,J-~ 
i= 1 \IV1"~ 

3 

1 ~ ~n(~) i ,p  1 . . . . .  pn )  Ci+ 
M 2 i=1 

(9) 

where we have defined G =M2GI (i = 1, 2, 3). 
Once the factorization (9) for proper vertex functions is established, it is a simple 

matter to deduce the factorization for amputated, connected, Green functions (i.e., 
matrix elements). Let us denote the amputated, connected, Green function in the 
~-~ theory with n external ~b-legs (of momenta P l ..... Pn) and no external V-legs by 
Tn,o(Pl '  "'2 Pn), and the corresponding function with n external ~b-legs in the ~b 
theory by Tn(P 1 ..... Pn). The functions Tn,0 (Pl ..... Pn) and 1"n(Pl ..... Pn) can be 
always represented as skeleton graphs in respective theories, with all the skeleton 
blobs corresponding to proper vertex functions and all the bridge lines between 
these skeleton blobs corresponding to one-particle-reducible lines. One-particle- 
reducible lines are lines with the property that, when any of  those lines is cut, the 
whole graph becomes disconnected. Consequently, the four-momentum assigned to 
any bridge line is uniquely given as a certain linear combination of  external momen- 
ta p i .... , Pn, and thus should be considered as being much smaller than M in the 
limit we are concerned. Moreover, it is obvious that, with all the external legs for 
the whole graph corresponding to qS-fields, all the one-particle-reducible lines will 
be ~b-lines in both theories being considered;i.e., skeleton blobs for the function 
Tn,o(Pl ..... Pn) correspond to e i the r  Fm or Hm. Those sekel~on graphs for 
Tn,o(Pl, ..', Pn) with all the skeleton blobs corresponding to F m will precisely 
reproduce Tn(Pl ..... Pn). On the other hand, for the skeleton graphs with a single 
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H-blob and all the rest corresponding to F-blobs, we may use the factorization (9) 
for the H-blob. This obviously turns the proper vertex functions with Oi once 
inserted, into the amputated Green functions with Oi once inserted, Tn(O i, Pl  ..... Pn). 
Skeleton graphs with H-blobs more than one yield at most O(1/M 4) contributions, 
due to the decoupling theorem [4]. We may thus conclude that amputated, connec- 
ted, Green functions factorize in the form 

3 

, ..., +1_1_~ ~,n(~)i, Pl ..... P n ) C i + O ~  ,(1) T~ o(p~ .... .  p , , )=  ~ ' , , ~ ,  p,,) M 2 ~:~ 

which is the result announced in sect. 1. 

3. The Callan-Symanzik equations 

In sect. 2 we have shown that, up to order 1/M 2 , virtual heavy particles (if) induce 
effective local vertices ~)i(i = 1,2,3) in the light-particle physics, with the coupling 
strengths G i =(1/M 2) Ci. In renormalized perturbation theory, the constants C i may 
be directly obtained via eqs. (33a-c),  or more simply, by matching the both sides of 
eq. (9), assuming the factorization as stated there. In general, these perturbative cal- 
culations yield powers of log(M 2//~2) for the effective coupling strengths C i. In this 
section, we wish to develop a systematic method of summing those powers of loga- 
rithms which appear in higher orders. To deal with this problem, the traditional form 
of the Callan-Symanzik equations [5] needs to be significantly improved due to rea- 
sons mentioned in sect. 1. Thus, we may begin with brief discussions on the homo- 
geneous Callan-Symanzik equations developed in ref. [6] * 

Consider the following modified C-field theory (the q~' theory) with the action 

- ~mBPB*~ --~.) aB ~ ¢4 , (35) 

which is different from the action (6) only by the presence of ffz 2 instead of ~ 2 B" 
Bare parameters other than ~ 2  are chosen identically to the ones given in the action 
(6). As for the bare mass ff2~, we write 

r ~  = / ~  + k~= ~2  + k2~u , (36) 

where ,Zu is independent of k 2 . Thus, as far as (appropriately regulated) bare theories 
are concerned, the two theories defined by the actions (6) and (35) are identical for 
k2 = 0. In a subtractive language of defining the full action, we may write 

~, =fd4xI½&b(3uc~)2 __1~2 + k2) p ~ 2  1 1 2 -~ . )  aP~ q~4 + ./~'c (37) 

* These equations may be viewed as a generalization of the improved renormalization group 
equation of Weinberg [ 11 ]. 
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. . . . .  ) . . . . .  i " '"  - " ~  z 

P 4 ( P~-P'=-~ + i~) -':':'" j 

Fig. 5. Feynman rules for the ~' theory. 

with 

~; : fd4x (½ 0~B0 - p 0 ) ( a . e )  ~ - ½ [(fi ~ + F, ~)~BO - 0 ~2 + X2)Pol q~2 

1 ~ ~2  44 
- "4 [u B PBch -- ap~] }.  (38) 

Note that we introduced X 2 as a new free parameter of  the theory which appears 
even in the tree approximation. We now must ask whether the bare theory defined 
by the action (37) yields a consistent renormalized theory. The answer is yes and 
we will briefly describe the procedure below. 

The action (37) with -/~'c = 0 provides the Feynman rules for the unsubtracted 
(but appropriately regulated) Green functions. These Feynman rules are shown in 
fig. 5. Then, the renormalized proper vertex function F'n(Pl .. . . .  Pn; 7t2) in this 
theory may be defined by the forest formula (cf ,  eq. (14)) 

Fn(P,  ..... pn;X2)  = ~ FI ( t'~(°))P'nU(p , . . . . .  p n ; X 2 ) ,  (39) 
~2 7E~2 

where the Taylor operator t~ °) is specified by 

= P2 (q, q;Xe)q2]h2=o_ +q2 F2 (q, q; X2 q2__[x2=o 

)1 L P2 (q, - q ,  X 2 (40a) 
q2= 2=0 ' 

t '(°)F~ u (ql ,  q2, q3, q4;X2)=["4U(ql ,  qz, q3, qa ;X  2) [ , (40b) 
qi=O,Tt2=O 

t ' (°)Fk u (ql ..... qk; X2) = 0 ,  (k 2> 4 ) .  (40c) 

It is evident from these subtraction rules that we will have the same bare wave-func- 
tion parameter and bare coupling constant as the corresponding bare parameters in 
the action (6), and the total bare mass ffT~ will have the form (36). It is also a matter  
of  simple power counting [9] to show that these subtraction rules lead to a finite 
theory. The renormalized vertex functions in this theory satisfy the following nor- 
malization conditions: 

P~(P, - P ;  X 2) I = - i lazpe  , (41a) 
p2=h2= 0 



C. Lee / Theory of  virtual heavy particle effects 187 

I~p2 F'2 (p, -p ;  X2)] ] = i p ¢ ,  
.Jp2= h2=0 

(41b) 

rs (p , -p ;  I 
2p2=h2= 0 

(41c) 

P;  (P 1, P 2, P 3, P4 ; ~ks ) ] = - ic~pg.  (41 d) 
pi=o,h2=o 

~ t u  
Note that, though mass dependence in the unsubtracted functions Pn (Pl  . . . . .  Pn,  X2) 
always appears in the form of/j2 + X2, it is not so with the renormalized functions 
F'n (Pl ..... Pn'  X2) • Also, one may note that 

[ 'n(Pl  . . . . .  Pn ; ~k2 = O) ~ [ 'n(Pl  . . . . .  Pn)"  (42) 

We now derive the Callan-Symanzik equation in the ~b' theory. Multiplicative 
renormalizability of the theory implies that 

P n t P l  . . . . .  Pn; ~k2) = p~u (Pl . . . . .  Pn; fit2, fiB0, ~a,  As) ,  (43) 

~2 ~ ~B, A2) denotes the where A 2 is an ultraviolet cutoff and P'u (Pl . . . . .  p n ; m B  , P B$, 
function obtained by replacing/a s + X 2, pC, c~ by fffl, ~ Be, aB in the unsubtracted 

rU vertex function l" n (Pl ..... pn; ~k2). With this relation in mind, we consider the fol- 
lowing one-parameter variation:vary ~2 for fixed fit 2, ~ 1~, ~ B, As. Under such vari- 
ation, I" n (Pl ..... Pn ; mB, P 130, ct B, A2) is invariant and thus, from eq. (43), we 
obtain 

2 /~ ~ I  . ff..  Vn . S  ~/j2 

+ 2 b a  0 /2 2 DX 2 0 DR a ] ~ ,  
~ a +  D/12-- ~ + U2 ~ - ~  ~-~ rn(Pl  ..... Pn;X2)=0 , (44) 

where I12L)/Dtl 2 denotes the above one-parameter variation. 
Here, we may factor out the complete p~ dependence from renormalized vertex 

functions by writing 

Fn(Pl  . . . . .  Pn; X2) = p~/2 V n ( p l  . . . . .  Pn; X2), (45a) 

V.(pl ..... p.;X s) ~' = [ 'n(Pl  . . . . .  Pn;X 2) I (45b) 
p(p = l 

and also define the dimensionless constants Ba, 74, by 

~ =1U2 Do~ __1 .2 Dp¢ (46) 
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Then, for the function lTn, eq. (44) yields the equation 

[ / / 2 ~  2~ + B ~  ~ + / / 2 ~ x 2  ~ D / / 2  ~X 2 +~n"~0]P'n(pl , . . . . .  pn;X2) 0= (47) 

For the term tI2DX2/D//2 we note from the relation (36) that 

0=//2 /} r n ~ = . 2  D-~-~ ~'~+X2//2 D-~ Z~.+z~u//2--~-D X 2.  (48) 
D//2 D//2 D//2 D//2 

From eq. (48), we may thus write 

2 ~x2 
~/" O~2 = --//2( 1 -- ~D1) + )k2~)2 , (49) 

where ®t, ®2 are dimensionless constants defined by 

2 - , ~  /~2 = 1 ~)1, __//22; 1 b 2 .  = 0 2  (50) 
, D//2 D//2 • 

Inserting eq. (49) into eq. (47), we obtain the Callan-Symanzik equation of the form 
[6] 

21 +1n% ..... p ;x2)=0 

(51) 

Since eq. (51) is an equation for renormalized vertex functions, the Callan-Sy- 
manzik coefficients Bc~, Ox, O 2 , F~ should be finite and, according to our defini- 
tions, muct be dimensionless functions of a only without any dependence on ?2///2. 
In fact, these coefficients can be expressed in terms of appropriate derivatives of 
renormalized vertex functions, via, 

~)1 = - - ~ ,  (52a) 

2[ 0 O 
i9'~'~ - ( 1  - O , ) / /  0~ 2 3P 2 V2(p, _p;?`2)] [ = 0 ,  (52b) 

--Ip2=h2= 0 

-i(g32 + ~ e ) -  (1 -O1)//2 (/2(P,-P; x2 =0,  (52c) 

APi=O,2t =0 
(52d) 

Eqs. (52a-d) determine the Callan-Symanzik coefficients Ba. ®1, O2,7e comple- 
tely. Here, it may be worthwhile to note that, upon setting ?`2 = 0, eq. (51) reduces 
to the conventional Callan-Symanzik equation [5] with its right-hand side written 
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in the form, 

(1--~)l)/12I~X2 ~'n(Pl ..... Pn;X2)IX2= 0 

We now turn to the ¢-4 theory. To obtain the Callan-Symanzik equation which 
is useful for our purpose, we consider the following field theory, called the (¢-4) '  
theory, with the action 

s ' = f d 4 x { ~ P ~ ( a u o ) Z + ½ P B * ( a u 4 )  2 -- ~'"B~'~l~2^ ,4,2_ ~_IV/BI'"2 PB~ 4 2 

1 l J 4! aBO~ ~34 _ 44 _ 

= fd4z  {½p,Aa.,~) 2 + ½p, (~,4)  2 - ½O., ~ + X 2) p~,,~ - ½(M ~ + ,~) p ,  4 ~ 

1 api~)4 1 ~p~44  _ iTp~p¢¢242 + O,c } (54) 
4! -~.  

where the bare parameters PBO, PBq~, O~B, fiB, ')'B are identical to the corresponding 
bare parameters used in the action (3) and the bare masses rn~, M'~ are given by 

m~ =/l~ + X2Zu + K2Z' , (55) 
M'~ = M~ + XZZM + KZZ'M . 

f 

In eq. (55), tl~3 and Ml] are the same bare masses used in the action (3), and Z u, Z u, 
ZM, Z ~  are independent of  X 2, K z. The corresponding renormalized theory can be 
defined as below. 

The action (54) with .6? 'e - 0 provides the Feynman rules for unsubtracted Green 
functions. These Feynman rules are shown in fig. 6. Then, the renormalized proper 
vertex function F'n,N (Pt ..... Pn, P1 ..... PN ; X2, K2) may be given by the forest for- 
mula [7] 

f 

['n,N (Pl . . . . .  Pn, PI . . . . .  PN ; X2, t<2) 

~ (_t~(o)) 'u . . . . . . . . .  = Fn,N(Pl, Pn, PI,  PN; X2, •2) (56) 
I2 ~l~ ft 

where the Taylor operator t~ (°) is the minimum subtraction operator analogous to 
the one specified by eqs. (40a-c) ,  this time treating external momenta,  X 2 , and K z 
on an equal footing. The vertex functions renormalized in such a manner will satisfy 
the following normalization conditions: 

r ; , o (p  ' _p ;  X2, ~2) [ = -ila2p4) , (57a) 
p2=h2 =t¢2=0 
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~ p 2 F 2 , o ( p , - p ; X 2 K  2) [ = i p o ,  
p2=h2= K2=O 

0 F;otp,_p;X2,K2 ) ] = _ i p 4 )  ' 
O~k 2 , p2=h2=K2=O 

(57b) 

(57c) 

0 I "  ~k 2 K 2) = 0  
OK"2 2 ,0 (P , -P ;  , 2 he ] K2 0 ' 

(57d) 

P;,o (Pl, P2, P3, P4 ; )t2 , t~2) ] = - i a p ~ ,  
Pi=O,h2=K2=O 

(57e) 

i ro ,2 (p  ' _p ;x2  •2) I = 0  
p2=M2 ' h2= t~2=O 

, 
O~ I'o,2 (P, - P ;  X 2 , K 2) [ = ip~ , 

p2=M2,N2=K2= 0 

0 , )k 2 ~ro,2 (t, - P ;  , ~ 2 )  I = o ,  
p2=M2,h2=K2= 0 

3 , 
OK 2 FO, 2 (P, - P ;  )t 2 , t~ 2 ) [ = - i p ~  , 

p2=M2,h 2= K2= 0 

(57f) 

(57g) 

(57h) 

(57i) 

I~0,4 (P1, P2, P3,/°4; )t2tC2) I 
p2=M2, h2 =t¢2= 0 

(Pl +P2) 2 = (P2 +P3) 2 = (Pl +P3) 2=4M2 

= -i~p20 , (57j) 

F2,2 (Pl, P2, P~, P2; 2'2, ~¢2) I = - i T p c p ¢  • (57k) 
P i=O,Tt2= K2=O,P21= p2= M2 

One should here note that, although all the mass dependences in the unsubtracted 
fu 2 2 2 2 functions I 'n ,N(Pl  . . . . .  Pn, P1 . . . . .  PAr; X , r )appear only in the form o f p  + X 
2 and M 2 + ~¢ , the above renormalization procedure will not preserve such com- 

t bined mass dependences for the renormalized functions Fn, N (p 1 . . . .  Pn, P1 . . . . .  PN ; 
X2, ~¢2). It is also clear that 

[ 'n ,N(Pl  . . . . .  Pn, P1 . . . . .  PN; X2 = t¢2 = O) -- [ 'n ,N(Pl  . . . . .  Pn, P1 . . . . .  PN ) " (58) 

To derive the Callan-Symanzik equation in the (~b-~)' theory, we first note that 
multiplicative renormalizability of the theory implies the relation 

I ~ t u 
Pn, N ( P l  . . . . .  Pn, P1 . . . . .  PN ; )t2 t¢2) = [ 'n,N(Pl ..... Pn, P1 . . . . .  PN; 

Dr2 ~r~2 B, lvlB, PB~, OBqJ, aB, fiB, ")'B, AE),  (59) 
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Fig. 6. Feynman rules for the (0-tp)' theory. 

where 

t U  rn, N(Pl ..... Pn, PI, PN m2, ,2 .... ; MB,  PB~, PB~0, C~B, fiB, 7B, A2) 

Ftl represents the function obtained from the unsubtracted function Fn, N (Pl . . . . .  Pn, 
P1 ..... PN; ~2, ~2) by replacing p 2 + ~2 ,M 2 + K2 p~, p~ ,  a,/3, 7 with m2B, M B , 
P ~ ,  PB~ • aB,/3B, 7B. We are here interested in obtaining an equation for 
Fn, o(Pl ..... Pn; ~2, K2) which will be useful in studying the limit p, ~, K, Pl ..... Pn 
< <  M. Such an equation can be obtained by considering the variation of p2 for 

2 2 12 2 - ~u fixed m m M , M B , PB¢, PBq~, C~B, fiB, 7n, A . Since Fn, U(Pl ..... Pn, P1 ..... PN; 
m2, MB ~, PBVPBq~, C~B, t3B, 7B, A 2) is invariant under that variation, eq. (59) yields 
the following Callan-Symanzik equation for the renormalized proper vertex func- 
tion: 

, o  [ +  DP 2 Fn,N = p2 + p2 Da 0 p2 D/3 a__ + p2 D7 0 p2 DX2 0 
- -  D p  - - - ~  0 ~  + - -  - - +  - -  - -  Dp 2 03 Dp 2 07 Dp 2 0X z 

+p2D/~ 2 ~ Dpq~ 0 /A2_Q~/L 1 _ , 
DP ~ OK ~ + p2 DP 2 000 + Dp2-] I"n'N ( p l  . . . . .  Pn . . . . .  P1, PN; ~,2, ~ 2 ) 

= o .  (60)  

As in the case of  the 4'  theory, we may factor out pg, and p~ dependences by writing 

Fn, N (Pl ..... Pn, PI ..... PN ; )k2, K2) = pg/2 p~/2 Vn, N (Pl ..... Pn, P1 ..... PN ; ~k2, K2),  

(61a) 

f 
Vn, N(Pl ..... pn, P1, ...,PN;X2,K2)=Fn, N(Pl ..... pn, P1 ..... P'N;~.2,K 2) [ , 

pyp=p~ =1 

(61b) 

and define the Callan-Symanzik coefficients Ba, Bts, B.~, 7V, 7~ by 

B a = l p 2  Dc~ B~= 1 2 D3 B T = l p 2  D7 (62) 
Dp2, -3P Dp2, Dp 2 '  
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= I l f l D P o  = 1 2Dp¢ 
' 3"¢ pc DI J2 • po 

For la2DX2/Dla 2 and la2DK2/DI a2 , we note from eq. (55) that 

~2 DX2 - -1  
D/~ 2 

ZM Z~t 

/~2 D/a~ -2 2 DZu g2/j2 DZ'Ia 
~ S  + ^  U D/j---T + D/j2 

IJ 2 DM~ + X2~2 DTM + K2/j 2 DZ' M 
~ S -  D~ 2 DI ~2 

_---- _/a2(1 -- O1) + ~k202 + K203 , 

/12 DK 2 _ - 1  

D,u 2 z; 

Zu t12 D112_ + X2/a2 __DZu + K2 2 DZ'u 
Dla2 Dla2 11 

ZM 

t Zu 

(63) 

I~ 2 DM 2 ~21~ 2 DZM 2 2 DZ'M 

=/./2~-~ 1 + ~2~'~ 2 + ~:2~ 3 , (64) 

where we have defined X 2 and •2 independent constants ®1, ®2, ®a, ~21, ~22, ~2a. 
Inserting eqs. (62)-(64) into eq. (60), we obtain the Callan-Symanzik equation of 
the form 

I/a2 3 a ~ ~ --(}t.12 +B°~o~ G +Bflfl ~-~ + B y 7  ~ - [~2(1 - {~1) - ~,2~)2 - K2{~3] ~-~ 

~ n  +N }Vn,  N(Pl ..... P,,,P1, PN; + [/-/2~'-~1 + X2~2 + K2S-~3] ~fC~ + ~'Y~ Y¢ .... 

X2, ~2) = 0 .  (65) 

Since eq. (65) is an equation for renormalized vertex functions, the Callan-Syman- 
zik coefficients B~, Bfl, B. r, ®l, ®2,03,  ~1, g22, ~3, 3'0, 3'¢ should be finite and 
moreover, according to the definitions given in eqs. (62)-(64), dimensionless func- 
tions of a, fl, 3', ~2/M2. As was previously done in the ~' theory, we may again express 
these Callan-Symanzik coefficients explicitly in terms of appropriate derivatives of 
renormalized vertex functions as follows: 

® 1  = - %  , (66a) 

g~l -- 0 ,  (66b) 

/3'0 - ( 1 - 0 1 ) U 2 1 2  2 ~)p2OV20(P, -P;~2 ,  I ~ 2 ) I ,  Ap2=h 2]=~ 2^=0'=u (66c) 
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-i(O2 +70)  (1--O1)/. /21 aa(~2)2 - g2,o(P,  - P ;  ~k2, K2) l  l = 0 , 
l p2 = h2=K 2=0 

(66d) 

- iO 3 - (1 - O1) ~ --0~2 V2,0(P, -p ;  X 2, K 2 p2=x2!K2=o = 0 , (66e) 

2[ a a K2~l r 
i7¢ - ( 1 - - ( 9 1 ) #  ~ Vo, 2 (P , -P ;X 2, lip2 M 2lx2 K2 0 : 0 '  (66f) 

= ) = = 

--i~2 2 (1 O1 )/,/2 a~ -~ .~  9 
q 

- - LO~A-)" V°)2 (P' -P ;  k2' K2)/ 2 '12 2 = 0 ,  (66g) 
Jp2=M ,h =K -0 

2[ a () VO,2 (P, -P ;  ~k 2 , K2)I -i(E23 + 7 ¢ ) - ( 1 - 0 1 ) / a  ~ aK ~ l = 0 ,  
p2=M2 h2= K2=0 

(66h) 

- - i B a a -  2 i 7 a - - ( I -  0 1 ) . 2 [ ~ - ~  V4,o(Pl ..... p4;~,2,K2)l = 0 ,  
~Pi-O- , h2=K2=O 

[ -  
- iB33 - 2i7~/3 - (1 - O 1 ) 1.12 L ~  

X VO, 4 (Px ..... P4; X2, K2)~ I .J h2=K2=O,p2=M 2 

(P1 +P2) 2 = (P2 +p3)2=(p1 +P3) 2=4M2 

(66i) 

= 0 ,  

(66j) 

0 
- i B ~ r T - i T ¢ 7 -  i 7 , 7 - ( 1  --01)/,/2 ~ V2, 2 

1 = O. (66k) × (Pl, P2, PI, P2, X2, /~2  [ ~2 ~2 . 2 
Pi=O, ~.2=K2=0, rl=~'2=/vl 

So far, we have introduced the $' theory and the ($-$') theory respectively, on 
the behalf of the ~b theory and the ~-$ theory discussed in sect. 2. The primed theo- 
ries are reduced to the unprimed theories, upon setting ~k 2 = K 2 = 0. Renormaliza- 
tions for the primed theories have been done by generalizing Zimmermann's sub- 
traction scheme [7] in the sense that we have introduced the primed Taylor operator 
t~ °), treating k 2 , K 2 on an equal footing with the external momenta for 7- The Cal- 
lan-Symanzik equations followed naturally from the multiplicative renormalizability 
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of the primed theories. We now want to study what kind of information these Cal- 
lan-Symanzik equations provide us for the function F n , o ( P l  . . . . .  P n )  in the limit of 

t 
la, P l  . . . . .  Pn < < M ,  or more generally, for the function Pn,o(Pl . . . . .  P n ,  )`2, K2) 
in the limit of  ~, X, K, p 1 . . . . .  Pn < <  M. As will become evident later, consideration 
of Pn,o(pl . . . . .  Pn;  X2, K2) here is an important key to our analysis, since this will 
allow us to handle the changes in the Callan-Symanzik coefficients systemmatically. 
(See eqs. (52a -d )  and (66a-k) ,  which express various Callan-Symanzik coefficients 
in terms of appropriate derivatives of  renormalized vertex functions.) 

As a prerequisite for such analysis, we have to first establish the factorization 
analogous to eq. (9), for the function Fn,o(Pl ..... P n ,  )`2, K2) in the limit of  
la, h, K, P l . . . . .  Pn < <  M .  Since its derivation is almost parallel to the one given for 
Pn,o(Pl . . . . .  P n )  in sect. 2, here we will only indicate main steps leading to the 
final result. Write the unsubtracted function 

tu )`2, K2)=  'u . )`2, K2) __ ~ 'u .... Fn,o(Pl . . . . .  P n ,  ( P l ,  Pn; ) ` 2 )  , H n  (Pl ..... Pn, Pn 
(67) 

and the corresponding renormalized function 

H n ( P  . . . . .  p n ; X  2, /~2)=Pn,O(Pl-  , . . . . .  pn  X 2 ,  ,t~ 2 ) - p n ( p l , ~ '  . . . ,Pn ; ) `  2) 

= ~ ]  l-[ ( - t ~  (°)) Hn u (Pl ..... pn;)` 2, ~2) .  (68) 
"yC~2 

We also define the oversubtracted function 

H ' n ( P l  . . . . .  , P n ' ) 2 , K 2 )  = ~ I~ r w ' ( O ) , u ' u , ,  ' X 2, K2), (69) k - ,  3" ] " n  kUl, ..., P n ,  
~2 7 ~ ~2 

with the Taylor operator Y~t given by 

- ,  = ~2) ,u H4U orH6 u and there are t 7 t , if 3' corresponds to H 2 , , 
no internal qMines left outside,  (70a) 

- ' = t  "r tT,(o) , otherwise . (70b) 

Here, t~ 2) is an oversubtraction operator which is analogous to the one specified by 
eqs. (22a-d) ,  but treats the auxiliary mass variables )2 ,  K2 on an equal footing with 
external momenta  of  a proper subgraph in the Taylor series expansion. For instance, 
for a proper subgraph corresponding to H '~  it acts according to 

t ' (2)H4 u (q l ,  q2, q3, q4;  k2, t~2) = H ;  u (q l  . . . . .  q4;  )`2, K 2) I 
qi=0, k2= ~2=0 

2 ~ n2)l I 
+ X [ ~  H4 u tql ..... q4; )k2, Jq i  =O,h2=K2=O 
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+ g2[~g02 n;u (el  ..... q4; ~ks, K2)] 
qi=o, ~2= K2=0 

+½ 2qkqt~[_OqkOql~ H4U tql ..... q4; X2, K2) l ! 
k¢l qi =0, h2= 2= 0 

~S 

+ 1 7  ~ s ] - ~  H'u ~ k 4 ~:S) 1 ]2 KS 0 (71) qklaqs (ql ..... q4; as, 
q i = 0 ,  = = 

Now, one may go through the same arguments as described in sect• 2 to obtain (cf., 
eq. (32)) 

H n ( p  1 . . . . .  pn;XS, K2)=--~ ~ Z~ [ ~  I-I(-r~,)l 
r E T  I2 1 E M r  ~22EU(r  ) ~ 2 1  

• _ [,eli ~ ,u .as Ks) [ - ( t ;  (s) t;(°))] • (-t~9))] H n (Pl ..... Pn, , 
2 

+Hn(Pl  ..... Pn' X2., ~2). (72) 

According to simple power counting [9], it is again a simple matter to show that, 
in the limit of O, X, K, P l ..... Pn < <  M, the oversubtracted function Hn (Pl ..... Pn; 
X s , K s) is at most of order 1/314. 

In the ¢' field theory with the action (35), we now introduce the following local 
vertices: 

O', 
t Os 

= ½Pe~ f d4x Nt¢2(x)] , 

_- _ ~pel f dgx N[CaO2 ¢(x) 

2 

Oa = d4x N[q54(x)] , (73) 

04 ~' = ½p, f d4x N[¢(a2)2~tx)l 

O s = -~p d4xN[¢3i~2¢ (x)] , 

P~ f d 4 x  N [¢6 (x) ] ,  O6 =~.. 

with the Feynman rules for the cerresponding tree vertices as shown in fig. 7. Renor- 
malized proper vertex functions with the local vertices Oi once inserted may be repre 
sented by the forest formula 

[ 'n (Oi ,  Pl, Pn; X 2) = ~ FI (--t} o)) r~ u - '  . . . . .  .... (Oi, Pl, Pn, X2) (74) 
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:p,, '.p, 

- ' . 4  ~, ",r, 
:1'1 'P, * 

s 

";,'/'.?,2' 43 
N % 'P, ~ 

Fig. 7. Tree vertices for O' 1, O~ ..... 06. 

with t~ °) denoting the minimum (or normal) subtraction operator, defined by appro- 
priate Taylor series in k2 and external momenta of the proper subgraph involved. It is 
then a simple matter to show that the renormalized vertex functions Fn(Oi, p 1 ..... Pn 
X 2) satisfy the following normalization conditions: 

~ f  ~ r  
1-' 2 (Ol, P, - p ;  X2)lp2=x2=o = pC , 
- - ?  - - t  

F 2 (Off p, - p ;  ~k2)lp2 h2=O = 0 , 

r2(Oj, p, 
p2=h2= 0 

1-,2(O2, p, _p;  ~2) = Pq5 , p2=~.2= 0 

~t  ~ t  2 
1"4(03, Pl ,  P2, P3, P4; X )lPi=O, X2=O = P~ , 

r2(O/,p, 
p2=h2= 0 

(75a) 

(/" = 2, 3, 4, 5, 6 ) ,  (75b) 

(/" -- 2, 3, 4, 5, 6 ) ,  (75c) 

( j=  3 ,4 ,  5 , 6 ) ,  

(75d) 

(75e) 

(75f) 

I'4(Oj, Pl,  P2, P3, P4, ~t )[Pi-O- ,h2-0- = 0 ,  ( j  = 2 ,  4 ,  5,  6 ) ,  

- '  - '  - p ;  X 2) 0 ( j  = 4, 5 6 ) ,  r 2 ( o ) ,  p ,  = , , 
p2=Tt2=O 

2 0p2 F2(Oi,  P, -P;  x2 = 0 ,  U = 4, 5, 6 ) ,  
p 2=~.2=0 

0 F4(Oj, P l ,P2 ,  P3, P4;X2 = 0  ( j = 4 , 5  6) 2 ~ ~ Pi=O h =0 

(75g) 

(75h) 

(75i) 

(75j) 
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~'  ~ '  x 2 o ) p  o¢(p2)  2 +0(p2)3), r2(04' P' -P;  = ~--~o 

~' ~' X 2 : 0 )  2 2 + p ~ + p ~  Pl )  +O(p~) ,  F 4 ( O s ' P I ' P 2 ,  P3, P4; = P¢(Pl + 
p i--~O 

~' X 2 = O) ~ + O(p~), P6 (06, Pl ..... P6; = 19 
p i-*o 

F2(O i, p, - p ;  = O) = O((pZ)3) ,  (j = 5, 6) ,  p2--. 0 

P 4 ( O ] , p l , p 2 ,  p3, p4;X  2 = 0 )  = O(p~), ( ] ' =4 ,6 ) ,  
pi--~o 

~ t  ~ t  

r6(Ol, p 1 ..... p6 ;X2=o)  = O(p2),  ( / ' =4 ,5 ) .  
pi--~O 

t t Let us now introduce the effective couplings G 1 ..... G 6 by 

normal 
(/(2) /(% ~ [[ ;(0h.'~ - ( - - ° v  , - - 2  ( q ,  - q ; X 2 , ~ ; 2 )  

/2 3,~g2 

= DoG' 1 + p¢q2G; +pe(q~-)2G~, 

normal 
(t,(~)_/(o) G [I 

S2 "~S2 
(- t~°))H'4U(qt ,  q2, q 3, q4 ; X 2 , ~2) 
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(75k) 

(75~) 

(75m) 

(75n) 

(750) 

(75p) 

(76a) 

(] = 2, 3) ,  (77b) 

1 
Gk ~ - sDk ,  (k =4,  5, 6) (77c) 

where the dimensionless numbers Dx, D1, ~ l ,  D2, 92,  ..., D6 are independent of 

, 1 

2 , 2 2 q 2 + q ~ + q 2 ) G ;  (76b) = P4~G3 +PC(q1 + 2 

normal 

( t ' ( 2 ) - t  '(°) ~ I~ ( - t ~ ° ) ) H ' ~ ( q l ,  q2, q3, q4, qs, q6;X2 ,K2)=pgG~ 
3,E52 

(76c) 

Due to the decoupling theorem [4], the constants G 1 ..... G 6 are all of order 1/342 
and thus we may write 

r 1 G1 =~-~ {(X2)2D1 + X2K2D1 + (K2) 2 D1 ) ,  (77a) 
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X 2 and K 2 according to our oversubtraction procedure. Upon comparing eqs. 
(76a -c )  with eqs. (33a -c )  it is evident that 

_ t t t 
G1 = G4 , G2 - G5 , G3 ~ G6 , 

C1 - D 4  , C2 ~ D 5  , C3 - - 0 6  • 

With this information and eq. (72), it is a simple matter  to conclude that 

(78) 

Pn,o(Px ..... Pn; x2, K2) ~ '  .... ' = Pn(Pl ,  Pn; ~k2) 
6 

Pn(Oi, Pl ..... p n ; X 2 ) G i  + 0  . (79) 
i = 1 

Astute readers many note that, due to presence of  appropriate powers of  X 2 and K 2 , 
oversubtractions in the full (q~-~)' theory correspond to minimal subtractions as for 
proper subgraphs with the local vertices 0} once inserted, regardless of  the dimen- 
sion of the operator involved. 

Just like ordinary renormalized vertex functions, the funcUons Pn(Oi, p 1 ..... Pn; 
X:) also satisfy certain types of  Callan-Symanzik equations• Consider the local vertex 
O'1. The forest formula 

v . ( o . p ,  p.;x :) G I1 (_t'~0))r~ - '  . . . . .  .... -- (01 ,  Pl,  Pn; X2) (80) 

implies multiplicative renormalization 

Pn(Ol ,  Pl  ..... P n ; X 2 ) = - ~ l l P n  (01,  Pl ..... pn ,mB,  PB¢~,~B,A2) ,  (81) 

where F ~  (~3'1, Pl ..... Pn ; fit2, P'B¢, ~ B, A2) denotes the function obtained from 
the unsubtracted function ~,~u (0'1, Pl  .. . . .  Pn; X2) by replacing/./2 4- ~k 2, ,O0, 
with ~ ,  P'B¢, ~B" In eq. (81), the X 2 independent c o n s t a n t  .~rll is equal to 1 in the 
tree approximation and, in general, involves powers of  log A 2 from loop corrections. 
For the local vertices O 2, O 3, the forest formulae for them imply 

~ '  ~ '  - ~ ' u ( O '  . . . ,Pn;Fn~,PB~,aB,  A2)  Fn(O2, Pl ..... Pn ; ) t2 )=X22Fn  2, Pl ,  

~ '  ~k2 ~ ~ ' u  - '  - ( r : l  + Y21)rn(Ol ,  Pl ..... Pn;~t2 ,  pI~,~I~,  A2) 
t 

+ x 2 3 r n  (03, p~ ..... p~, ~ ,  ~'B~, ~a, A2), (82a) 

~ ' ~ ..., p, ,;  ~n~, "d~, ~B, A 2) r , ( o 3 ,  p ,  . . . . .  p , ;  X 2)-- 2 3 3 F ' ~ ( 0 ; ,  p , ,  

~, x2~ ~,~ ~, . ~ , ~ , a ~  A z) - ( Y s l  + Y s l ) P n ( O l , P l  ..... Pn, 

"x32--n I,~J 2, P l ,  "", Pn ; roB, PB4)' aB' A2) " (82b) 
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Here, all )('s and Y's are independent of X 2, and in general Y21, Y31 are O(A 2) 
while ~r22 , Y21, -~23, "~33, ~'31, -~32 are O([log A 2 ] a) with a being non-negative 
integers. In the tree approximation, 

.~-2(0) = ~,(0) = 1 ~'2 (°) = Y'2 (0) = ~-(0) = ~-,3(0) = ~ - ( 0 ) =  ~ ( 0 )  = 0 (83) ' "'23 ~* 32 " 

Similarly, for the local vertices 04,  Os, 06,  we have (k, l = 4, 5 ,6)  
~ t ~ t  ~ ~ t  u ~ t  

P n( 0 k, P l . . . . .  Pn ; X2) = X k k [ ' n  (Ok, P l . . . . .  Pn ;m~3, PB¢, ~B ,  A 2 )  

- ( g k ~  + Y h x  2 + • ~ , f i l ~ ,  ~a, A 2) (01 ,  Pl . . . . .  Pn 

3 

- G (Yk/+~' I:k/x2) Pn~ ,u (0 / ,  ~ '  p , ,  . . . . .  Pn "m~, P'B¢, a B, A2) 
/=2 

6 
+ ~  - - ,u  ~ '  . ~ 2  - aB,  A2) (84) XklPn (Ol, Pl  .. . . .  P n , m B  , PBO, 

/=4 
l=# k 

where again all X 's  and Y's are independent of  X 2 and 
~ i t  
Yk l  ~ O(A4) , 

G , ,  - '  ~ '  Yk2, Yk3 ~ O(A2) (85) 

Y'Rk, ):kl, Yk2, ]:k3, )~kl ~ O([1og A2lU).  

In the tree approximation, .g(~ = 1 (k = 4, 5, 6) and all the other ~ Y ' s  vanish. 
Let us now define the block diagonal matrix 

2 , ,  o o o o o 
0 X22  X23 0 0 0 

,~.= 0 X32 X33 0 0 0 
0 0 0 "~r44 "~45 X46 ' (86) 
0 0 0 X54 Xs5 X56 

~ 

0 0 0 X64 X65 X66 

elements of  which are at most of  order [log A 2 ] <~ in perturbation theory. If  we also 
define the inverse of  the matrix (86) by ~ - 1 ,  we may express eqs. (81), (82a), 
(82b), (84) in the following forms (i, ] = 2, 3 and k, I = 4, 5, 6) 

p~u - ,  . - 2  ~ ( 0  1, Pl  .. . . .  Pn, mB, PB~, ~B, A2) = (~ ' -1 )11~ '  - '  ~ Pn(O 1, Pl  . . . . .  Pn" ~k2) , 
(87a) 

~ ~, ~ _ ,  - ,  ~ ,  
(o~, p~ ..... p,, ; ~ ,  f i ~ ,  aB, a 2) = (X ) .  {r, ,(o/ ,  p~ ..... p .  ;x 2) 

~, X2 - ,  ~, + (Y/x  + ~'/1) (-~-1)11 .... Pn; F.(O~, PD X2)},  (87b) 
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~ t  u ~ t  
['n (Ok,  P1 ... . .  P n ; m ~ , p B ~ B , A 2 ) = ( X  -1 ~ '  ~ '  ) k l { r n ( O  l, P l  . . . . .  Pn ;  ~k2) 

+ (Yl'; + X2 YI'I + )k4 Y/I) (X-1) l l  Fn((); ,Pl  . . . . .  Pn ;  X2) (87c) 

+ (Y;i  + )k2 Yli) (X-1)i] [Fn(()}, Pl ..... Pn ; )k2) 

*(Y}I + ) k 2 y j l ) X I I [ P n ( ~ ) I ' P l  .. . . .  Pn; ~k2)] }" 

Eqs. (87a-c) describe the renormalization mixing structure of the local vertices 
Oi.  Now we may write down the Callan-Symanzik equations for Fn(Oi, Pl  ..... Pn,  
X2), since the left-hand sides of eqs. (87a-c) are invariant under the one-parameter 
variation of varying//2 for fixed r ~ ,  PB0, ~B, A2. For O1, the condition 

//2 O ~,u ~, ~2 - 
D//2 Y n ( 0  1, Pl  .. . . .  Pn; mB, PB4~, aB, A~) = 0 (88) 

yields the Callan-Symanzik equation 

//2 3 3 3 
- - + K ( ~  [(1 ~)1)//2 @)2~k 2 ] Z + t ' l l /  
a / / z  G - - - ~ + ~0o,~ ap, l 

~, ~, X2 XVn(Ol, pl . . . . .  Pn; ) = 0 ,  (89) 

where 

"tll = 211/"12 ~ "eYlt " (90) D//2 

For ~ and 0 ; ,  the conditions 

//2 ~) ~ u  - ,  "m~, ~B, A2) = 0 (i = 2, 3) (91) - -  ( O i ,  P 1,  P n  P B ¢ ,  D//2 . . . . . .  

and eq. (89) yields the Callan-Symanzik equations (i, L ] '  = 2, 3) 

={//2 3 +B~a ~ O 
0//--5 ~ -  1(1 - ~ ) / / ~  - ~ x ~ l  ox2 o 

+ %0~ ~ r ° ( o , ,  p,  . . . . .  Pn; X ) + t . r . ( o j ,  pl . . . . .  Pn; X2) 

+(t l l  + )k2711) ~' ~, .... ~' Fn(Ox, Pl ,  Pn ; X2), (92) 

where 

7i j _.-: ~(ij,//2 ~ (.~--1)/,1 , (93a) D//2 

"t;1 + ~k2TII ~ - 2 i ] ' / / 2  b ~ ?QYjI)2~ -1 ] (g/l + ~k2yil)Xl~l t l l  D//'--~ [ ( X - I ) j ' j  (Y]l + -- ~ '  
(935) 
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Similarly, for 0~, Os, 06 ,  the conditions 

/a 2 - - D  F~U(()k, pl ,  pn,mB,PBO, aB, A 2 ) = O ' U 2  ~ ~ ( k = 4 , 5  6) (94) 
Dp2 . . . . . . .  

and eqs. (89) and (92) yield the Callan-Symanzik equations (i, ], ]' = 2, 3 and 
k, 1, l ' = 4 , 5 , 6 )  

= - -  + B c ~ a  - [ (1 - ~ ) l ) p  2 - ~)2X21 - ~  +~,p, ~p2 

~t ~t 
× rn(Ok, P l ..... P.; 7'2) 

- - ,  u ,  " )k2) + ( tk i  + X27ki) ~ ' ~ ' P n(O i, Pl  ..... Pn; ?t2) + t klPn(Ol, Pl  ..... Pn, 

+ ('//~'1 + ~k2t k l  + ~k4"tkl) F n ( b l  , P l  . . . . .  Pn; X2), (95) 

where 

b 
Fkl = X k f  p2 ~ 2  ( 7 - ' ) l ' l ,  (96a) 

u L) [(.~--l)l,l(~rl;.+ ~2 ]_Zl])~--l)ji] t~i  + X2t'ki :-- Xkl ']A2 Dp~5 

--(] /kj  + ~2~'k j ) (2--1) j] ' ,  ? j ' i ,  (96b) 

t g l  + X 2 ~ l  + ~k4Fkl =Xkl'ld. 2 L) u, ,  DP 2 -  [ ( 2 _  1 )l'l(Yll~ ,, + X2 p,/1 + X4 p/l) 2111 l 

+ Xkl't22 ~ [(X-I) I , I (Y;]  + ~k2]Zl])(2-1)]i(Pi' l + )k2"Y/1)217 ] 
Dp 2 

u ,  ~ ~ x ' r l l  -- (Yk]  + X2Yk])  ( x - l ) ] ] ' ( ~ / ' l  + X 2 ~ ] ' l )  - (Ykl~" + Y;1 + 

- (Y~i  + X2 ~'k]) ( ' g - l ) .  ( g l  + "~2~l)XI? FI1 " (96c) 

Since eqs. ( 89 ) ,  (92 ) ,  ( 9 5 )  are partial differential equations for renormalized ver- 
• ? up  2 • ~ up ~ t t  tex functions [ 'n (Oi ,  P l  . . . . .  Pn; X ) (t = 1, 2 ..... 6), the constants ti/, ti], tl] are 

expected to be finite (i.e. A 2 independent). In fact, from the normalization condi- 
tions (75a-p),  one can easily conclude that 

t 

t i l  = t k i - t k l  = t k l  = 0 ,  (i= 2, 3 a n d k =  4, 5, 6) .  (97) 

If we factor out the wave-function constant by writing 

, - ,  X2 ~ - ,  Fn(Oi, P i ... . .  Pn ; = p~/2 Vn(Oi, P l .. . . .  fin ;X2), (98a) 

~ ~ '  )t2)lOq~ = 1 Vn(Oi,  P l  . . . . .  Pn, X2) = ~ '  ~ '  • . . . .  • Pn(Oi, Pl ,  Pn; (98b) 
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the Callan-Symanzik equations (89), (92), (95) can be written as 

/22 + ~ o < G - [ 0 - ~ ) / 2 2 - o 2 x  l-g~ +½~,  '~,s 

with 

+ gn(Oj, P l  . . . . .  pn;X2)=O,  

X2721 
X2F31 

~= X4F41 
X4tSl 

X4F61 

0 0 0 0 0 | 
F22 F23 0 0 0 
~32 ~33 0 0 o 

)t2 r42 )t2 ~43 r44 T45 ~46 
X2F52 X2t53 t54 t55 t56[ . 
~2 F62 ~k 2 t63 t64 F65 t 66 ) 

(99) 

(loo) 

The dements of the triangular block matrix T may be explicitly expressed in terms 
of appropriate derivatives of Vn(O i, P l ,  ..., Pn; X2) • Equivalently, the constants Fi/ 
(and Y//, which will be used later) may be read off from the following double Taylor 
series (i = 2, 3 and k = 4, 5, 6) 

~"2(0'1, p, -p ; ) t  2) = 1 ~ - \ l - - ~ l  ! /22 t l  -- O i l  + "" ( lOla) p2,k2-+ 0 

V4 (01, Pi ,  P2, P3, P4; X2) 122 .... 
pi-+O h2-*O \1 - ®1! 

---- I ~k2 ~ - ~, ix  4 ( r2, 'l+p2 1 - - f ~ ] ]  
V2(02' P' -P; X2) p2,X2._+o 2/22 \ 1 - 01] +/22 \ 1 - 01 ] ]  

(101b) 

2/22 \ l - O 1 /  .... 
(101c) 

V4(O2, P l ,  P2, P3, P a ; X  2) = __ 
pi_+O, h2 ~0 /..12 \ 1 -- ~)1 ] 

+/24(P2 + p ~ + p 2 + p 2 )  + 
\1 - O 1 /  .... 

(lOld) 

V2(O'3, P, -P;X 2) = 1X 4 [ 73, ] 27t2( ~32 1 
p2,h2._>. 0 2 ~ 2 t ~ ) + p  p2 \ l - ® l /  - 

+ ~(" ~ tl  - - ~ , )  . . . . .  
(lOle) 
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V4(O~,pl, P2, p3, p4;X  2) = 1 - -  
Pi'-~O, h2-~O + / d2 \ 1  -- @)1 ! 

X2 (p21 +p~ +p~ • _2,[  a'35 
+/a4 - * "4' 1 + . . . .  

V6(Oi, Pl ..... P6;~ 2 )  = a i 6  + ( i = 2 , 3 )  
i--~o,h2--+o \1 - ®ff . . . . .  

~.2(0~ ' P,--P; ~k2) = 1 ~k 6 ( t"kl ]+ 1X4P 2 ( rk~ ] 
p2,~.2--*0 3 .  3. \ I  - - ~ J  2~  - Y -  \ I - - (~1 ] 

(1010 

(lOlg) 

+6k4(p2) 2 1 + x z / 7 - ~ f ~ ] 7  +(1 - o g 4 )  ~ + , ( lOlh)  
/j2\ 1-~)1 ]J \1 - Olf "'" 

(k = 4, 5, 6),  

~4(~)'k, pl ,  P2, P3, p4;)~2) = 1X4(  t"k3 ] 
pi--+o,h2--+o 2/~ 2 \1 - ®1/ 

1 - ~ ,  

+(1 - 6ks)~'(p21 +p~ +p~ +p,]) +... (k=4 ,  5,6) \1 --(~1 ] ' (lOli) 

~, )k2)pi__~O,h2._~. 0 [ ;k2 (3~  b + t"661~ V6(Ok, Pl ..... P6; = ~k6 1 + ~  \ 1 - @)1 ]-J 

X2 ( Fk6 )+... (101j) 
+(1 - - ~ k 6 ) ~  \ 1 - - 0 1  " 

Here, the constants Fij, ~ij are evidently functions of a only. 
We are now ready to derive the Callan-Symanzik equations satisfied by the coup- 

lings G~, which have the general structure of eqs. (77a-c). Inserting the factorized 
form (79) into the Callan-Symanzik equation, (65), we obtain 

0={/.12 __~._~ +Baa i) ~ } ~/22 ~'~-- [/12( 1 -- (~1)-- ~k202 -- K203] ~-~ + 1H'~q~ Vn(Pl .... Pn; ~k2) 

6 ( 0 b 
+ ~  ~ ~ '  / a + a ~ + a 0 t ~  + - -  i=1 Vn(Oi'Pl ... . .  pn;~k2) /12 ~ 2  ~ BT')'a,, / 

3 ~} , 
- [/.tz(1 - -O1)--X202 --K203] ~ + [~,2~'~ 2 +K2~23] ~ Gi 
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6 
+ ~ G[[//2 3 a 0 - -  + Bc~o~ ~ - [ / /2(1 - O 1 )  - ~k202 - K 2 0 3 ]  

i = 1 [ ~//2 

+ ½ ~ 1  r'~(6, pl ..... p.; x2). (102) 
/ 

If we use the Callan-Symanzik equations (51) and (99) for the functions ~'n (P 1 . . . . .  Pn; 

X2) and ~'n(O i, P l  . . . . .  Pn ;X2), respectively, eq. (102) can be written in the form 

0 = / ( ~ ) ~ + / / ( a o l ) ~  +(ao2)  ~-~ +03 ~2__~x 2 
/ 6 

+ 1/'/A')' 0 ~rn(Pl , p n ;  X 2 ) +  E ~ ~ ,  .... V~(O ~ P l  . . . . .  Pn; X 2) 
i = 1 

X{//2--~-~ +Baa ~ ~ +B~'y~-~ 

a a }  , - [//2(1 - O l ) -  x2o2 - K2o3] ~ + [x2a2 +~2a31 ~ G~ 

+~] G ~q (A&)a +(zxol)//2 a i :  1 - ~  ar (A(~2)  - ~  

a 1 ~,1~ ~, +®3t¢ 2 ~ +½nA~/¢ - Vn(O/ ,Px  . . . . .  pn;~k2), (103) 

where we have defined 

AB a = B~ - B~, A~,~ = 7¢ - 7¢,  (104) 

A O I  = O1 -- ~)l , A~)2 = O2 -- ~)2 " 

We now note that all the effective couplings C i are of order 1 /M 2 , and thus it is clear 
that, for eq. (103) to be true, we must have 

~ O (  1 ) z~xBa, A O 1 ,  A O 2 , 0 3 ,  A')'¢ ~-~ . (105) 

Actually, the conclusion (105)is a direct consequence following from the expres- 
sions given for Ba, 74- (91,02, (93, Ba, ~ ,  ®l, O2 in eqs. (52) and (66), and the fac- 
torization given in eq. (79). Hence, ignoring terms of O(1/M4), eq. (103) becomes 

6 

Vn(Oi, P l  . . . . .  Pn;  ~k2) /22 ~ ~ t) i,/= 1 + G a  ~ + B~3 ~ + B.yV OV 

- [//2(1 - ° ' )  - x 2 ~ ]  a-# + (x2a2 + ~2a3) a-~ 8,; - ~; G/ 
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= _ z~Bc¢) t~ + ( A O 1 ) / 2  2 ~ + (A~)2)~'2 ~ +~)3 K2 ~}~.--~ 

-1  

lnAT¢]  ~'n(Pl ..... Pn; X2), (106) + 

where T i] 
Eq. (106) is not in a desired form yet for the following two reasons: 
(i) eq. (106) involves the constants like BO, B. r, ~22 , ABe, A3'V, A®l,  AO2 which 

are not completely determined by the pure light-particle theory; 
~ (ii) eq. (106) involves the cumbersome momentum-dependent  functions like 
Vn(Q, Pl ..... Pn; X2) and Vn(Pl ..... Pn; X:) • In the first place, let us consider the 
functions Be, B.r, ~22 , ~3 ,  which are specified by the expressions (66f-h, j ,k) .  
Now, according to simple power counting, one may observe that, in the limit of  
p, X, K < <  M, 

~-~2 ~)p2 Vo,2(P' -P;  X2 K2 ~ , (107a) 
p2 M 21~.2=K2=0 

~ Vo,2(P, - P ;  X 2, K 2 ~ O(1) ,  (107b) 
p2= M2 ' 2=K2= 0 

, t ,  1o c, 
p2=M2,h2=~2= 0 

~ - ~  gO,4 (PI . . . . .  P 4 ; X  2, K 2 ] 

(PI +p2)2=(-P2 +P3)  2 =(P1 +P3) 2=4M2 (107d) 

V2,2(P1, P2, P1, P2 ; ~,2, K2 Pz'=0,P2= 2,x2= K2 °= ~ O(1) .  (107e) 

Inserting the behaviors (107a -e )  into eq. (66), we conclude that 

"[g~ , ~'~2 ~ O(1) ,  ~23 ~ O , B 3 ~ O , B 7 ~ O(1) .  

(108) 

Thus, in the left-hand side of  eq. (105), the derivative B[s{Ja/a3 + ~3K2O/OK 2 may 
be safely ignored in our analysis which is valid only up to order 1/M 2 . As for B~ 
and ~2 ,  we have to use the idea of factorization once more with the vertex func- 
tions, rE,2 (P l, P2, P1, P2; ~k2 , K 2) and (02/a(X 2)2) F~,2 (P, - P ;  X2, K 2), in the limit 
o f  P1, P2,  P, M ( ( P l ,  P2,  P,  ~', g* .  In appendix A, we derive the factorizations 

. 2 1/2 2 1/2 More precisely, we axe considering the limit of [Pll , IPo I M >>  #, r, IP lvl, IP2vl, 
, • • 2 1 / 2  1 '~ ' (v = 1, 2, 3, 4) for F22, and the hmlt of IP I , M >>  #, h, r for (a2/a(x2) 2) Fb, 2. 
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(i) F;.2 (pl. P2. P1. P2; k2. K2) in the limit o f P  b P2. M > > P l .  P2. , .  X. K" 

F;.2 (P l, P2. P I. P2; x2't~ 2) = -i')'F ~ (1N[q~2 (x = 0)1. P l. P2; k2 ) 

+ O ( 1 ) ,  (109) 

92 
(ii) 3(- ~ F~,2 (P, -P;  X 2, K 2) in the limit of P, M > >  k, K,.: 

9(x2)2 -?;x2, ) 

(110) 

(Here, F~(~N[¢2(x = 0)]; X2) denotes the vacuum matrix element of the local 
operator ½N[~b2(x = 0)]. See appendix A for details.) Inserting the result (109) 
into eq. (66k), we obtain 

- iB.r7 - i7¢7 = -i7(1 - ~)1) " ~'2(½N[~b2 ( x = 0)1, P l, P2; k2 I 
pi = O, h2=0 

+O = - i ' ) , ( '~  ¢) + r l l )  + , (111) 

where 711 can be obtained from eq. (lOla). From eq. (111), it is clear that 

B.~ = ~11 + O('~) • (112) 

On the other hand, eqs. (110) and (66g) yield the expression 

~22 = 7~2 + O ( 1 ] ,  (113) 
\ f14 I 

with 
9 2 

~2:(1 - O 1 ) .  2 ~ F'o,o(~N[02(x : 0)];k2)x21__ ° (114) 

With this information and eq. (106), it is a simple matter to obtain the Callan-Sym- 
manzik equation (which is valid up to O(1/M2)): 

~ ~  ~, 2 ~ ~ ~ Vn(O~, Pl ,  Pn; k2) 6i] + .... - -  + B , ~ a ~ - £  Yll"r--  
i,j= 1 9 .  2 9"y 

- ["2( I -~)I)- k2~)21 ~ + k "ya-~K 2 - I"i: G/ 
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0 a a 
+ (AO 2) )k 2 - -  aX 5 

+ O 3 K 2 ~  + AT, Vn(pl ..... pn;X2) • (115) 

From eq. (115_),we will now extract a closed set of Callan-Symanzik equations 
satisfied by D 1 . D, D 1, D 2, 95 ..... D6, while expressing &Bs, AO1, A®2, A%, 03 
in terms olD1,91,  D2, Da. Let us first look at eq. (115) for the two-point function 
(n=2) at p2 =0. From order-(X2) ° terms, we obtain 

/xO1 + A% = 0,  (116) 

which should be expected from eqs. (52a) and (66a). For order-X 5 terms in eq. 
(115), only the local vertex O'1 and the effective coupling D 1 contribute to the left- 
hand side, yielding the equation 

-2122(l-~)1)D1 =iAOs +iAT~-(AO')125[ ~ ~'2(p'-p;X2)] ' 2 
pi=o,)~ =0 

(1 17) 

From order-r 2 terms, we obtain 

-gl2( 1 - ~)l) D1 = iO3 • (1 18) 

Similarly, from the terms of orders (?2)2, X2K2, and (K2) 2 respectively, we obtain 
the equations 

o((x2)5): 
6 

j=l 

- 2 g l 2 ( 1 - ~ ) 1 ) [ ~  ~r2(~};, P,--P;X2)I [ D1 
dp2= k2=O 

- ! ~  iS(1 --~)1) ~ I 05 5 , , = 5 ,  : 5 ( a , , p , - p ; x s ) l  L - ,  -Jp2=R2= 0 

Pstp, -p; xs)]ps=l 5=o 

__(AO1)~.I2 1[ a 3 (119) 
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O(X2K2): 

01d2 - ~  + ~)2 'Ol + 2"t'g~Dl - ~ "~ ljOj 
j=l 

--/22( 1 -- ~)1) V2(O 1, P, -P;  
Jp2=h2= 0 

= - ® 3 [ ~  V2(p,-P;X2)I  I • (120) 
-Jp2=hz=0 

0(K4): 

- -  + b I • l l D 1  = 0 (121) 0/22 B a ~ + T t l l  - , 

where we have denoted Fi; = "t/i. 
In eq. (115), we may also look at the order-p 2 and order-(p2) 2 terms for the 

n = 2 case as well as the four- and six-point functions around the zero external mo- 
menta. From these considerations, one can easily obtain the following set of differen- 
tial equations: 

(/) n = 2, 0(/) 2) 

o((x2)°): 

[ 0 ~ ~,2(p,_p;X:) 1 - i A T ~ .  -(1 - ~)1)/22D2 = --(AOl)/22 0~ 2 8p 2 2 12 
p =h =0 

o(xz): (122) 

6 

- -  + B a u ~ a +  t"ll ')1 + ~)2 D2 + 7~2D2 - ~ t2*]Di 
0/22 ~ 1= 2 

I ~ -  ~' _p;X2) 1 
(1 ~)1)/22 ~ 82 

_ _ V2(Oi, P, [ Di 
i=2, 3 p2=h2=0 

~ a ~ - '  - P ' X 2 ) I  2 [2 D1 --  202(1 -- O1)I0-- ~ V(O1, P, 
p =h =0 

-(a%)/22 0(~)  2 0p 2 p2: 2=o (123) 
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0(~): 

0bt 2 +Fl17  9 2 -- ~ t 2 j D j = - O  3 ~r2 (p, --p ; 3`2 
, /'=2,3 _ = 

(ii) n = 4, Pi = 0 

0((3`2)°): 

(124) 

2 a p4 ; 3`2)] ] - (1  -- ~)l)p.2D3 = i(ABa) a + 2i(/X3,¢)a- (AO1) . [ - ~  ~4(Pl  ..... "J~i=0, x2=0 

0(3,2): (125) 

6 
- -  +,l~o~ - -  0 2 D3 +3'~'2D 3 - - ~  t3/'D/' 3/~ 2 ~ + t117 37 + /'=2 

(1 ~D1)~u z ~ I ~ X 2 -  - '  )1 I 2 - - V4 ( O i ,  p 1 . . . . .  P 4 ; 3`2 D i  
i=2,3 Pi=O,h =0 

- 2 ( 1  - ~ ) l ) U 2  [V4(0 ' , ,p , ,  ..., p4; 3`2)1 ] O 1 
pi = O,k2=O 

Api= O, h2=O 
(126) 

~r4 (p 1 . . . . .  p4;3` 2 ) [ 
pi = 0,k2=0 

O(K2): 

(/'/2 ~ + / ~  ~-~ + t"l "Y ~--~)/~3 -- /'=2,3G T31D/' 

] ,  = - - 0 3  "~'4 ( P l  ..... P4; 3`2) 
2 Pi=O,h =0 

(127) 

(iii) n = 2, 0((t02)2), 3`2 = K2 = 0 

( . 2 a  ~ a ~ )  6 
- -  + ~ , , , ~  + r,l~' D , -  G tq;Dj 3/a2 j= 4 



210 C Lee / Theory o f  virtual heavy particle effects 

- - ( 1 - - ~ ) l ) P  2 ~ 1F 02 ~ - '  -P ;X2)I  I Di 
i=2,3 2L0(p2) 2 V2(Oi, p, Jp2=x2=o 

= - - I  (z2xBa) ~ a-~-+ A')'qSl l l a S  2L0(p2) 202 V2(P' -P;X2)Ip2_[h2 O ,  = 

1 0 02 ~k2) 1 [ . 
--(A(~1)]'/2"2f~2 0(p2)2 ~'2 (P,--P; ~P 2=~-2=0 (128) 

(iv) n = 4, O(p~ + p22 + p~ + p~), X 2 = K 2 = 0 

6 
0 +~c~ a + Ds ~ _ .  /22 ~p2 t'l 1 ')' -- /" 5"]D/. 

/'=4 

- ( O i ,  P 1 . . . . .  P4, )t2 Di 
i=2,3 Pi=O,h =0 

Pi=O,h =0 

I 02 2 )]Pi_OIh2_O 
2 _ _  V4(Pl . . . . .  P4;~2 

ox20p,  - , _  

(v) n = 6 ,  Pi = O, X 2 = K 2 = 0 

6 

0122 -~  + "tl 1 ")" D6 - t 6] Dj 1"=4 

- ( 1 - - ~ ) l ) p  2 ~ [g6(oi-,pl ..... p6;)t2)] I 2 D i 
i=2,3 pi=o,h =0 

(129) 

( 0 I [P'6(Pl, P6;X2)] i 2 = -  ABe) a ~-~ + 3A3,4~ .... 
Pi=O,h =0 

2 0 P6 ; ~k2 )1 [ " -- (AI~I)P [~ '2  ~'6(Pl ..... (130) 
pi = 0, h2=O 

Let us now denote the Taylor series of  Vn (Pl . . . . .  Pn; X2) (n = 2,  4,  6)  around 
Pi = 0, )t 2 = 0 such that 

V2(P,-P;  X2) = - iP  2 - iX2 +iP 2 + ip2-~  
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li(X2~ 2 1 16)2 +%] 

+li(p2~2 ~1 +lip2()k2)2~ +li(p2)2X2 ~3 + 1.,',2,,3 ~4 ^ + 
: 7 0 2 ) ~ 61~'A ) (]22) z "'" ' 

(131) 

X 2 (Bc~ + 2 ~ ]  + 
~'4(Pl, P2, P3, P4; X2 = --ic~ - "--  a + i(p21 +p~ +p~ p24) a~, t//2 1 + ~  / //2 

(132) 

+ i(p 2 +p~ +P~ +P])X 2 °~2 0~ 3 ~--~+1i(X2)2 ( ~  +. . . ,  

V6(Pl, P6; ~k2) . g l  ~2 .... = - -  + iX 2 + (133) I//2 ~ - ~  "",  

where we have defined the new constants rh, r/2, r/3, 774, ~1, ~2, ~3,61, 62" For va- 
rious derivatives of ~'n ~' (Oi, Pl ..... Pn ; X2) appearing in eqs. (119)-(130), we have 
already introduced the constants a'i/through the Taylor series (101). We now note 
that eqs. (116)-(118), (122), (125) relate the changes in the Callan-Symanzik coef- 
ficients to the functions D1, D1, D2, D3 according to 

A')'¢ = -AG 1 = -i//2(1 + ~ ) 2 D  2 , 

A®2 = i//2( 1 +~0) (201 + ( 1 -  6)2)D2 }, 

a(ABa) = i//2(1 + "~) {D 3 + a(2 - Bc~)O 2 ) ,  

0:3 = i//2(1 + 3'¢) D1 • 

(134) 

(135) 

(136) 

(137) 

(Acute readers might have noticed that eqs. (134)-(137) could have been directly 
obtained from eqs. (66c-e), (660 and the factorization (79).) Inserting the expres- 
sions (134)-(137) for A7¢,, AO1, AO2, AB,~, ®3 in the differential equations 
(119)-(121), (123), (124), (126)-(130), we finally obtain the Callan-Symanzik 
equations of the following forms 

31.12- + Bc~°¢ G + t"l 1")" Di-Y i /Di+Tf~Di  = 0 , (138) 

(//2 3 3 ~ ) ~  _ -  - = =  
- -  +B~og--  +t ' l17  i - w i / D / + 2 7 f 2 D i  0 (139) 3/12 3a 

- -  " 1 - / ~  "1" t ' l l  D 1  "tll ~ 1  = 0 (140) 3//2 ~ "/ _ , 

24  = 25 = 2 6 = 92  = 9 3 = 94  = 9 5 = 96  = O, (141) 
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Yi/=-ti] + S i ] ,  (8i4 = '~i5 = Si6 = 0 for all i) ,  

wi i  = t i i  + r ib /1  , 

where non-vanishing SO are given by (ffi] = a/i  are defined in eq. (101)) 

Sl l  = --4g)Z + 2 t l l  , 

- -1~* (--la(2 - B e ) ~ ( ~  ] - ( 1 - 0 2 )  ~)2 +7~ 
8 1 2  - g t l 2  +(1 + ~ )  Oak 1 + ~  ] 1 + ~  

\ 

) + g(02 + Y~) + ½~4(1 + ~ )  , 

_~~* _ I O [ ® 2 + 7 e \  
S 1 3 -  ] t , 3 - ( 1  + % ) 2  ~ a [ ~ ) '  

S21 = 27~ + 2a21 , 

s =  -= 7~ + t~'~ - g ~  +(1 + ~ )  a(2 - k~) ~ -~)~% - "rg 

+ (1 + ~ ) 2 ~ 2 ,  

$23 = /23  + (1 + ~#)) ~ 

831 = 2a31 - 2a(Ba + 2~b) , 

~,  ~ [ a ( a ~  + 2-~) l &~ = t3~ - ( I  + % )  a(2 - a ~ ) ~  [ i + ~ 7  .j - ( I  - g)=) a(ao + 2 % )  

+ 2(1 + ~m) a(B~ + 2~m) + (1 + ~ ) z a g  3 , 

_ ~, [-a(a~ + 2 % )  I S 3 3 = 2 7 ~ + t 3 a - ~ ) 2 - ( 1  +7¢)~GL -j 

$41 =851 =861 = 0 , 

l ~ *  a~ ~ _ (1 + ~ ) 2 ( ~ 1  - ~a)  $42 = ga42 + a(1 + ~¢) (2 -- Ba) ~ 

1 "* ~)~1 
$43 = ]a43 + (1 + T4,) ~ ' 

Ss2 = a;2 + (1 + ~ )  a(2 - Ba) - -  - 
a(ag,) 

aa (1 + "~)2a(2~'1 - ~2),  

(142) 

(143) 
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Ss3 =as3 +(1 +%) a}',) , 

$62 = a62 + (1 + % )  c~(2 - B~) 0gl ~ -  - (1 + %)2(361 - ~2) ,  

S63 = a63 + (1 + ~ )  - ~ 6 ,  , (144) 

and the constants oi (i = 1, 2, 3), defined in eq. (143), are given by 

o, = % +?',1 - o 2  - % = F l l  - o ~ ,  

u2 = "Y~, (145) 

o3 -- - ~ ( k ~  + 2%). 

Since the effective couplings Di(i = 1 ..... 6), Di (i = 1, 2, 3), Dl are dimension- 
less, the Callan-Sy_manzik equations (138), (139), (140) may be written as (D4 = Ds = 
D6 = Dz = D3 = D4 = Ds = D6 = 0) 

( i ~ ~ - ~ ~ -  r ~  D~ + 2#.Dj - ~ '~ , .  -- 0 ,  (146) 

- ~ - -  Bt~ 0/ -- t"l 1"/ Oi + ~ '# '~ - 27D, Di = 0 ,  (147) 

~ a a ) =  = 
M u - ~  - B,~c~ ~ - ~II"Y ~ D1 - ~llD1 = 0 .  (148) 

Evidently, eqs. (146)- (148)  have the desired forms which can identify arbitrary 
powers of log(MU//l u) in a systematic fashion. These partial differential equations 
can be easily integrated by introducing effective coupling constants and appropriate 
anomalous dimensions in the usual way. As an illustration, in sect. 4, we wiU sum 
all the leading logarithms appearing in perturbative calculations of  the effective coup- 
lings, by using eqs. (146)-(148).  

Finally, we should mention that, among the effective couplings above, we are 
only interested in D 4 (=C 1), Ds (=C2), D6 (=C3). The additional couplings D 1, D 1, D 1, 
D: ,  D:,  D 3, D3 here have a role of linearizing the Callan-Symanzik equations for 
D4, Ds, D6, as well as acounting for the changes in Callan-Symanzik coefficients due 
to the influence of  virtual heavy particles. 

4. Explicit calculations 

In the foregoing two sections, we have established the factorization and derived the 
Callan-Symanzik equations satisfied by new effective couplings. In this section, we 
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will perform lowest non-trivial-order calculations explicitly and then use the Callan- 
Symanzik equations to sum all the leading logarithms. In this consideration, there 
appear two interesting physical limits 

CaseI: a , / 3 , 7 < < 1 ,  7~c~,  a l o g M 2 ~ O ( 1 ) ,  710gM2~O(1) ,  

Case II: a , / 3 ,7<<  1 , ~ ' ~ < ~ ,  alogM2 ~ O(1), 5'logM2 < <  1 • 

(For simplicity, we will assume 13 < <  5' for both cases). We will consider these two 
cases below. 

Let us first calculate the effective couplings D i (i = 1, 2 . . . . .  6), 8i( i  = 1,2 ,  3), 
Ol in the lowest non-trivial order. The factorization (79) and the normalization con- 
ditions (75a-p) for various local vertices imply that, for M 2 ~ / . t  2 , ~2, •2, 

= ; .~1  [(~2)2D 1 + ~k2K281 V2,0(P, - P ;  X2, K2) -- V2(P, - P ;  ~k2)p2,x2, 2...0 M 2 

+ (K2)2D 1 + ~k2p2D 2 + r2p282 + (p2)2D4] + , (129) 

1 
V40(Pl,  P2, P3, P4; ,t~2) - V4(Pl, P2, P3, P4;X 2)pi,7~_~0= M2 [~-2D3 

+K2~3 +(p21 +p2 +p2 +p2)Ds] +O(~/4) , (150) 

o(1) 
V6,0(Pl . . . . .  P6;  ~k2, t~2) - ~'6(P 1 . . . . .  P6;  ~k2) Pi, h,K~O= m ' 2 0 6  + ~ . (151) 

In fig. 8, we show the Feynman diagrams which contribute to the left-hand sides of 
eqs. (149)-(151) and are necessary for the lowest non-trivial-order evaluations of 
the effective couplings Di, Di, D 1 . The lowest non-trivial order contributions to 
D1, Ol, D2, 82, D4 come from the Feynman diagrams (b), (c) in fig. 8, DI from the 
Feynman diagram (a), 8 3 and D 5 from the Feynman diagram (d), D 3 from the 
Feynman diagrams (e), (f), (g), (h), and D 6 from the Feynman diagrams (i), (g), (h), 
Once corresponding Fe_ynman integrals for these diagrams are evaluated, it is a simple 
matter to read offD 1, DI, D1, D2,.D2, D3, 83, D4, Ds, D6 from the results via eqs. 
(149)-(151). Here, we give the results: 

Case I (5' ~ a): 

Dl - -- 3 • 5'2 log 's-  + + O(5'2~, 5'3), 

i 72 I M2 ] 81 = log-~-+ 1 + O(5'zo~, 73), 

h_  i 64n2 5' + 0(5' 2 , 5'c0, 
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i 
D2 - 3 • 2~°71 "4 3'2 o g ~ -  + -t- O(3'20~, 3 '3 ) ,  

O 2 -  i 2107/.4 72 + 0 (3 '2a ,  3 '3 ) ,  

i I  Llog U + + ~8n4 73 l o g ~ - +  1 + 0(3'2a 2, 3'3a, 74),  

3i 
D3 - 32rr 2 3,2 + 0(3'2t~, 3'3) , (152) 

i 
- _ _  _ 2 r  D4 9 • 2117-/-41 + 0(,) ,2a, 3 '3 ) ,  

i 
Ds 3 • 267r 2 3'2 + 0 (3 '2a ,  3'3) 

D 6 - 15i 3'3 + O(T3c~, 3'4, 3'2a2) 
32rr2 

Case II (3' < <  a) : 

D1, D1, D1, D2, D2, D 3, D 4, D s are same with the case I if one replaces 
0(72a, 73) -+ 0(72a), 0(3' 2, "ra) ~ O(Ta), and 

28--rr 4 i M 2 + ~  03 - 72~ log~T + 0(72a2) ,  

15i 3'2~2 log~-  . 0 6 - 29~. 4 + + O(3 '2a a)  (153)  

The next quantities which we calculate are the constants Ba, 74,, ~)1, ~)2, ~1, ~2, 
773,74, ~ l,  (2, ~3,61,62.  As defined in eqs. (131)-(t33),  these constants can be 
read off  from appropriate coefficients of the Taylor series for Vn(Pl ..... Pn; X2) 
(n = 2, 4, 6) around Pi = 0 and X 2 = 0. We show the Feynman diagrams necessary for 
the calculation of the lowest non-trivial-order contributions to Vn(p 1 . . . . .  P n; X2) 
(n = 2, 4, 6) in fig. 9. After some calculations, we obtain the following values in the 
lowest non-trivial-order 

t~ 2 O~ 2 O~ O/ 

7~ - 3 • 210/r 4 ' ~2 3 • 210/I .4 ' ~)2 327r 2, ~4 32rr2 , 

a2A a2A 3a a 

~1 3 • 28rr 4 ' ~3 3 • 287r 4 ' Bc~ 3 2 n 2 ,  E1 3 • 267r 2 ' 
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CASE I (~) CASE I[ (1(<<d,) 

/ - . .  
{a.) (b) (c)  

' " {'v':," "'~"'."'~- "~" " 

• e - 

,(-3+ ~,.'t'~., ,,,,~f'- L, '~, .  (pe~,,~ 
i , • J i i • o •  "-.+: ~ 

(d) (e) of) 

ti) 

+ (permu.) ~ ( ~  ~ Q  (permu.) 
~,,,~7, ~- .  T., ,: + 

e e ~ t ! 
" "  • i °°° ' l  • "% 

l ,  * ' " * "  

,j) (k) 

Fig. 8. Feynman diagrams necessary to evaluate the effective coupling in the lowest non-trivial 
order. 

-n=Z 
I I 

6 p , , . . ,  

P 

. e ,  . o  P3 

~a=~ -~,a", F., + (pe.~:) 
P~ " " °  P4 

Fig. 9. Feynman diagrams necessary to evaluate the Callan-Symanzik coefficients in the lowest 

non-trivial order. 
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1 

~ t  >,, , ,  

( a-i, ) 

t a 
~'a "', ~ ,,~" ",, 
~" "+(per~u.) ~,', "',, ;+(pe~uO 

t* "K  . ,  - p . .  

-'--, ,,r.,, >:C'-,x, + 
), t ~ +(per~uJ -Ir--t . . . . . . .  ~ -  (permit.) 

/ , ' ,  ¢- . . ,  ,' p / , .  / 

, 

Fig. 10. Feynman diagrams necessary to evaluate a.. in the lowest non-trivial order. 
t! 

L 

z ¢ G 
$ 

,,i.. 
t 

qz qa 9z ,i1% 

._,..,:_ - ' , . _ /  ,~. ,~ 

' "$'"" ~ ,,~-."; +(~mu.) .3 -~/~. ,~ n , , .  ".~ 

(qt)z (q~)z 

t - t - - - s ; - -  

.~ .,,f," "~ + (pe~mu.} 
( ,s #$ 

i 

(q'-)~- 
-41 

~q : + ( p e r m u . )  
o, ; , ,  

p% zq t d" ÷ q% ~+ ('~ + ~'* P)~: re',÷ I.~÷ ,t% or,,+ e.+,l)z 

, . ~,~,.~ *1 ; + (pei-rnu..) 
, , ,  . . . ,  ,,p . . . . .  , P , .pa , . .+- .  

- '7 
... ~.,~ ) ~, ~:'--"~ +(r-~".~ 

z q2 

.,.,~-".~ + (l, ermtt.) 

~',~=o 

~-~# 2 + (t 'e~m~') 
°, 

Fig. 11. Feynman diagrams necessary to evaluate ~/] in the lowest non-trivial order. Here, we 
have set p~ = PC = 1. 
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_ - ~  3a 1 5 a  3 
g2 3 26rr  2 '  ~ ' 3 -  ~1 = - - '  • 327r 2 , 32rr2 , 

15oe 3 

62 32rr2 , 

where the pure number A appearing i n  ~ 1 ,  ~3 is given by the integral 
(154) 

, ?  A = f d~: dy [,v - 1) 2 
o 1 2y4  [ ( ~  _ ~:2)  ( y  _ 1 )  + I I  

? I 1 4 I log(X+ 1 ] = 32 dx (x 2 + 3) a (x 2 + 3) 4 ~ x ~ -  1! " (155) 
1 

Calculations of  the constants g12, h'13, a24, ff2s, a-26, ff34, Was, aa6 defined in 
eq. (101) are quite analogous to the calculations of  the constants given in eq. (154). 
Feynman diagrams necessary for these calculations are depicted in fig. 10. In the 
lowest non-trivial order, we do not need to do any additional calculation, since the 
constants "~i] can be related to the constants just given in eq. (154) as follows: 

~2 

a'12 = --Tq~ = '3 .21° r r  4 ' 

30L 2 

a'13 = a(Ba + 2 % )  = 32rr 2 , 

2 ~  2 

a24 = --(3~1 + ~3) (1 + % )  = -- 3" 28rr 4 A , 

a'2s = --(2°L~'l + ~ 2 )  - 

~2 

3 • 267"i" 2 ' 

fi'26 = -15(81  + 62) (1 + ~ )  = O(a4 ) ,  

2 ~l 2a 
a"34 = - -  - -~  (1 + ~,~) = 3 ~ .  287r 4 A , 

2a 
a3s = -2"~1(1 + '~e) - 3 • 261"i .2 ' 

225~2 
1:/36 = - 1 5 6 1 ( 1  + ~,~) = ~ (156) 

32rr 2 

Elements of  the anomalous dimension matrix t'ij can be obtained from the Taylor 
- '  " X 2) (n = 2, 4, 6) around pi = 0, X 2 = 0, as indicated in series of  Vn(Oi, Pl  .. . . .  Pn,  

eq. (101). Feynman diagrams necessary for the lowest non-trivial-order calculations 
of  Vn(O i, Pl  .. . . .  Pn ; X2) (n = 2, 4, 6) are shown in fig. 11. Again, we just summa- 
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rize the result of  calculations here: 

{tu ) = 

32n 2 

1 

32n 2 

o(~) 

1 

16n 2 

o(,0 

0 0 0 

3o~ 2 
O(e~2) 16n 2 0 

2a 3a 

0 0 

0 0 

0 0 0 
3 . 2 1 o n  4 32n 2 

0(~ 2 ) 0(~ 2 ) O(a 2 ) 0(~ 2 ) 0(~ 3 

1 3a 2a 3a 45a 2 

16n 2 4n 2 9 . 2 9 ~  4 32~ ~ 8n 2 

1 15a 
O(a) 32n2 O(a) O(a) 32n2 

(157) 

The Callan-Symanzik coefficient matrix ~i/)  in eq. (146) can be found by adding 
the matrix (Si/) to the transpose of  the above anomalous dimension matrix. The con: 
stants Sii are obtained by inserting the expressions (154), (156), (157) into eq. (144). 
After some straightforward algebra, one obtains 

"~U) = 

a a 1 1 
o (a )  o (a )  

327r 2 16n 2 32n 2 16n 2 

O(a3 ) a a -32n2  3 . 2 9 n 4  O(a2) 

3a 2 a 
O(as) 16~2 -- 32n2 O(a2) 

a2A aA 
0 3 . 2 8 n  4 3 . 2 8 n  4 0 ( a 2 )  

0 O(a 3) O(a 2 ) O(a 2) 

15a a 45a 2 
0 16n2 8n 2 O(a 3) 

1 
16n2 O(a) 

3a 1 
4n 2 327r 2 

9 • 28 n 4 0 ( a )  

3a 
32rr 2 O(ct) 

45a  2 15a 

8n 2 32n 2 

(158) 

The constants v i (i = 1, 2, 3) (see eq. (145)) in the lowest non-trivial order is given 
by 

~2 3~2 
ul = O(a2 ) '  02 3 • 21°/r 4 ' 03 327r 2 ( t59)  
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Finally, we give the lowest non-trivial-order value for the constant ~ defined in 
eq. (114), 

1 
~2- 32~r 2 . (160) 

With these lowest non-trivial-order calculations at hand, let us see what the Cal- 
lan-Symanzik equations (146)- (148)  do for us. Let us first consider the case II 
(i.e., 7 < <  a). In the case II, suppose we want to sum the series 

_ 3 ,2 7 2 2 D1 = -  W1 , D2 = - -  W2, D3 = 7 W3 , 
ct 

D 4 = T 2 W 4  , D s - -T2Ws  , D 6 ~ ")'2(~[416 , (161)  

w i  = 1 3  l o g  
k=0 

(i = 1,2 ..... 6 ) ,  

with the boundary values (see eq. (153)) 

= = = = o ,  

, d ( S )  _ i 
d(4) --9 • ~l ln4 3 .  26n 2 (162) 

The first observation one may make in the Callan-Symanzik equations (146)- (148)  
is that one does not need to consider the functions D1, D 1, D2, D a for the series (161) 
since they contribute 0(73 ) terms at most. Secondly, from the known behavior of  
the Callan-Symanzik coefficients, one may observe that there will be no higher loga- 
rithms than the ones kept in the series (161); i.e., the series (161) correspond to the 
leading log sum. Moreover, in terms of  the functions Wi(i = 1, 2 ..... 6), the Callan- 
Symanzik equation (146), with the functions b i ignored, becomes 

i=1,2: 

342 ~) 
~)M 2 

i=3,4,5: 

2 5 ° ) 
- - - B o e o ~ + B , ~ - 2 r l l  [4*i + ~ YijW] + ~ oo~ijWl + o~2yi6 W6 = 0 ,  

1=1 /=3 

(163a) 

z ~ _ ~ a a ~ a _ 2 T 1 ,  Wi + Wj+ YijWj+~i6aW6=O, 

(163b) 
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i = 6 :  
2 5 

-- \ --~/]  W/ "k ~t/] "k Y66  W6 = 0 
j=l 

( 1 6 3 c )  

Inserting the lowest non-trivial-order results for .~i/(see eq. (158), one can easily con- 
vince oneself that the leading log sum (161) can be completely determined from the 

\ 

partial differential equations 

aM 2 32~4 ~-. W i + aXi]W ] = 0 ,  (i,j = 1 . . . . .  6) ,  (164) 

with the boundary values 

(Wo) i =- WiIM2=u2 , (i = 1 ..... 6 ) ,  

(Woh = (Wo)2 = (Wo)3 = (Wo)6 = 0, 

and the matrix X given by 

i i 
(W°)4 9 • 2117r 4 ' ( W ° ) 5  3 • 26 f f  2 ' 

(165) 

X = 

1 1 1 
0 0 0 

16n 2 32n 2 16n 2 

1 
0 0 0 0 16n~ 0 

3 3 3 1 
0 16n3 32n2 0 4n 2 32n2 

A A - 1  a 
0 3 . 2 8 n 4  3 . 2 8 n 4  16n2 9 . 2 8 n 4  0 

1 
0 0 0 0 32n2 0 

15 45 45 5 
0 16n2 8n 2 0 8~ 2 16n2 

(166) 

An important check of eq. (164) is provided by evaluating the c o e f f i c i e n t s  d~ 1), 
d~ 2), d~ 2), d~ 3), d~ 6) in the series (161), through eq. (164) with the boundary condi- 
tions (165). In fact, one obtains 

d[,)  - i d~2) - i d{3) - i 15i 
3 • 2 1 0 f f  4 ' 3 • 210 f f  4 ' 28"It 4 ' d ( 6 )  = 2 9 n  4 ' 

(167) 
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which is in complete agreement with the result of  the explicit  calculations (153). 
The solution of  eq. (164) can be most easily obtained in terms of  the effective 
coupling constant ~(a, t) defined by 

Ms 
t = log ~ -  , 

d 3~ -2 
d~- if(t, a)  - 32772 , N(0, a)  = a .  (168) 

The solution of  eq. (168) is given by 

0~ 
8(t, a) = i - ~ t / 7 7 2  " (169) 

Now, the solution of  the partial differential equation (164) can be given in the form 
(i, j = 1 . . . . .  6) 

t 

= (exp - X  f dt '  ~ ( t ' ,  a)  Wi )ii(Wo)j 
0 

:(expE   Xlo (1 
with the matrix X given in eq. (166). 

Let us now consider case I where 3' is of  the same order with a. In this case, 
one may wish to sum the series 

D 1 m 3 ` U  1 , D2 ~-3`U 2 , D3 = 7 2 U 3  , D4  = 7 2 U 4  , 

D 6 ~-3`3U6 , 9 1 =-3`U 7 , 9 2 = 3 ` 2 U  8 , D3  ~-~- 3`2U 9 , 

~o [ M2 ,k+l 
Ui = ~ d(~ ) ak3` ' ~log-~- ) , (i ¢ 6 ) ,  

k,l=O 

Ds = 72 Us , 

31 - 3`Ulo, 

(171) 

u6 = 

S o o  ( M2~k+l / M 2 'l k+l Ol 
d ( 6 . ) a k T / [ 1 o g v )  +-- ~ e ( ~ a k 7  l l o g v )  , 

k,l=O k,t 3  ̀ k,l= 0 

with the boundary values (see eq. (152)) 

d(1) = d(2) J(3) = d(7) = e(6) = 0 
0,0 0,0 = U0,u 0,0 0,0 

d ( 4 ) _  i d(S) = i d ( 6 ) - _  15i 
0,o 9 - 211774 ' o,0 3 • 26772, o,0 32772 , 

(172) 

d(8) _ i d(9) = 3i ,4(10) = i 
0,0 210774 , 0,0 -- 3277 2 , ~0,0 64n2 " 
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Again from the known behavior of  the Callan-Symanzik coefficients, it is easy to 
see that the series (171) correspond to the leading log sum for case I. In terms of 
the functions U i (i = 1 ..... 10) introduced in eq. (171), the Callan-Symanzik equa- 
tions (146) - (148)  may be written in the form 

M2 a B~a a t113'~-7 OM 2 ~ a -  Ui +Pij(a, 3") Uj = 0 ,  (173) 

with the matrix P(a,  3') given by formula (174) see page 224. Inserting the lowest 
non-trivial-order results for the Callan-Symanzik coefficients and denoting the 
resulting matrix for P(a, 3') by P (a, 3'), the complete leading log sum (171) can be 
obtained by solving the partial differential equations 

IM 3M 2 \327r2 ] ~ \327r2/03' 1 U i +Pq(a ,  3') Uj = 0 ,  (175) 

with the boundary conditions 

(Uo)i = UiIM2:u2 , (i : I, 2 ..... 10),  

( U o ) l  = (Uo) 2 = ( U o )  3 = ( U o )  7 = O ,  

i i 15i 
(U°)4 9.211~r 4 ' (U°)s 3 • 26rr 2 ' (U°)6 327r 2 ' 

i 3i i 
( U o ) 8 -  21on 4 , ( U o ) 9 -  32n2 , ( U o ) l o -  647r 2 . (176) 

The explicit expression of the matrix ~ ' (a ,  7) is given by formula (177) see page 
225. To solve eq. (175), we may define the effective coupling constants ~ (t, a), 
~'(t, a ,  3') by 

d 3~ -2 
a-(t, a) = 327r 2 , ~(0, a) = a ,  

d a3' 
~-  ~(t, a,  7) - 32rr2 , ~-(0, c~, 7) = 7 ,  

where t = log(M2//a2). The solutions to eq. (178) are 

~ ( t , a ) : i _ ~ a t / n 2  , V ( t , a ,  3 ' ) = 7  1 - ~ l o g  

Now, the solution to eq. (175) can be given in the form 

-1/3 

(178) 

(179) 
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t 

Ui = {exp - f dt'  P(ff(t', a), 7-(t', a, 3')))ij (Uo)j, 
0 

(i, j = 1 ..... 10). 
(180) 

This completes the discussion of the leading log sum for case I. 
Finally, it is amusing to note that, for both cases we have considered, we do not 

need to know the lowest-order expressions for the effective couplings D1, D2, D3, Ol 
as the boundary values. This is quite natural when one notes that DI, D2, D3, D1 
appear with the multiplicative factor ~2 o r  (~k2) 2 in eqs. (77a--c). However, these 
effective couplings must be considered together with D1, D2, D3, D4, D5, D 6 to 
obtain a closed set of linear partial differential equations. Of course, once the Callan- 
Symanzik equations (146)-(148) are solved, we may throw away all the auxiliary 
effective couplings we introduced, namely the functions D1, D2, Da,D1, D2, D3 
and 91,  by setting ?2 = K2 = 0 in eq. (79). 

5. Discussion 

With a q)4-type field-theory model, we have demonstrated that O(1/M 2) effects 
of virtual heavy particles on light-particle Green functions (with all the external 
momenta much smaller than M) can be completely factorized via effective local ver- 
tices which involve operators of canonical dimension at most six. We have also derived 
the Callan-Symanzik equations satisfied by the coupling strengths of such effective 
local interactions, and performed the leading log sum explicitly to illustrate the 
power of these equations. We believe that the formalism developed in this paper will 
provide a systematic theoretical language in describing virtual heavy-particle effects 
in any renormalizable field theory. 

It is also a simple matter to generalize the formalism developed in this paper to 
incorporate the effects of  virtual heavy particles accurately up to any given power of 
1/M 2. Suppose we want to identify all the virtual heavy-particle effects up to order 
(1/M2) k. For that purpose, one may consider a new oversubtracted function 
~In(pl ..... Pn) (cf, eq. (20)) by using an oversubtraction operator t (2k) for a proper 
subgraph corresponding to a H-blob. By the power-counting theorem [9], this over- 
subtracted function will be at most of order (l/M2) k+l . Then, following the similar 
line of arguments as given in sect. 2, one can express the difference between the 
minimally subtracted function and the oversubtracted function via a set of simple 
effective local vertices. The results may be summarized by 

T,,,o(Pl ..... P,,) = T,,(Pl ..... P,,) + T , , (N[exp ' i f  d4x -~af] ,Pl  ..... P,,) 

+ o( I (181) 
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with the heavy-particle-induced effective lagrangian 

2k+4 ( l i d _  4 
.~eff = ~ ~ c(d)O}cl)(x) (182) 

d=6 i \ ~  

Here, ()~a)(x) are local, light-particle, operators of canonical dimension d and the 
calculable constants C (a) may involve powers of log (M2/m 2) at most. Also, we 
used the notation exp'ifd4x -~eff in eq. (181) to indicate that the exponential is to 
be expanded as a Taylor series of o!a) 's,  and then one should keep only a finite 
number of lower-order terms in the series, satisfying 

na(d - 4) ~< 2k ,  (183) 
a 

where n a denotes the total number of local operators with canonical dimension d 
in a given term of the Taylor series. The physical meaning of eq. (181) is clear; to 
any desired accuracy, the low-energy light-particle physics can be described by a 
local lagrangian of the form, .C + Z?eff , when combined with appropriate subtrac- 
tion rules to deal with a single or multiple insertion (s) of fdax Z?eff. 

Generalization of the present formalism to abelian gauge theory, say QED with 
heavy muons included, looks straightforward. A new theoretical ingredient here is 
local gauge invariance, which can be taken into account via the Ward-Takahashi 
identities. The Ward-Takahashi identities in abelian gauge theories are linear, and 
thus can be easily incorporated into the derivations of the factorization and Cal- 
lan-Symanzik equations. As a result, only gauge-invariant effective local vertices' 
will be induced by virtual heavy particles. Also, one may note that there will 
appear not only dimension-six operators but also dimension-five operators of odd 
chirality. However, those dimension-five operators must come together with a mul- 
tiplicative factor me (mass of electron), and thus the corresponding coupling strengths 
will be also of order 1/M ~ (rather than being of order l/M). 

Generalization to QCD is less trivial due to complicated nature of non-abelian 
gauge invariance. The Ward-Takahashi identity is not linear in non-abelian gauge 
theories, and thus, at least in covariant gauges, effective local vertices involving va- 
rious null operators may appear [ 10] Aside from this technical complication, ana- 
lysis of virtual heavy-quark effects in QCD is very similar to the case of muon in 
QED. In QCD, it is convenient to use the so-called zero-mass renormalization 
scheme [ 11 ] with respect to light-quark masses and normalize light-particle Green 
functions at a certain non-zero euclidean momentum/a0a < <  M). Then, the genera- 
lized subtraction operators t~ °), t~ 1) may be expressed as a Taylor series of light- 
quark masses and external momenta of a proper subgraph in consideration. This 
renormalization scheme is especially convenient to deal with the renormalization 
mixing problem between effective local vertices of opposite chirality. (Here, we empha- 
size that one should not use the zero-mass renormalization with respect to heavy- 
particle masses to define light-particle vertex functions. This is necessary for the de- 
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coupling theorem to be valid at the zeroth order in 1//],/2.) 
As a sample of imminent physical applications, we may list the effects of heavy 

quarks (mass M) in 
(i) the total e+e - annihilations; e+e - ~ 3'(q) ~ (hadrons), and 

(ii) the inclusive electron scattering off a light hadron; 

_q2 
7(q) + I P) -+ (hadrons), for fLxed - -  = x . 

2p. q 

(See figs. 12a, b, and also fig. 13a, b for charged heavy quarks) Conventionally, one 
analyzes these processes first by looking at the time-ordered products of electromag- 
netic currents, i.e., 

fd4x e-iq'x<OlT(J~(x)Ju(O))lO), for process (i),  (184a) 

f d 4x e-iq'x (Pl T(Ju (x) J~(0))l p) , for process (ii), (184b) 

and then uses the unitarity relation. Of course, the method of analysis crucially 
depends on the relative magnitudes of q2, M 2, and all the other hadronic scales 
which we may simply represent by/~2. The cases o fq  2 > > M  2 >>/a  2 and 
q2 ~ M  2 >>/ /2  have been discussed in a recent paper by Witten [12]. Here, we 
concentrate on the case o f M  2 > >  q2 >>/a2,  where the formalism developed in the 
present paper should be used for the analysis. As mentioned earlier, the zero-mass 
renormalizations may be used with respect to light-quark masses only. Now, using 
the formalism developed in the present paper, one may first isolate all the O(1/M 2) 
effects in terms of effective local vertices (which may include photon fields for 
charged heavy quarks), and then sum the powers of log M 2 by the method given in 
sect. 3 (the first factorization). For q2 >>/a2,  effective vertices involving dimen- 
sion-six (rather than dimension-five) operators will dominate, yielding contributions 

(a) (b) 
o e ~ 

[UO'rl 

Fig. 12(a) Heavy quarks in total e+e - annihilation. The double solid line indicates the heavy- 
quark line. (b) Heavy quarks in deep inelastic electron scattering. 
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(a) i (b) 
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X 

Fig. 13(a) Charged heavy quarks in total e+e - annihilation. (b) Charged heavy quarks in deep 
inelastic electron scattering. 

of order q2/M2, compared to the contributions obtained with heavy quarks com- 
pletely ignored. To sum the powers of log q2 in the case of the function (184a), one 
may directly apply the renormalization group corresponding to the variation 
ta2L)/DI~ 2 , for the vertex functions with such effective local vertices. As for the func- 
tion (184b), one should first write down the light-cone expansion for the vertex func- 
tions with such effective local vertices, in terms of twist-two local operators. (The 
second factorization). Then, one may use the renormalization group corresponding 
to the variation I~2L)/DIa 2, to sum the powers of log q2. Detailed analyses may be 
given elsewhere. 

Yet, the most interesting applications of our formalism presumably lie in the 
study of unified or grand unified gauge theories. To investigate such theories, we 
have to generalize the present formalism to spontaneously broken theories in which 
even the virtual heavy particles in consideration acquire mass via spontaneous sym- 
metry breaking. We have studied the two simple field theories: the linear o-model in 
the Goldstone mode and the abelian I-Iiggs model with light fermions, and found that 
simple local structures do exist for both cases [14]. For. the former in the limit of 
large mass for S = o - (a) and with f ixed quartic coupling (this implies also a large 
number for (o)), the low-energy pion theory can be described by the effective lagran- 
gian of the form (182), with the restriction (183). But, there appear some special 
features like: (i) the zeroth-order lagrangian, i.e., ~ ,  is given by the free massless 
pion theory; (ii) among the operators ~ a )  with an equal number of pion fields, the 
effective vertices involving the least number (here, it is two) of derivatives are uni- 
quely determined by the non-linear o-model [15]. In the abelian Higgs model, the 
low-energy effective fermion theory does not show any sign of underlying local gauge 
symmetry. These results seem to suggest that our formalism will also be useful in 
unified gauge theories, but, clearly, more investigations are necessary. 

We would like to thank Prof. Y.P. Yao who first told us about the possibility of 
factorization in studying virtual heavy-particle effects. Without his comment, this 
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research would not have started, and we are grateful to him for suggesting this prob- 
lem and helpful discussions. 

Appendix A 

Here we derive the factorizations (109) and (110), respectively for the vertex 
functions F~,2(pl,  P2, P1, P2; X2, K2) and (O2/O(x2)z) F~,z (P, -P ;  X 2, K2). In the 
(q~-ff)' theory, these vertex functions are given by the forest formulae [7] 

F2,2(p,,p2, PI, P2;X2,K 2) E 1-I ( - t~  (°)) ,u ' = F2,2(Pl ,P2, P1, P2, X2, K2) , 

7 ~  (A.1) 
~2 ~2 normal 

, _ ( _ t  v ) Po ,2(  P, - P ;  X 2, K 2 ) ]  . ~)(~.2)2 FO,2(P' - e ;  ~k2' K2) ~)(~k2)2 [ E12 ~'@I21--I '(0) 'u 
(A.2) 

To derive the desired factorizations, it is convenient to introduce a f2' forest which is 
defined by adding the (2 + 2)-point tree vertex 7o (see figs. 14a, b for examples) as 
a possible element of a forest besides us~,al non-overlapping proper subgraphs. (Note 
that, according to our definition, a point vertex is not considered as a proper sub- 
graph.) Then the forest formulae (A.1) and (A.2) may be written as 

t t u V2,=(p,, P2, el, P2; X2, &) = ~ ~ (_t¢(o)) V2,:(pl, Pz, e , ,  t'2; X2, &),  
~2' 7 ~ '  

(A.3) 

~)2 ~)2 normal 
o(x:)~ r;,:(e, -/'; x ~, ~ )  = ~ [ E 1-I 

t~ °) = 0 for 3' = assuming 70. / 

We now introduce the oversubtracted functions 

,u X2, ( - t~  °) ) ro, ~ (/', -e;  K2)], 

(A.4) 

F 2 , 2 ( P l ,  P2, P1, P2; ~k2, K2) = E E ,u F2 2(Pl,  P2, P1, P2; ~,2, K2) , 
"y~[2' 

(A.5) 

-P 
Fig. 14. Illustrations of the tree vertex 3'0- 
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' , - r o , 2 ( p  , - P ;  X 2 ,  ~2)1 , a ( ~  F°'2(P' -P ;  X2 ~2) 0(X2) 2 [ ' 7~a'~ (-T~) ,u 

(A.6) 

where the Taylor operator ?-~ is specified by 
- -  r t u = 

t [~2,2 - i 7 ,  if the element 7 corresponds 
to 70 and there are no internal if-lines left 
in any part of the graph, 

-'t. r = t '(°)7 , otherwise . (A.7) 

Now, going through the same argument as given in sect. 2, it is a simple matter to ob- 
tain the following forms of the algebraic identity 

r~, 2 (P 1, P 2 ; ~k2, K 2) = --iTP 2 (½N[O 2 (x = 0)], p 1, P2 ; k2 ) 

+ P'2,2 (Pl, P2,-Pl, P2; )k2 , K2), (A.8) 

02 ~2 
0Q2)2 Po,2 (P, -P ;  k 2 , K 2) = - &  ~ G(~N[~2(x = 0)], X 2) 

+ Fo,2(P, -P;  X2, K2) , (A.9) 

where we introduced the local operator ½N[g)2(x = 0)] (see fig. 15 for the tree 
graph) in the (p' theory and F~ denotes its vacuum matrix element. In eqs. (A.8) 
and (A.9), we have defined 

~ ' ( 1 / [ ( ~ 2 (  X = 0)l ,P l ,  P2; ~k2) = ~ P2 17 ( - t~  °)) F2 'u (½¢2(x =0) ,p l ,  p2;X2),  
TED, 

(A.10) 

02 02 normal 

0(X2)2 F'~)(½N[ q~2(x = 0)] ;k 2 ) -  i~(k2) 2 ~ '  [7[ 
~2 "),E I2 

with the Taylor operator t~ °) specified by eqs. (40a-c) and 

(~,~ (x = o); ~,:) 

(A.11) 

t,(o)~ ~u (1¢,2 (x=O),ql,  q2; k2)= F~u(~¢2(x=O),ql, q2; h2) I 
qi=O,h2= 0 

(A.12) 

t'(°)F'ku(l~2(x=O),ql ..... q k ; X 2 ) = 0 ,  (k ~> 2).  (A.13) 

The forest formula (A.10) implies the normalization 

["2(½N[ck2(x=O)] ,Pl ,  P 2 ; k  2) I 2 = 1 I 

Pi=O,h =0 
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£ 

po • 
.,'" .~-. P. 

' -  

Fig. 15. Tree graph for  l~b2(x = 0). 

If PI, P2, P are large space-like momenta, it is a matter of simple power counting 
[9] to show that when _P21, _p22, _p2, M 2 are much larger than the masses/a 2 , 2~2, K2 
and the momenta of the external e-legs, the oversubtracted functions in the right- 
hand sides of eqs. (A.8) and (A.9) are at most of O(1/M2). This proves the factoriza- 
tions (109) and (1 10), for the space-like momenta PI, P2, P. For large time-like mo- 
menta close to the heavy-particle mass-shell, one may worry about the integration 
region where the momentum of a certain internal if-line stays close to its mass-shell. 
(Note that, by construction, Feynman graphs for the above oversubtracted functions 
always possess a non-vanishing number of internal ~k-lines.) However, in the scalar 
field theory being considered in this paper, it is easy to convince oneself that such 
'infrared' contributions to the above oversubtracted functions are at most of order 
1/M. Thus, the factorizations (109) and (1 10) are also valid for the large time-like 
momenta. 

Appendix B 

In the main text, we have normalized the primitively divergent vertex functions 
involving light particles at zero external momenta for those light particles, for the 
sake of simplicity. Here we briefly indicate necessary modifications when different 
normalization conditions are employed. Suppose we have normalized the ¢-ff theory 
by imposing 

F2,0( p, --P)lp2=~t2 = O, (a) 

a p  2 F 2 , 0 (  p,  - -p  )1p2=$12 = ipq~ , (b) 

F4,0(Pl, P2, P3, P4) p/2=lp 2 = --iotp~ ' (C) 

2 2 2 4 2  
(P 1 +P2) -- (P2 +P3) =(P l +P 3) =3t z 

F2,2(PI 'P2 'PI 'P2)  2 2 ~ 2 ~ 2 = - - i T P c P ~ ,  
Pl  =p2=/~ , P I = / ~ = M  

(pl tP2)2=41j2,(pl+Pl)2=(pl÷P2)2=M2 iz2 (d)  

(B.I) 
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instead of the conditions (4a, b, e, g), and the ~-theory by imposing 

F2(P, -P)I = O, (a) 
p2=/a2 

a 2 Ip2 ap2 P2(p, - p )  = = i p ~ ,  (b) 

F4(Pl, P2, P3, P 4 )  I = -io~p~ (c) p2=/z2 - , 
2 l . , 2 4  2 

(P 1 +P 2) =(P 2 +P 3)2=(P 1 ~P 3) =~/~ 

(B.2) 

instead of the conditions (7a-c). In terms of Zimmermann's subtraction language, 
these on-shell normalization conditions can be achieved by using the Taylor expan- 
sion operator around the mass-shell. For instance, in the @theory the Taylor opera- 

(o) in the Forest formula (14) is now given by tor t~ 

t(°)I'~(q, - q ) =  I'~(q, - q )  l + (q2 - - 1 ~ 2 ) I +  ['~(q, - q ) l  l , (a) 
2 2 2q2 2 q =l~ = 

t ( O ) ~  (q l ,  q2,  q3,  q4 )  = P ~ ( q l  . . . . .  q4 )  I , (b)  q2=#2 
. 2 4  2 (q l+q3)  2=(q2+q3)2=(ql  +q3) ='~/z 

t(°)['~(ql ..... qk) = O, (k > 4).  (c) 

(B.3) 

To prove the factorization, we may again introduce the oversubtracted function 
~In(Pl ..... Pn) by the forest formula (20). With the imposition of the normalization 
conditions (B.1) and (B.2), we may specify the oversubtraction operator T~ (see eq. 
(21)) by using the Taylor operator t (2) defined by 

I 
2 2 Jq2=2 q =# 

+ l ( q 2 ,  #2)2[- H ~ ( q , - q  ] , (a) 
2 La(q2) 2 2 2 

q =~ 

t(2)H~(ql, q2, q3, q4) = H~(q 2 , s, t) ] 
2 2 

qi=~ 
S= t=4~ 2 

4 

I 
q2= 2 

s=t=4# 2 

(B.4) 
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,. ,,] 

S =  t = 4 ~ t  2 

2 2 
q i =la 

s=t=4# 2 
(b) 

(B.4) 

- -  H u . . .  t (2)Hg(ql  . . . . .  q6) - 6 (ql, q6)lqi:  0 , (C) 

t(Z)H~(ql ..... qk) = 0 ,  (k > 6) .  (d) 

(Here, we have assumed that the four-point functions H,~ are written in terms of 
Lorentz scalars, i.e., 

H ~ ( q l ,  q2, q3, q 4 ) -  u 2 : H 4 ( q l ,  q~, q~, q4 2, s, t) (B.5) 

with 

4 

s = ( q l  +qT) 2 , t =(q2 +q3)  a , u = ( q l  +q3)  2 = ~ q 2  - - s -  t.) 
i: 1 

With these definitions, the proof of the factorization in sect. 2 goes through entirely 
with the following effective local vertices 

62 = --6p012 . ;d4x N[q53(~2 +/.t2) q~(x)] , (B.6) 

3 
C)3 :P6@. $d4x N[4)6(x)] 

Tree vertices for 01 , 02,  03 are shown in fig. 16. Vertex functions with these effec- 

,x. 

,*, ,5 ,  , , ,, r. p , . . . ' ~  ~ . . . . p ,  

Fig. 16. Tree vertices for 61, G2, b3- 
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tive vertices once inserted should be minimally renormalized and satisfy the normali- 
zation conditions analogous to eqs. (1 la-~), this time specified on the mass-shell. 

To derive the Callan-Symanzik equations, we may introduce X 2 and K 2 as discussed 
in sect. 3 and choose all the renormalization counterterms such that they are indepen- 
dent of k 2 and K 2. Here, the normalization conditions (41a-d) for the q~' theory should 
be replaced by 

~ (P, -P ;  X 2) I = 0 ,  (a) 
p2=#2,h2= 0 

ape F2(p, -p ;  X 2) [ = ip¢, (b) 
p2%u2,k2= 0 

OX 2 F2(P, - p ,  X 2) [ = -ip¢ , 
2 2 k2 P =# , =0 

P'4tpl,p2,p3, p4;X2)I ] 
k2=O,p2=# 2 

S=t=u=4# 2 

= -iap~ , 

(c) 

(d) 

and the normalization conditions (57a-k) by similar replacements evaluated on the 
mass-shell. Then, the Callan-Symanzik equation of the form (51) or (65) follows 
in a straightforward manner if one varies/~2 for fixed ff~, PB~, aB, A2 (in the ¢' 
theory) or for fixed m~, m 2, M'~, PB¢, PB~, uB, ~B, 3'B, A 2 (in the (O@)' theory). 

For the limiting case of I~, X, K, P l . . . .  Pn <<  M in the (@qQ' theory, factoriza- 
tion of the form (79) will be still valid if we replace the effective vertices O~(i = 
1 .... 6) with 

(B.7) 

6, = lp¢ fd4x N [¢2(x)1 , 

0'2 = lp f d 4 x  N [¢(a 2 +/a 2) ¢(x)] -~  ¢ 

2 

03~' = ~.P¢ f d4x N[~b4(x) ]  , (B.8) 

6~, = ½pC j d4x N[O(~) z + p.2)2q~(x)] , 

Os =~, _~pca z f d 4 x  N[¢3(a= + U=)0(x)] 

3 
O'L = PC / 'd4xU[~b 6 (x)]  . 

o 6! d 
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Again, vertex functions with these vertices once inserted are assumed to be minimally 
subtracted (i.e., use the operator t'.r(°) , defined by the Taylor series expansion in X2, r2 
and momentum variables around the mass-shell). 

Now, we comment  on the derivation of the Callan-Symanzik equations satisfied by 
P n ( O i  , P l  . . . . .  Pn; ~k2) • For 01 ,  the situation is identical to that in the main text,  with 
~ t u  ~ ~ 2  ~ ~ 2 . . . .  2 ~  2 I~ n ( 0 1 ' I , P  .... Pn ; mB,__~P , 0t B, A ) being lnvarlant under the variation/a D/DIJ . 
However, starting from ( ~ ,  the situation is a bit different due to explicit/l  2 depen- 
dence of  the 0~ vertex. This can be resolved as follows. Let us denote the function 

• ~PU ~tU obtained from the unsubtracted function F n ( 0  2 , P 1 . . . . .  Pn; ~2) by replacing 
/~z + ~Z(appearing in propagators), p~, a with r~,/~B~, aB, as I'n ( 0 2 ,  P l  . . . . .  Pn ; 
/ "t2, rn2,/~B0, ~B, A2). (Here, the explicit/~z dependence in F n ( 0 2 ,  P l  . . . . .  Pn; I a2, 

~,, ~ ,  ~., Ab come~ from the 0'~ vertex.) Then, 
t U ~t  

r n (O: ,p~  ..... Pn;m~, Fn~, ~,~B,A z) 

= F ~  (6'2,  P l ,  .... P n ; I  a2, fitS3,/°1~, aB, A2) 

+ 0 ~  ,u2 +X22D ~,u -, .~2-.~ - P n ( O 1 ,  P l  . . . . .  P n ,  mB, PBO, ~'B, A2) ( B . 9 )  

is invariant under the variation ia2D/Dia 2 . Now, the desired equation can be obtained 
if one re-expresses the right-hand side of  eq. (B.9) in terms of  renormalized vertex 
functions and then takes the derivative ia21)/Dla 2 on the both sides. After similar con- 

~ t  ~ t  
siderations for 0 4 ,  O 5, one can show that the Callan-Symanzik equation (99) is still 
correct if one writes 

"711 

/A2t21 -I- ~k2721 

a t tt 
/a t41 +u2X27~I + X4741 

/247~'1 +p.2X2Tgl + }k4761 

0 0 0 0 0 

~ 7~3 o o o 

T32 733 o 0 0 

] ' / 2142  "1- ~k2/43 /A=t'~3 + ~2743  744  74 5 746 

2 ~ t  p27~2 + ~k2T53 /,/ t 53 + ~kZTs3 "ts4 755 756 

b/2"t6t2 -I- ~k2"t62 /-/2t'63 + ~k2763 764 t '6s 766 

(B.IO) 
~ t  ~Pt 

where ?ij, tip t i j  are finite functions of  a only. The rest of  the arguments in the 
main text require no major modifications. 
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