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The stability of the solitary kinetic Alfvén wave is investigated. In the one-dimensional fully nonlinear case the wave is

shown to be stable against perturbations in the amplitudes.

Solitary Alfvén waves have been employed in the
description of large amplitude magnetic structures in
space- and astro-physics. In an isotropic plasma it is
well known that such localized waves are subject to a
tendency of collapse in two or more dimensions [1].
However, the presence of a large ambient magnetic
field, and hence anisotropy, may serve to stabilize the
wave against collapsing. Therefore, it is of interest to
study solitary waves in a strongly magnetized plasma.

Hasegawa and Mima have recently discussed the
structure of localized finite amplitude Alfvén waves
based on kinetic theory [2]. The ratio of the thermal
to magnetic pressure, §, is assumed small, i.e.

mefm; <P <1 .

This low 8 approximation allows us to use two scalar
potentials to describe the electric fields, as it is equiv-
alent to a shear wave approximation. The component
in the direction of the ambient magnetic field is de-
scribed by the potential ¥, and the perpendicular com-
ponent by the potential ¢. The longitudinal current is
primarily due to electrons. For time scales of the order
of the inverse ion Larmor frequency the electrons are
able to thermalize along the ambient magnetic field
B under the influence of ¥, i.e.

ne =ng exp(ey/T,) .
On the other hand the ions provide a polarization drift

transverse to By,
Vi = (—e/m;Q3)(22¢/0x 7).

Scaling the transverse coordinate to pg = (To/m;)!/2/
§;, the longitudinal coordinate to c/wpi, and the po-
tentials to T,/e, a “one-dimensional” nonlinear wave
equation for the density is derived [2],

K2K2n(d/dn)[A~1 (d7A/dn)]
+(K2-A)(1-m)=0, m

where n =K, £+ K,§ —7,£=x/p, § = zwpi/c, T=Q4t,
7 = nfn;. The nonlinear wave equation (1) may be
written in the form

d2ajdn? + V'(@)=0, )]

where

V'(7) = dV(R)/dr = (~2/KEKD{3(1 — A) (K} + 37)
+(1+K2)AlnA}.

Eq. (2) is in the form of the nonlinear Klein—Gordon
equation:

@232 -V a=V'(") 3)
and it may be investigated by means of a method de-

scribed by Whitham [3]. First, eq. (2) is integrated
once to yield
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3(dA/dm)? + V(7 K2) =0, “)

where

V(7i,K2) = (-a%/K2K2){(1 — A)(K2 + n)
+(1+K2)AlnAa}. (5)

The formal solution to eq. (4) is given by
n=2"12 [di{4 - V(@}-1/2, (6)

where a constant A is included for completeness. We
have 1 <7 <7, and 4 — V(n) > 0. The lagrangian
for the system is given by

L =3(dn/dn)? — V(A), (7

where V(#7) is given by eq. (5). We may now perform
the following hamiltonian transformation

1= L/, = 7, , (8)
where 7, = 87/0n. The hamiltonian is given by
H=7A,01-L=3112+V(@). ©)

The integral H = 4 is now solved for I1. From eq. (9)
we obtain

M=21/2{4 — v(@}/2 . (10)
The averaged lagrangian for a cycle is given by
L=0m-1¢ ndi-4

=2y 1§ {4 — V2 di-a. (11)
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Eq. (11) is of the form £=F(A4) — A, with

F(4)=(2m)1 §21/2{4 — v(@}V/2 di. (12)
The characteristic equation is
dx/dt=(1 t UVR)(U vh), (13)

where & = —FF"|(F")? and U = w/k. If h <0, the
characteristic velocity is complex. Since small ampli-
tude wave perturbations vary as F =~ exp {ia(x — U?)},
a complex characteristic velocity implies an exponential
growth in time. As both F and (F")2 are positive, so

we need F" < 0 for stability. Now,

F"=—(8my~1 212 (4 + (R/K2K2)[(1 — A)K2 + 7)
+(1+K2)#EInm)]}32 di . (14)

For 1 <7 < fip,,, the logarithmic term is positive and
dominant. Then for 4 > 0 the integral in eq. (14) is
positive and so F"(4) is negative, satisfying a necessary
condition for stability. Thus in the one-dimensional
fully nonlinear case the solitary kinetic Alfvén wave is
stable against perturbations in the amplitude.
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