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The validity and applicability to inelastic neutron scattering of a singular f-sum rule for superfluid helium, proposed by
Griffin to explain the pg dependence in S (k, w) as observed by Woods and Svensson, are. examined in the light of similar sum
rules rigorously derived for anharmonic crystals and Bose liquids. It is concluded that the singular f-sum rules are only of

microscopic interest.

Considerable interest has been generated by the re-
cent measurements of Woods and Svensson [1] of the
inelastic neutron scattering cross section of superfluid
4He for temperatures T from 1.0 K to 4.2 K. They
found that the dynamic structure function S, (k, w)
as a function of T, wavevector k, and frequency w/2m,
is well described by a two-component form:

Sk, w) = (pg/P)Ss(k, w) + (pp/P)Sp(k, ), (1)

where the superfluid component S;(%, w), has a one-
phonon peak characteristic of superfluid helium near
T =0 and the normal component S, (, w) has a shape
characteristic of nonsuperfluid helium. Here p(T') and
pn(T)= p — p(T) are, respectively, the usual super-
fluid and normal-fluid mass densities.

In an attempt to place this surprising result (1) onto

a firm theoretical framework, Griffin [2] considered the

singular f-sum rule, which is a mathematical construct
that gives the exact contribution to the first <o moment
of

S(k, w)= —(1/mIm F(k, ), ()

where the density-density response F(k, w) is the

total contribution from all singular diagrams, i.e., those
with an isolated one-particle line. Specifically, Griffin
(see eq. (12) in ref. [2]) proposed that the singular
f-sum rule for superfluid helium at 7> 0 has the form

1 permanent address.
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Jaw w8 (@) = (o(TYpR2/2m , ®

in the limit of k — 0. Eq. (3) was first written down
intuitively by Pines [3] and should be contrasted with
the well known f-sum rule

[dw wSk, w)=k2/2m 4)

which is valid for all k. Furthermore, Griffin identified
the singular S(k, w)in eq. (3) with the experimental
S (k, w)in eq. (1).

Because the proposed singular f-sum rule (3) has
important consequences for the interpretation of neu-
tron scattering experiments, we examine in this note
the problem of the identification of S(k, w) with a
part of the experimental S(k, w), i.e., the applicability
to inelastic neutron scattering of the left-hand side of
eq. (3), as well as the explicit form of the singular f-
sum rule for superfluid helium, i.e., the validity of the
right-hand side of eq. (3). This is done by appeal to
singular f-sum rules rigorously derived for anharmonic
crystals and for Bose liquids.

Let us begin with the question of the identification
of S(k, w) with a part of the experimental S(k, w), as
it appears for solid helium. The singular f-sum rule for
anharmonic crystals [4] was derived by standard field-
theoretic methods and found to have the form for all
k:

[dw wS(k, w) = e=2W® k2j2m 5)
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where W(k) is the Debye—Waller exponent. It is tempt-
ing to suppose [5] that, by separating the experimental
S(k, w) into a one-phonon peak and a smooth back-
ground and taking the ratio of the respective first mo-
ments, we can from eqs. (4) and (5) determine the
Debye—Waller factor. Such an analysis, however, when
performed on neutron scattering data for bec 4He [6]
led to serious difficulties. On the basis of detailed cal-
culations, Horner [7] has concluded that the experi-
mental one-phongn contribution can not be identified
with the singular S(k, w) in eq. (5).

This startling conclusion can be understood as fol-
lows. The general singular diagram that contributes to
F(k, w) has the structure of two complicated vertices
with an isolated one-phonon line connecting them.
From eq. (2) the imaginary part of F(k w) picks up,
in addition to the resonant peak from the one-phonon
line, significant nonresonant wings from the vertices.
Although S (k, w) can be shown to be positive definite,
there are no grounds to suppose that S(k, w) is every-
where positive. In fact, due to interference processes,
S, w) becomes negative within the nonresonant
wings. Since S(k, w) need not be positive and does be-
come negative, there is no a priori operational rule for
separating the singular S(k, w) from the wings of the
experimental Sk, w).

This discussion for solid helium can be straightfor-
wardly transferred (apart from polarization vectors) to
superfluid helium, since the elementary excitation in
both cases is given by the one-phonon state [8]. We
conclude that in general the singular S(k, w) can not
be identified with the one-phonon peak of the experi-
mental S(k, w) because of significant and as yet inex-
tricable contributions from the wings.

The above conclusion may have gone too far, since
with S(k, w) not being identified with the experimen-
tal Sy(k, w), the observed coefficient p,/p in eq. (1) is
clearly inconsistent with the proposed singular f-sum
rule (3). The obvious next step is to consider the va-
lidity of the right-hand side of eq. (3).

A basic assumption made by Griffin [2] to justify
the proposed sum rule (3) is that the vertex and self-
energy functions are nonsingular functions of k and
w. This assumption can be tested by calculations for
the Bose gas. If the interaction between the one-
phonon states is negligible, the assumption is obviously
true. If the interaction is not negligible, then the simp-
plest nontrivial structure of the vertices and self-ener-
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gies is that of a one-loop diagram [9,10]. The resulting
functions are no longer nonsingular but have branch
cuts. Consequences of the one-loop structure and the
concomitant branch cuts include (inextricable) wings
in S(k, w)for a Bose gas [11]. Hence serious doubts
are cast on eq. (3).

To replace eq. (3), we need a rigorous derivation,
analogous to that in ref. [4] for anharmonic crystals,
of the singular f-sum rule for Bose liquids. Such a deri-
vation was accomplished [10] by standard field-theo-
retic methods. (Since this sum rule was incidental to
ref. [10], it was relegated with no comments to appen-
dix D and can easily escape notice.) Although the
derivation was for a Bose liquid at 7' = 0, extension to
T > 0 is straightforward and gives the form for all %:

f dw wg(k, w)
= (ng/n) [k2/2m + MEF &) - MEF (k) —u] , (6)

where r is the condensate number density, n = p/m,
w1 is the chemical potential, and M;; HF (k)is the Hartree—
Fock matrix self-energy.

Comparing egs. (3) with (6), we see that the signi-
ficant change, besides the lifting of the k¥ ~ O limit,
is the replacement of p_ with 7. This replacement
implies that the singular f-sum rule is a microscopic
sum rule (one that measures the microscopic density
ng rather than the macroscopic density p,), and'it
underscores the profound difference in a Bose liquid
between ng and p,. Comparing egs. (5) with (6),
we see that the Debye—Waller factor e—2¥ and the
condensate density n play analogous roles. Both
quantities furnish the microscopic link between densi-
ty fluctuations and the (displacement or field) ampli-
tude fluctuations.

Until the microscopic effects on S(k, w) are under-
stood to the extent that the singular S (k, w)can be
identified, the singular f-sum rules (5) and (6) are
only of microscopic interest and remain, regrettably,
not very useful for the interpretation of the surprising
and still unexplained result (1). A study of eq. (1) not
based on the singular f-sum rule will be published else-
where {12].
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