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INTRODUCTION 

The existence of solutions of the inhomogeneous Cauchy-Riemann equations 
as a powerful tool in the study of analytic functions of several complex variables 
is well demonstrated in t h e  monograph [22] of L. H6rmander. The main 
objective of this expository paper is to show how this technique can be used tO 
Unify and simplify the study of interpolation problems for entire functions of one 
complex variable. 

The problems we consider are typified by the following model. Let {ze} be a 
sequence of complex numbers diverging to c~, {me} a sequence of positive 
integers, and {akd } a doubly-indexed sequence of complex numbers satisfying 
the growth condition 

I a~,j ] ~ A exp(B 1 ze I), 0 ~<j < talc, k = 1, 2,... (1) 

for some constants A, B > 0. Under what conditions does there exist an entire 
function A such that 

(i) AIJ ) ( z e ) / j !  = ak,~; and 

(ii) a is of exponential type, i.e., for some constants A', B' > 0, we have 

I A(z)] ~ A' exp(B' / z I) ? 

Various intersting problems are obtained by imposing conditions on the 
ze,  me, aT~,j, or by changing the growth condition (1). We give here both new 
proofs of some old results, (due primarily to A. F. Leont'ev and others [27;9, 
l 0, 11 ] and some sharper, more general results on various interpolation problems, 
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For example, concerning the model problem just stated Theorem 4 implies the 
following result. 

THEOREM. Let f be an entire function of exponential type whose zero set is 
precisely the sequence z e with multiplicities m~. The necessary and sufficient 
condition that the problem has a solution for every sequence ak.a satisfying (1) is that 

If(~D(ze)l 
>~ • exp(- -C [ ze I), k = 1, 2,... 

me[ 

for some constants e, C > O. 

Theorem 4 also applies to growth conditions which are not functions of [ z 1. 
The  application of the existence of solutions of the Cauchy-Riemann equa- 

tions to interpolation problems is to prove a "semi-local" interpolation theorem. 
For p(z) a nonnegative, continuous subharmonic function on the complex plane, 
let A~ denote the algebra of all entire functions f on C such that [ f(z)[ ~< 
_/1 exp(Bp(z)), z E C, for some constants A, B > 0 (which depend on f ) .  If  
f i  ..... f,~ EA~ and e, C > 0 let ]fi [2 ... + ]f~ 12 and 

S(f;  ,, C) = {z ~ C: lf(z)l < e exp(--Cp(z))}. (2) 

Intuitively, S(f;  e, C) is a "small neighborhood" of the zeros [ze]  of f - =  
( f l  ,...,f,~). A standard argument (see Section 1) then will show the following 
result is true. 

SEMI-LOCAL INTERPOLATION THEOREM. Let A(z) be analytic on S(f;  e, C) and 
satisfy IX(z)] ~ A exp(Bp(z)) for z E S(f;  e, C). Then (provided p satisfies the 
conditions 4i and 4ii of Section 1), there exists an entire function )t E A~ , constants 
at, Ci , A' ,  B'  > 0 and functions ~i ,-.., ~,~ analytic on S( f ;  el ,  C1) such that 
for all z ~ S(f;  El, Ci), 

and 

a(z) = ~(z) + ~ o,,(z)f,(z) (3) 
i = l  

I ~(z)l ~< Ai exp(Blp(z)). 

Thus,  if the f i  have common zeros {Ze} with multiplicites me, then from (3) 

~(J)(z~) = ~lJ)(zk) for all 0 ~< j < m~, k = 1, 2,. . . .  

Consequently, the study of interpolation problems is reduced to finding a solu- 
tion ~ "semi-locally"; i.e., on the set S(f;  e, C). This approach is the one variable 
version of the method used by Ehrenpreis [15] and Palamadov [32] in their  
studies of interpolation on algebraic varieties in C% 
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The  study of the semi-local interpolation problem leads immediately to 
several interesting questions. For example: 

(1) Given {zk, m~}, can a "good" choice be found for f l  .... ,fro e A~ 
with common zeros at the zk of multiplicity m e ? 

(2) How big are the sets S( f ;  ~, C) ? 

(3) How does the structure of S( f ;  ~, C) affect the al~,j for which the inter- 
polation problem has a solution ? 

Our treatment is far from complete, mostly because with general growth 
conditions complete solutions to these problems are not known. 

We have tried to make the paper as self-contained as possible. Hence, we have 
included a proof of the basic existence theorem for the ~-operator in one variable, 
and "new"  proofs of Weierstrass'  theorem on the existence of analytic functions 
with prescribed zeros and the related theorem on interpolation by entire func- 
tions ("new" in that we have not seen them in the literature, though they are 
no doubt well-known to workers in the area). 

Interpolation problems have been studied for a long time due to their applica- 
tions to number  theory, harmonic analysis, approximation theory, etc. We give 
here (Section 4 below) a representative application, a derivation of a major result 
in abelian harmonic analysis, the Fourier representation of mean-periodic 
functions of one variable obtained by L. Schwartz in [35]. In  this sense we fulfill 
a second aim of this paper, which is to present a background to our recent work 
on interpolation in several variables [6], where we obtain a generalization of 
Schwartz'  theorem to mean-periodic functions of n variables. 

1. PRELIMINARIES 

We start by recalling some standard notation. I f  £2 denotes an open subset of 
the complex plane C, Ck(f2) (respectively Cok(D)) denotes the space of complex- 
valued functions in ~2 with continuous partial derivatives of order ~< k (respec- 
tively, those functions in Ck(f2) with compact support  in X2), 1 ~< k ~ oo. 
(We will often omit ~2 if X2 = C.) The  coordinates in ~2 are denoted z = x + iy 
and 2 = x --  iy. I f  u e C1(£2), we can define two differential operators 

gu l(Ou lOu~, eu l (~u 1~@) 
~ = ~ ~ i ' 

so that its differential can be written du ~ (~u/Oz)clz + (3u[32)d2.  The  
holomorphie functions in D, are precisely those u ~ C1(~2) satisfying the homo- 
geneous Cauchy-Riemann equation: Ou/a2 = 0. I t  is in fact enough for u to be a 
distribution in X2 and satisfy that equation in the sense of the space of distribu- 
tions ~'(£2) (see [36J for notation and definitions). The  space of holomorphic 
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fianctions in £2 is denoted _//(0). Our main interest resides on the spaces of 
holomorphic functions with growth conditions, Av(O) defined below. We will 
mainly restrict ourselves to the case O = C. 

DEFINITION. For p(z) a subharmonic function on Y2, p ~ - -0% in every 
component  of 0-2, let A~(~2) be the space of all functions f e  A(~2) such that for 
some constants A, B, which depend on f,  satisfy 

f(z)l ~< A exp(Bp(~)) z e o .  

Similarly, let W~(O) be the space of all measurable functions g in O such that 
fo" some constant c = c(g) we have 

[ Ig(~)l = exp(-cp(z)) re(z) < oo, 

where dA denotes the Lebesgue measure. Note that given g eL[oe(g2), there 
exists p such that g e W~(/2). T o  see this take p(z) : ~b( ' log  d(z)), where d(z) 
is the distance from a to the complement  of ~2 (or I z]  if ~2 = C) and ~b is a 
convex function that increases very rapidly (see [22, p. 94]). 

We are actually interested in the space J ~  = A~(C) where p satisfies the 
following two extra conditions: 

(4i) p(z) >~ 0 and log(1 + ] z [~) : O(p(z)); 
(4ii) there exist constants C, D > 0 such that I ~ - - z ] ~  1 implies 

p(~) ~ Cp(z) + D. 

I t  is not the conditions on p which are important,  but rather the following 
consequences. 

(a) All polynomials belong to A~.  

(b) A~ is closed under differentiation; i.e. fE A v imp l i e s f '  e A v .  

(c) w~(c)  n A(C) = A~(C). 

T h e  conditions also imply that p(z) = O(exp(A ] z I)) for some A > 0, and 
the stronger condition 

(b') I f f e  A~,  then there are constants A, B > 0 such that 

[ ~ ~ A exp(Bp(z)). 
~=0  

The conditions (4i) and (4ii) can be weakened considerably and most of the 
theorems presented here will still work. Furthermore,  we can essentially remove 
them by replacing the space A~ by a space A~ = direct limit of spaces A~,  
p E 6 a, under some suitable conditions on ~ (see [21, 24]). 
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EXAMPLE 1. p(z)  = i Z 1" Then  A~ is the space of all entire functions of 
exponential type, 

I f(z)[ ~ A e x p ( B [ z l ) ,  Y z ~ C  

for some A, B > 0. Th is  example is the space in which interpolation problems 
were originally studied by A. F. Leont 'ev  [27, 28], and where the most complete 
results are known. 

EXAMPLE 2. p(z)  = I I m  z I + log(1 + I z la), (Ira z = imaginary part  of z). 
In  this case A ,  is the space i f '  of Fourier transforms of distributions with compact 
support  in the real line (see [15, 36]), i.e. all entire functions such that for some 
constants A, B, C > 0 

If(z)] <~ A(1 -}- ]z  1) B exp(C ] I m  z 1). 

Even for this example a complete solution to the interpolation problems is not 
known. 

EXAMPLE 3. p(z)  = log(1 + ] Z 12). Then  A~ is the space of all polynomials. 

EXAMPLE 4. p(z)  = p(x + iv) = l x ] ~ + ] y F B, 6, fl ~ l. 

EXAMPLE 5. p(z)  = I I m  z[  + [z  I ~, 0 < q < 1. 

EXAMPLE 6. p(z)  = l Z ] °, 0 < p < OO. Then  A~ is the space of all entire 
functions of order ~< p and finite type, i.e. for some A, B > O, 

If(z)l < A exp(B I z I°). 

The  space of all functions of order < p is not an A~ space, but rather one of the 
more general A~ mentioned above. In  the same way, there are many spaces 
considered in analysis where the growth conditions in (2) are not given by sub- 
harmonic functions, but rather by an "arbi trary" function ~b(z). By introducing 
the function p(z)  = largest subharmonic minorant  of ¢, which will be ~ - -  oo 
if the space is non-trivial, one can reduce problems to the spaces A ~ .  

The  space A~ carries a natural topology as an inductive limit of Banach spaces, 
and will be considered endowed with it without further explanation (see [39]). 

In  what follows the inhomogeneous Cauchy-Riemann equation 

~U 
= ~ ( 5 )  

will play a central role. The  main point is that this equation is always solvable 
and a priori estimates are available for the solution. We follow the treatment in 
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[22]. T h e  proof is simpler due to the fact that we are only considering functions 
of one complex variable so the boundary of .Q introduces no difficulty. First, let 
us observe that if v ~ Ce(J2), k ~ 1, then a distribution solution u to (5) is at 
least of class Cz~+L In  fact, we have 

8~u 8v 

and Weyl 's  lemma does the rest [36]. Furthermore,  it is very easy to solve (5) 
explicitly if v ~ CoL Namely, a solution u is given by 

~ 1 ff ~ d ~ ^  d~ (6) u(~) : !~_ _ d~ (0  = 2~7 

where the domain of integration is the whole plane. T h e  proof of this fact is an 
immediate consequence of the following variant of Cauchy's integral formula. 
(Just take co a sufficiently big disk in the next 1emma.) 

LEMMA 1 (Pompeiu's  formula, see [22, p. 3]). Let ~o be a bounded open set in C, 
with boundary 8oJ the union of a finite number of C 1 Jordan Curves. I f  u ~ Cl(d~) 
then for all ~ ~ oJ 

1 lf~ u(z) ( (  8U(z) d z A d ~ -  U(~) = ~  ~--~-~d~+ ~ ~--~ , (7) 

Proof. I t  is enough to apply Green's  theorem on the set oJ\A(~; E), ~ > 0 
and let E --~ 0. Here d(~; e) = (z ~ C: [ z - -  ~ ] < ~}- We will keep this notation 
throughout the paper. | 

T h e  reason we have introduced the spaces W~(~2) is to be able to solve equation 
(5) with an arbitrary smooth or even L~o e function on the right hand side. As 
pointed out above, if v EL~oe(~2) then we can always find p such that v ~ W~(~2). 
We first prove the following fundamental  a priori estimate (see [22, Chap. 4] for 
the case of several variables). 

LEMMA 2. Let ~ be an open subset of C, p subharmonic in ~2, and f ~ C02(~2). 
Then 

1 (1 + I z lz) z e~ dA. (8) f I f l 2 e ~ d A < ~ f n l  ~f 2 

Proof. Let us first assume p ~ Ca(O). Then  the following identity can be 
verified by direct computation. 

~f +f~  
8z 85 

8 [ (-Sf 8p)] 8 (e,fSJ~)+ e" 8f8 i (9) 
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Since f has compact support, by integrating (9) we obtain 

= I f l  ~ e e'dA 

2 
fo ~"P eV d~. If[2 ~ z ~  

(10) 

As p is subharmonic and C 2, we have that pl(z ) - -p (z )  + 2 log(1 + ] z ]2) is also 
subharmonic and C 2 and, moreover ~2pl/Oz a~ >/2/(1 + l z 12) 2. Replacingp by 
p~ in (10) and using the last inequality on the Laplacian of pl  we get, f o r f ~  C02(12) 
and p at least C 2, 

• f  2 
( '  (11) 

It is easy to remove the assumption tha tp  ~ C2(I2) (see [22], p. 94). Let  ~2~ denote 
the set of points in ~ whose distance to C\g2 is at least ~ ( i fO = C, then ~2, = C 
also). For a g ivenf  ~ Co2(g2), suppf_C Of for all ~ sufficiently small. Let  X be a C ~° 
function with support in {I z I ~< 1}, X ~ O, X(Z) ~- X(I z I) and f X  dA --~ 1. As 
usual define X,(~) = E-zX(~ "-~) and pc(z) ~- (p * X,)(z) ~ f p(z -- ~) X~(~) dA(~). 
Then  p,  ~ C~(~2,), Pc is subharmonic and p,(z) ~ p(z) as ¢ ~ 0 + .  (See e.g. 
[22, p. 19].) Hence (l 1) holds forp ,  for all ~ small. By the monotone convergence 
theorem, it also holds for p. 

We are ready now to state and prove H6rmander's theorem [22, Th.  4.4.2]. 

THEOREM 1. Let $2 be an open subset of C, p subharmonic in ~2 and v a function 
in W~(g2), such that 

f c [  v ]z exp(--p) dA = M < +oo .  

Then there exists a function u satisfying 

fs I u 12 exp(--p) 
(1 T i zl2) '~dA <~ M/2 

and, 

~U 
- - ~ 7 . 7  

in the sense of distributions. (Both functions are necessarily in L~oc(O ).) I f  v ~ C°:(~2) 
so does u. 

Proof. The  proof is a simple application of functional analysis and the basic a 
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priori estimate (8). F o r j  = 0, 1, let Hj  be the Hilbert  space of all funct ionsf  on f2 
such that 

Ilfl[~ : =  [~ Ifl ~ exp(pj)dJt < oo, 1 

whereps(z) : = p ( z )  -+- 2j log(1 + ] z ]2). T h e  dual space Hj  to Hj can be identi- 
fied to the space of ai1 locally square integrable functions g such that 

with the pairing 

!1[ g II1~ := ~ I g 12 exp(-Ps) d?, < co 

{ f , g ) j : =  f fgdA, f ~ H j ,  g ~ H ~ .  

Since p is locally bounded above, it follows easily that Co~(g~) is dense in H j .  
Consider now the operator D : H o --~ H 1 with domain Co~(Q), defined by 

D f - -  ~f ~ "  

Since the domain of Dis dense in Ho, its adjointD* is well definedwith domain in 
H 1 and range in H' o . Let  us compute D* explicitly. I f u  ~ H' 1 and D*u = v ~ Ho, 
then 

( f ,  vS0 = ( f ,  D*u)o = (Df, @1, Vf ~ Co°:(g2). 

This just means 

;~ fv  : - -  f~ ~--~ Vf ~ C0°(X2); 

that is, ~ u / ~  = v in the sense of distributions. What  we have to prove, therefore, 
is that D* is onto. 

T o  see this, let v ~ H o and consider the linear functional L defined on the 
range of D in H 1 by 

L(Df)  = ( f ,  v)o , f e Co:°((2). 

L(Df)  is well defined since D is injective on Co~(~). By applying the Schwartz 
inequality and the a-priori estimate (8) we obtain 

I L(DS)I' (L IS I ' " ) (L  l"  I' e- ' )  

1 
= ~ III v II1~ II Dfll~. 

1 Here we are fo l lowing the notat ion, A : =  B, means that A is being defined by the 
right hand side of this expression. 
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Hence,  by the Hahn-Banach theorem, L may be extended to a continuous linear 
functional on all of H 1 with norm ~ Ill v I[]0/21/a. Thus,  there exists u e H~ such 
that 

and 
<f, v>o = L(DI)  : <Dr, U>l Vie  C0*(f)), 

which provides the desired solution u. | 

COROLLARY 1. I f  V ~L~oe(f) ), then there is another function u cL~oe(f) ) such 
that 8u/82 = v. Furthermore, i f  v E C°°(f)) then u E Coo(f)). 

Proof. I t  was pointed out after the definition of W~(f)) that p can always be 
chosen so that v ~ W~(f)). Thus,  the corollary follows from the theorem. | 

We can now give very short proofs of Weierstrass'  theorem on the existence of 
analytic functions with given zeroes and a corresponding interpolation result 
(see [33, p. 298]). I f f E  A( f ) ) , f  z~ 0, then its multiplicity variety V ( f )  is the set of 
pairs (z~ , ink), zk ~ f), mk integer ~ 1 where zk runs over all the zeroes o f f  in 
and m~ denotes the multiplicity of that zero. (By abuse of language, we will 
also write z~ ~ V(f).) Clearly, the z~ have no accumulation point in .Q, the theorem 
of Weierstrass is the converse to this statement. 

THEOREM 2. Given a set V - ~  {(zk,  m~): z k ~ f ) ,  m~/~ 1}, where the z~ are 
distinct and have no accumulation point in f), then there is a function f e A(f))  
with v ( f )  = v .  

Proof. T h e  proof follows what in several variables is called Oka's principle 
[22, p. 138]. Namely, first construct such a function -within the class C°°(f)) and 
then modify it to get a function in d(f ) ) .  Assume that we have a function 

~ C°(f)) and pairwise disjoint open neighborhoods/1 k C f) such that zk ~ Ak, 
q~(z) ~ 0 only if z --~ z~ for some k, and for some nonvanishing hk ~ C~°(A~), 

q~(z) = (z - -  z~) 'n~ hk(z ) in A~. (12) 

The  desired f u n c t i o n f  will be of the form f : ~  q)e~, ¢ ~ Co(f)). We only have 
to look for ¢ such that f e  A(f)), because then it is clear from (12) and the fact 
that ~v vanishes only at the z~ that V( f ) .  Now, 

~f a~ e¢ e~ = 0 

is the condition of analyticity. Hence, ~b must satisfy, 

b2 ~o 85 
(13) 
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The  right hand side is in C~(~2) since (12) implies that Oq~/~£" = ( z - -  z~)~R(~hR/~) 
in A e.  By Corollary 1, a C ~ solution to (13) does in fact exist, and this 
concludes the proof of Theorem 2 modulo the construction of the function ~, 
which we carry out below by a procedure that can be simplified somewhat if 
/2 ~ C or i f /2  is bounded. We can clearly assume that 0 ~/-2 and z~ :~= 0 for 
every k. Let  us call ~*  the open set in the Riemann sphere obtained f rom/2  by 
the inversion z--~ w: ~ 1/z. I f  b(2* denotes the boundary of ~2", then it is 
located in a bounded region of the finite plane C, since now ~ ~ ~*.  We can 
order the points we,  w e ~ 1/ze,  so that dist(we, b/2*) ~ dist(w~+ 1 , b~2*), and 

/ t choose w e ~ M2* such that [ w e - -  w e ] ~ dist(we, b~2*). Let  U~ be the open 
t t 

disk with center w e and radius re ~- 2 ] we - -  we I. Then  U k contains the line 
! r 

segment [wk, we] joining w~ to w e . Further, the open sets U e ~ £2* form a 
locally finite family in ~*  since re -+  0 and w~ ¢ Y2*. Choose C ~ functions /~e 
with compact support in Ue, 0 ~ / z  e ~ me, and /%(w) = m e on some neigh- 
borhood of [w~, w~]. Let log[ (w--  we)/ (w--w~)]  be any branch of the 
logarithm analytic outside [w e , w~]. Then  the functions 

ge(w) ~ exp (/ze(w) log --w - -  w~), ~ (w__ - -  w~7 )udw) 
W - -  W e W - -  W t ~  

are single valued, C ~ functions on the Riemann sphere except at w~, analytic 
on a neighborhood of w e , ge ~ 1 outside of Ue, and gk ~ 0 only at w = w e . 
The  multiplicity of vanishing is me since t% ~ me on a neighborhood of w~. 
The  function 

g(w) = ~[ gk(w) 
k 

is in C°°(/2"), being a locally finite product of functions in C:°(Q*). It  is clear 
that q~(z) : ~  g(1/z) is in C~(D) and satisfies the required conditions. | 

THEOREM 3. Let V = {(zk, me)} be a multiplicity variety in g2. Let a~,~ be 
any sequence of complex numbers, where 0 ~ l < m k , and k runs over the same set 
of indices as the pairs in V. Then there is a function g ~ A(~)  whose lth Taylor 
coefficient at ze is precisely ak,~ . 

Proof. L e t f c A ( / 2 )  be such that V ( f )  = V. Let % > 0 be chosen so that 
the disks Ae = A(ze; %) are disjoint and let Pc(z) be the polynomials 

m / c - - 1  

Pc(z) : =  Z :ae, z(z - -  ze) k (14) 
~ = 0  " 

Further, choose Xe ~ Co~(Ae), 0 ~-~ Xe ~ 1, Xe ~ 1 on the disk A(ze; ½%), and 
define, for ~b ~ C~(~). 

g(z) := ~ Pc(z) Xe(Z) + ¢ ( z ) f ( z ) ,  (15) 
e 
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which clearly is in C ~ and has the correct Taylor  coefficients. This  time we just 
have to choose ¢ satisfying 

O~b _ ~ Pk(z) (O/O~)Xk(z)/f(z). (16) 

Since the right hand side of (16) is C ~, we have found the desired function ¢ 
again by Corollary 1. | 

Let  us just point out the obvious fact that to be able to interpolate any set of 
values (a,.z} it is necessary that V be a multiplicity variety, i.e. if V( f )  = V 
impl ies f  ~ 0, then it is easy to construct a set {a~.z} for which no interpolation is 
possible. 

Associated to a multiplicity variety V in ~2 there is a unique closed ideal in 
A(~),  

I - I (V)  - {F ~ A(~):  F vanishes at zk with multiplicity >/m~} (17) 

T w o  functions h, g E A((2) can be identified modulo I if and only if 

h(Z) g(O 
II (zk) = ~ - .  (z~) =-ak,z ,  0 ~ l < m k ,  k - :  1,2,... (18) 

Hence, Theorem 3 above states that the quotient space A(ff2)/I can be identified 
to the space of all sequences {ak.z}. We will describe them as "analytic functions 
on V", and denote that space by A(V).  The  map Pv ~ P, 

p: A(t2) ~ A(V) ,  (19) 

p(g) : {a,.l} as defined by (18), is called the restriction map. Let  us also point out 
that there is an obvious inclusion relation between multiplicity varieties in .Q. 
I f  V ~ ((zk,  m~)} and V' ~ ((z~, m~)}, we say that V_C V' if for every index k 
in V there is an index j in V' with 

z~ ~- z~ and mk ~ m~. 

Clearly, V _C V' if and only if I(V')  C I(V).  
In  the remainder of the paper it will be assumed that g2 ~ C and the question 

to study is to find the image of d ,  under the restriction map p. Theorems 2 and 3 
provide the models for this work. Along the lines of Theorem 2, the only interest- 
ing case occurs when the multiplicity variety V satisfies V C V(f )  for some 
f E  A~.  Otherwise, V is a set of uniqueness for A~ and it is not even possible to 
interpolate the sequence which is 1 at one point and 0 at the other points of V. I f  
V C V ( f )  for some f ~  A~,  then it is not possible, in general, to find f l  ~ A~ 
with V = V(fa). For example, if V ~ {1, 2, 3,..} and p(z) = I z I, then V is a 
subset of the zeros of sin ~rz E A~ but, it is a consequence of LindelSf's theorem 
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([29], p. 45) that V is not the zero Set of an entire function of exponential type. 
On the other hand, if V C V ( f ) , f e  A ~ ,  then it is easy tO findf~ E A ,  with V the 
common zeros of f and f l  by the simple device of "jiggling" the zeros of f .  
Namely, if W = {(wT~, n~)} C V ( f )  then it is possible to choose numbers e~ @ 0 
so small that 

belongs to A~.  Clearly, the common zeros of f and f l  are those of f with W 
removed. 

Thus,  it is no loss of generality to take V as the common zeros off1 .... , f ~  in A~. 
However, the trivial choicer, f1 just outlined provides no more information than 
V C V( f ) .  Consequently, the interesting problem in the direction of Theorem 2 
is: 

What conditions on g insure that g is the common zeros of a 
"good" set of functions f l  , . . . , f~ E A~ ? 

This question will not be discussed here; we will always assume that V -~ V(f) ,  
or V ~ V ( f  1 ,..-,fro) is the common zeros off~ ,...,f~ ~ A~ (with multiplicities). 
However, we remark that in ease p(z) -= p ( l z  I) classical results (going back to 
E. Borel and J. Hadamard) on the distribution of zeros of entire functions allow 
one to give a "good"  solution to the problem. A thorough discussion of these 
ideas may be found in the book of B. ]a. Levin [29]. 

Along the lines of Theorem 3, a natural extension is given by the semi-local 
interpolation theorem stated in the introduction. We only outline the proof, 
since it is essentially the same as that of Theorem 3. Of course, Theorem 3 may be 
deduced from the semMocal interpolation theorem in much the same way that 
Corollary 1 follows from Theorem 1 .  

Outline of proof of the semz-local interpolation theorem. Since ~f~/~z ~ A~ we 
have that for suitable c 1 < e, C1 > C, the distance from z e S( f ;  e 1 , C1) to the 
complement of S(f ;  E, C} is at least exp( - -Ap(z )  - -  B), where A, B are (large) 
positive constants. We can therefore choose X ~ C° such that 0 ~< X ~ 1, )¢ - -  1 
on S(f ;  el ,  C1), X has support in S(f ;  E, C) D S(f ;  el ,  C1) and I 0)¢/8~ [ 
A exp(Bp(z)). (A and B denote constants which may be different at different 
occurrences.) Then  X~ and v~ = --(f~/[ f [2)[0(X~)/0~ ], where I f  {~ = I f~ I ~ ÷ 
--' + [f~, I ~, are C °~ functions since 0(X~)/e~ vanishes on S(f ;  El, Ca). Further, 
] v,(z)l <~ A exp(Bp(z)). Therefore, by Theorem 1 there exists u~ E W~ n C ~ 
such that Ou~/~g = v, . The  function A = X ~ + ua f  ~ + "- 4- u,,f,~ e W~ and 
~A/85 = 0. Hence, A e A~.  Because vi = 0 on S(f ;  e 1 , C1), the functions a~ 
obtained by restricting ui to S(f ;  e 1 , C1) are analytic. The  estimate for ai given 
in the Theorem may be obtained in a standard way (see e.g., [22, Theorem 1.2.4]), 
by further decreasing el and increasing C 1 . | 
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2. INTERPOLATION WITH BOUNDS, I 

We first define the space of analytic functions with growth conditions o n  a 
multiplicity variety V. This  will be the candidate for the range of the restriction 
map, p(./l~), p = pv as in (19). I t  turns out there are at least two natural candidates 
for such a role. The  first one is given by the natural condition corresponding to 
one of the consequences of (4i), (4ii) in Section 1, namely (b') there. 

DEFINITION. Let  V = {(z~, rnk) } be a multiplicity variety. Then  A~(V) is 
the space of all functions {aT~,z } ~ A(V) such that for some constants A, B > 0 

] az~,z [ <~ .d exp(Bp(zk)), k = 1, 2,... (20) 
l=O 

Note that when m~ = O(exp(Bp(z~))), then (20) is equivalent to 

] ak.z I <~ A1 exp(BlP(z~)), k = 1, 2,... (21) 

I t  is clear from (b') that p(A~) _C A~,(V), but in general, the space A~,(V) is too 
large. One reason for this is that the conditions (20) on the a~,z were deduced 
from purely  local growth conditions; i.e., the growth in ] ~ - -  z~ [ ~< 1. Allowing 
more global conditions will give a sharper bound which is more appropriate in 
some cases. For r > O, let p(z; r) = max{p(z + ~): [ ~ ] ~< r}. Then,  exactly 
the same argument that proves (b') (Cauchy's formula), yields for every 
g e A~ and every r > 0 the inequality 

] g(J)(z) r; 2 ~ < A exp(Bp(z; r)) 
J=O 

Vz e C, (22) 

where A, B > 0 are constants depending only on g. 
Therefore it is natural to make the following definition. 

DEFINITION. The  space A~,.oo(V) consists of those {a~,z} e A(V) such that 
for s o m e A ,  B > 0 a n d a l l r > 0  

I ak,~ ]r <~ A exp(Bp(z~ ;r)) ,  k = 1, 2 .... (23) 
l = 0  

The  following propositions then hold. 

PROPOSITION 1. A ~ , ~ ( V ) _ C A ~ ( V ) .  

Proof. I t  is an obvious consequence of p(z; 1) ~ Cp(z) -k D (see (4ii)). | 

PROPOSITION 2. The restriction map p: A(C) -+ A(V) maps A ,  into A,.~(V)~ 
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Proof. A consequence of (22). | 

EXAMPLE 7. I f  the toe's are bounded  A~,,~(V) ~ A~,(V). 

EXAMPLE 8. Consider p(z)  = ] z 1. There  are functions f e  A~ with zero 
sets V = {(ze, rnk) } where m e is of the same order of magni tude  as I zk [ (cf. [29], 
chapter  1). T h e n  (23) gives an estimate 

by  taking r = ] zk I. I f  l is large, say l ~ I zk I, then I ae, z ] - *  0 as k --* 0% 
while (20) allows ] ak,~] to be unbounded .  

EXAMPLE 9. Le t  p(z)  = z 1% where p > 0. T h e n  {ae,z} e A~,~o(V) if and 
only if for some A, B > 0 

exp(B I z~ I o) 0 ~< l < m~ (zk me) E V. (24) 
[ak,~I <~ A (1 + I ze I) ~ ' ' ' 

Further ,  A~,~(V) = A~(V)  if and only if me = O([ ze [°/log(1 + [ze  [)). T h e  
inequality (24) holds for some A, B > 0 if and only if for some A 1 , B a > 0 

A1 exp(B1 I ze I °) 
(ll) 110 

We  omit  the standard calculations verifying these facts. 

EXAMPLE 10. Let  p(z)  = I I m  z I + log(1 + [ z 12). T h e n  {ae,,} e A~.~(V) 
if and only if for some A, B > O, 

I ak.~] <~ A~+1 exp(Bp(ze)) 0 <~ l < me,  (ze ,  m~) e V. 
l! 

Thus ,  A~,.~o(V) =- A , ( V )  if and only if m e ~ O(p(zk)/Iogp(ze) ). In  this case, 
we see that  A , . , ( V ) =  A , ( V )  requires m ~ - - O ( l o g  I zk l/log log t ze [) when  
z1~ is, say, on the real axis. 

DEFINITION. I f  p maps  A~ onto A~(V),  we will say that V is an interpolating 
variety (for A~). I f  p maps A~ onto A~.~(V) then we will say that V is a weak- 
interpolating variety (for A~). 

M u c h  of the work in the literature refers to varieties of the form V = V ( f ) ,  
f E  A~ ,  p(z)  = I z [ or, more  generally I z ]o. Leon t ' ev  [27, 28] has studied 
extensively the casep(z)  = ] z I, mk = 1. Others, e.g. [11] impose severe restric- 
tions on the multiplicities me - There  is also a characterization of interpolating 
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varieties for p(z) = ]z ]o, in [9, 10] but involving extraneous conditions on 
derivatives o f f  of order higher than mk (ef. Sect. 3 of [9] and Theorem 4 below). 

In case p(z) is not a function of ] z] ,  the only work we know of is that of 
Ehrenpreis and Malliavin [16] where p(z) = l i ra  z l @ log(l + I z ]2) as in 
Example 2 is considered, under the assumptions that m k =  ] a n d f  is invertible 
(see Definition below). This last condition on f ,  which we also have to impose in 
general, is what precludes us from solving completely the problem of characteriz- 
ing interpolating or weak-interpolating varieties of the form If(f), f E A~. In 
case p(z) == ] z ]o, a n y f  ~ 0 is automatically invertible (see next section). 

DEFINITION. If  f l  , . . . ,f~ e A~,  then Iloe(ft ,-..,f~), the local ideal generated 
by f l  ,..., f ~  is the set of all functions g e A~ such that, for any z E C there is an 
open neighborhood U of z and functions gl .... , g~ E A(U) with the property 

g ~ i fJgJ in U. 
J=l  

It is easy to see that if V = V( f  1 .... ,f~) is the multiplicity variety of common 
zeroes of f l  .... , f~  (i.e. common zeroes, counted with multiplicities), then 
Iaoe(fl , . . . , f ~ ) = I ( V ) n  A~. Since I(V) is closed in A(C) and A~--+A(C) is 
continuous, it follows that Iaoe(fl .... , f~) is closed in A~.  By ((fl ..... f~)) we will 
denote the ideal generated in A~ by those same functions. 

DEFINITION. We say that f l  ,---, f ~  as above are jointly invertible if 
f~oe(fl ,..., f ~ ) ~  ((fl .... , f~)). For a single function f e A~,  we say f is 
invertible if Iloe(f) = ((f));  i.e. the principal ideal generated by f is dosed. 

Hence, f invertible in A~ means that i fg  • A~ andg/ f •  A(C) theng/ f •  _d~. It 
also means that ((f))  is dosed and, consequently, the map g-+fg is an open 
map from A~ into itself. 

Remark 1. No confusion should arise between f being invertible and f being 
a unit in the ring A~.  The  last concept means that l / f •  A~ and, in particular, f 
has no zeroes, while invertible functions might have lots of zeroes. 

EXAMPLE 11 (Ehrenpreis [13, p. 523]). I fp (z )  • I I m z l  + log(1 + l z  12), 
t h e n f e  A .  is invertible if and only if there are positive constants A, E with the 
property 

Vx e ~, max{]f(x')l: x' real, I x - -  x ' l  ~ A log(1 -? I x ]2)} ~ E(1 + I x I)-t/~. 

Examples of invertible functions in the space of Example 11 are the poly- 
nomials and, more generally, the exponential polynomials with pure imaginary 
frequencies, i.e. 

f ( z )  = i q~(z)exp(--i~kz), 
/~=1 

607/33/2-3 
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where the qk are polynomials and the ~ real numbers.  On the other hand, if 
~ C0~(R), then its Fourier transform ~ is not invertible. 

EXAMt'LE 12. I f  p(z) = P(I Z I), p(2z) = O(p(z)) then every f e A , ,  f ~ 0 
is invertible (see next section, Propositions 3 and 4). 

There  is a relationship between f l  ,-.-,f~ being jointly invertible and inter- 
polation as shown by the following result. 

THEOREM 4. Let f l  ,'..,f~ e A ,  and V = V ( f  1 ,...,fn). I f  for some e > O, 
C > 0 we have for all (z~, mk) E V 

>' >~ E exp(--Cp(z~)) (25) 
j=l m~ [ 

then V is an interpolating variety. In the converse direction, if  V is an interpolating 
variety and the functions f ,  ,..., f~, are jointly invertible, then the inequality (25) 
holds for some e, C > 0 at every point (z~ , m~) ~ V. 

Proof. T o  prove the necessity of (25) assume that f l  ..... f~ are jointly 
invertible and the map p: A~--+ Ag(V)  is onto. We claim there exist constants 
C~, C 2 > 0 and functions h~ e A~ such that 

1 he(z)t ~-~ C 1 exp(C~p(z)), 

and, for all (zj , m~) e V 

(26) 

h(~Zl(zj) = 0 0 <~ l < mj ,  (27) 

unless, j = k and l = m~ - -  1 when 

h(~-l)(z~) = ( m z , -  1)! (28) 

holds. T h e  existence of the h~ may be proved either by appealing to a version of 
the open mapping theorem (cf. [23, p, 2941) or, by what is essentially the same 
thing, the following direct argument. Let  S denote the space of all sequences 
{%.~} ~ A~(V) such that ~ o  1 [ a~,z [ ~< 1. The  space S is complete under the 
metric induced by the norm 

1 I sup [ a~.t 1: k = 1, 2 , . . . .  
t z=o 

I f  S~: = ( p ( f ) : f e A ~ ,  If(z)l ~ n  exp(np(z)), p ( f ) ~ s }  then it is readily 
verified that S~ is a closed subset of S, and, since p is onto, g~  S~ = S. I t  
follows from the Baire Category Theorem that some Sn has non empty interior, 
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from which the conclusion follows easily. Note that this part of the argument 
uses only that p is onto. 

Next, we claim that there exist functions gk.1 ,...,gk,,~ ~A~,  and positive 
constants C 3 , C~ such that 

and 

(z  - zk) hk(z) = ~, gk,~(z) f~(z) (29) 
i=1  

] gk.dz)l ~ C3(1 + I zl~ }) exp(Cap(z)).  (30) 

To see this, we use the invertibility of f1 , . . .  , f ,~. By (27) the functions (z  - zk)h~(z ) 
belong to I loe(f l  ,...,f~), and hence, to the ideal generated byfx ,...,f~ in A , .  
The uniform bound (30) follows from (26) either by the version of the open 
mapping theorem just mentioned, or by a direct argument like the one given in 
the first part of the proof. 

The lower bound (25) of the theorem now follows. Equate the leading terms 
of the power series expansions about zk of both sides of (29) to obtain 

.c(~%)( z "~ n 
2~ I z x J i  k k} 1 
i=l  

so that (25) follows from the upper bound (30) on the g~,~ and property (4i) of 
the weight function p. 

To prove the converse, we need to bypass the fact that the multiplicities m~ 
could be quite large. The key is provided by the following lemma. 

LEMMA 3. Let  G(~) be analytic in I ~ ] ~ 1 and satisfy [ G(~)I ~ M .  Suppose 
fur ther  that G has a zero of  order q at ~ = a, 0 < l a ] < 1, and a zero of  order m 
at ~ = 0 with 

I G(~)(O) 
m---~--. > ~ > 0. (31) 

Then, 

I a I q > / 3 / M .  (32) 

Proof. We define the analytic function ¢ in ] ~ f ~ 1 by 

\1 - -  8~] ¢(g)' (33) 

Clearly, ] ¢(~)1 ~ M for I ~ I ~ l, ¢(0) ~ 0 and ~(a) ~ O. Differentiating m 
times and evaluating at ~ -~ 0, the identity (33) yields 

~< I a~"'(o)l [~ 17. ,,! - l a  I ¢ ( 0 ) [ < M [ a  I ,  
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Now we are ready to continue the proof of Theorem 4. Let  ze ~ V have 
multiplicity me, and let d e be the minimum of 1 and the distance from ze to 
Vl{ze}. If  de < 1, choose zi ~ V such that de = ] z~ --  zi 1. Because of (25), 
there exists e, C > 0 and j, 1 ~ j ~ n such that 

I f~ ' ) (z i ) l  >/_~ exp(_Cp(zi)) .  
/ / ~ i  ! iv/ 

By Lemma 3, applied to G(~) ~-fj(z ,  + ~), we have (recall (4ii)) 

d'~ ~ >~ q exp(--C~p(ze)) (34) 

for some e 1 , C 1 > 0 (independent of k). This equality clearly still holds for 
dk = 1 if e 1 ~< 1. It  follows that d~ also satisfies (since mz >~ 1) 

de ) E; 1 exp(--Clp(ze)). (35) 

We claim that for suitable el ,  C 1 > 0, the component Ue of S(f;  q ,  C1) 
(see (2)) containing ze is contained in A(zk; de/2). To see this, choose j with 
IfJ~)(ze)] >~ (me!E/n) exp(--Cp(zk)). Such a j exists by hypothesis (25). For 
[ ~I ~< 1, let f j (z  e + de~) = ~m~¢(~). Then  ] ¢(0)i = Ifl~l(z~)[ de~/me [ >~ 
e 2 exp(-C2p(ze) ) and for l ~ [ <~ 1, ] ~b(~)l ~< M = max{] fj(ze @ ~-)1: ] ~- [ ~ 1} 
A exp(Bp(ze)). Then  from Caratheodory's inequality (cf. [29, p. 19]) we obtain 

~b(~)[ /> e~ exp(--Csp(ze)) for all [ ~[ ~< 1/2. Consequently, 

]fj(ze -t- r)l ~> e a ~ exp(--Cap(z~)), l'~ t <~ de~2 (36) 

Also, log ~b(~)[ is harmonic in I ~l < 1 so 

i f  10g [ 4,(0)1 = ~ -  log I ~(e~°)l dO = ~ -  10g [fj(ze -f- dee~°)l dO -- mT~. 
--~r --Tr 

Thus rn~ ~< log ]l/I-- log I ~(0)l ~< A1 -t- A2p(ze). Let  IT ] = de~2 in (36) to 
obtain 

[fj(ze @ T)I /> ~a2 - ~  exp(--C3p(ze)) >/ e~ exp(--C4p(z~) ). 

Taking account of (4ii), we therefore have proved that Ue C A(ze; dk/2), provided 
el ,  C 1 are suitably chosen. 
,. The  proof is easily completed by applying the semMocal interpolation theorem. 
Define ~ on S(f;  e 1 , C1) as follows. On Uk, the component of S( f ;  El, CI) 
containing z~, set ~ ( z ) =  ~ j  a e d ( Z -  z~) j. (Note that no other zj ~ V is in 
u~ .) If  u is a component of S(f;  el,  Ca) which contains no z~, then set 
~(z) ~ 0. Then  [ ~(z)] ~ A exp(Bp(z)), z ~ S(f;  e I , C1) , and )t solves the 
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interpolation problem on S( f ;  E 1 , C1). The  theorem then follows from the 
semi-local interpolation theorem. This  concludes the proof. 

Observe that in the proof  of Theorem 4, the zeros z~ were actually t rapped 
inside the small disks Ak, with I f ]  fairly large near the boundary of A , .  

COROLLARY 2. With  the same hypotheses of  jo int  invertibility as in Theorem 4, 
the multiplicity variety V = V(f~ ..... f~)  is an interpolating variety i f  and only i f  
there exist E > O, C > 0 such that 

(i) each z~ ~ V is contained in a bounded component of S ( f ;  E, C) whose 
diameter is at most one; and 

(ii) no two distinct points of  V lie in the same component of  S ( f ;  ~, C). 

Remark  2. Even when we are dealing with a single funct ion/ ,  the condition 
(25) is not enough to ensure that f is invertible for general growth functions p. 
In  fact, there are p such that e ~ E X~ and e -~ 6 d~  (see [24]). I t  might  seem 
that if f ~  d~  and V ( f )  is an interpolating variety, then there is an F ~ A~ with 
V(F)  = V ( f )  and F invertible or, at least, satisfying (25). Nevertheless there is 
a q~ E Co~(~), p ( z )  = ] I m  z ] + log(1 q- ] z 12), where V(~)  is an d~-inter-  
polating variety. (W. E. Squires, personal communication). 

I f  we have more than one function then the situation is quite complicated, as 
the following two examples show. 

EXAMPLE 13 [15, p. 319]. Let  A be a Liouville number,  p ( z ) ~  I z l ,  
fx(z) = (sin ~zz)/z andf2(z ) = (sin ~/A)z, Then  1 ~Iloe(fx  , f2)  but 1 6 ((f~ ,f2)),  
though we know, by the Spectral Synthesis Theorem from [35], that I loe(f l , f~)  ~- 
((f~,  f2)) = closure of ( ( f l ,  fz)) in A , .  Of course, (25) holds for this example. 

EXAMPLE 14. I t  is also easy to show an example where (25) fails to hold but  
V ( f l ,  f2) is interpolating. Again we set p(z)  ~ l z I and choose two sequences 
of numbers  --½ < ~l(n) < ~2(n) < ½ such that El(n ) --* 0, E2(n ) -+  0 very fast 
when n -+ oo. Now, we letf j  be a function in A ,  with simple zeroes exactly at the 
integers and at the points 4-(n + ~(n)), n ~ 1, 2,... We have then V ( f l ,  f~) -~ 
V(sin Trz) which is interpolating by Theorem 4. On the other hand (25) fails. Of 
course, the reason is that I~oe(fl , f~) v ~ ( ( f l  , f2)). 

A slight modification of Example 13 provides some insight into the geometric 
nature of an interpolating variety of the form V = V ( f ) ,  

EXAMPLE 15. One obvious obstruction to (25) occurs when the zeroes o f f  
are very close together. The  function f ( z )  = sin ~z • (sin zr/A)z, 0 :/~ A ~ ~, is 
invertible for p(z )  • 1 I m  z ] + log(1 + I z 12) and p(z)  = I z l, as pointed out 
in Example 11. I f  A is a Liouville number  then the zeroes of the form Am, m ~ Z 
and those of the form n ~ 77, get too close together, violating (34) for either p.  
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On the other hand, (25) is more subtle. Namely, one can find an even function 
f E  A ~ ,  p(z)  = ] z I, for which (25) does not hold, but which has simple zeroes 
at all Gaussian integers in squares of the form ] x - -  nl~ 2 ] ~< ne,  l Y ] ~< n~ for a 
sequence of integers ne ]" oo. 

We now consider weak-interpolating varieties. I t  does not seem possible to 
give a result as strong as Theorem 4 in this case. However, we can give some 
sufficient conditions and some necessary conditions. For some weight functions, 
it turns out these will coincide, as we point out in the examples following 
Theorem 6. 

Recall that 

p(z; r) ~- m ax{p(z + ~): ] ~l ~< r}. (37) 

For B >~ 0, l >~ 0 and {(z~, me)} = If, let 

7'~.~ = ),~,~(B) = inf{r -~ exp(Bp(ze; r)): r > 0}. (38) 

and 

~/e ~- 7'e(B) ~ ~'k,~_a(B). (39) 

Notice that the numbers ~,~ come basically from (23); i.e., (ae,z)6 A~,~(V) 
implies I ak.~l ~< A~e,z(B) for some B > 0, The  results which follow are also 
valid with A~,~(V)  replaced by spaces defined by I ae.~ I ~ A3e,t exp(Bp(ze)), 
subject only to some mild regularity conditions on the 3e, ~ . 

The  following theorem gives a necessary condition for V = V ( f  1 ,...,f~) 
to be a weak interpolating variety when f l  ,---, f~ are jointly invertible. Other 
more general, more technical conditions can be given without the hypothesis of 
joint invertibility. 

THEOREM 5. Let g ~- g ( f  1 ..... f , ) ,  f i E A ~ .  Suppose that V is a weak- 
interpolating variety and that f l  ,...,f~ are jointly invertible. Then for each B > O, 
there exist constant e, C > 0 such that 

n 
E eTe(B) exp(--CP(ze))" (40) 
j=1 me! 

Proof. The proof is the same as the necessity part of the proof of Theorem 4. 
The  only difference is that the functions he are now chosen with (28) replaced by 
h ~ - l ) ( z e )  = (m e - -  1)! 7e(B). We omit the argument. | 

Next we give sufficient conditions. For each B > 0, let R1: -~ Re(B) >~ 1 
denote a point at which R~ ~7~+1 exp(Bp(ze; Re)) is close-to 7e,  say <~ 27~ (recall 
the definition of Ye, in (39)). 

THEOREM 6. Let f l  , . . . ,fn ~ A~ and V ~- V ( f  1 ,-..,fn). Suppose that for each 
B > O, there exist constants E, C1, Ca, C3 > 0 such that for all (ze ,  me) ~ V 
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(i) 

(ii) 

(iii) 

Then V is 

Proof. 

p(zk; 2R~) ~< C~p(z) + Ca, Vz: I z -- z~ ] < 2Rk 

[f~'~P(zk)I >/ •7~(B) exp(_C3p(zk)). 
J=i m~! 

a weah-interpolating variety. 

The  proof  follows the argument of the proof of the sufficiency part  
of Theorem 4, so we only sketch it. Note that in the proof of Theorem 4, hypo- 
thesis (i) was derived from the condition analogous to (iii), while the numbers 
R k were taken ~ 1 so that (ii) was vacuous. 

By applying Lemma  3 to one of the functions G(~) =f~(z k + ~Rk) we can 
deduce from (iii) and (ii) that 

Pfl  = ( [ A  1~ + - + I f .  I~) 1/2 >~ ~ I z -  z~  I ~ R ~  ~7 exp(--Cp(ze)) 

for ] z - - z k [  <3RT~,  where 7 ~ = 7 ~ ( B )  and 7/, 5, C are suitable positive 
constants (say 3 = 1/4). Then  the proof proceeds exactly as in Theorem 4. 

There  is also an analogue of Corollary 2 (with the same notation). 

COROLLARY 3. I f  the hypotheses of Theorem 6 hold, then for some e, C, C1, C a > 0 
we have: 

(i) Each z~ ~ V belongs to a bounded component of S(f; e, C), and the 
weight function satisfies 

p(z) <~ qp(~) + C2 

for any two points z, ~ of that component; 

(ii) No two distinct points of V lie in the same bounded component of S(f; E, C). 

While the necessary conditions of Theorem 5 do not coincide with the sufficient 
conditions of Theorem 6, there are many weight functions p(z) for which they do. 
Here are some examples. 

EXAMPLE 16. Le tp (z )  = [ z fo, 0 < O < +oo .  Then  m k = O(p(z~)) follows 
from Jensen's formula. I t  is readily checked that R k = O(I z~ [) so that hypothesis 
(ii) of Theorem 6 always holds. According to Example 9, condition (iii) is 
equivalent to 

[fl-~)(zk)] >~ • exp ( - -C  [ z~ [0) 
j=l mk! (1 + [z  k [)'~ 

(41) 

Thus,  for f l  ..... f "  jointly invertible, the condition (41) is equivalent to V being 
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a weak-interpolating variety. We remark that if V C  V(f) ,  f ~  A~ ,  then V = 
V(fl ,  f2) where f l ,  f2 are jointly invertible. 

EXAMPLE 17. Let  p(z) = [ I m  z I + log(1 + I z 12), and suppose  V = 
V(fl ,...,fn) where f l  ,---,fn are jointly invertible. I t  can be shown that rn k = 
O(p(z~)) (see next section). Then  a further direct calculation shows R~ = 
O(mk) = O(p(z~)), so that (ii) of Theorem 6 also holds. Consequently, f rom 
Theorems 5 and 6, and Example 10, we see that V is a weak,interpolating 
variety if and only if for some •, C > 0 

• e x p ( - - C  [ I m  z~ [) 
j=x I/ l~)(z 'O] >~ (1 + I z~ [)c 

This  example answers the question posed by Ehrenpreis and Malliavin in 
[16, p. 1801. 

3. INTERPOLATION WITH BOUNDS. II .  GROUPINGS 

As we have seen interpolation does not hold in general even for V = V(f) 
w h e r e f  ~ A~.  Hence, it is natural to try to find a description of the subspace of 
A(V) which is the range of the restriction map p: A~ ~ A(V). Because of the 
semi-local interpolation theorem, it is only necessary to construct an extension 
on each component  of S(f; •, C). I t  is natural to expect that the classical poly- 
nomial interpolation formulas, such as the Newton interpolation formula, will 
provide the appropriate extension. In  fact, they do for radial growth rates, as 
has been shown by Borisevich and Lapin  [9] (see also [10]). For nonradial 
growth rates, we prove a similar result in case F" = g(f)  w h e r e f ~  A ,  is slowly 
decreasing, a concept inspired by Example 11, which is often an equivalent but 
more precise formulation of invertibility. 

DEFINITION. A function f ~  A~ is called slowly decreasing if the following 
two conditions hold. 

(42i) There  exist e > 0, A > 0 such that each connected component  S~ 
of the set 

S(f; e, A) = {z: lf(z)I < • exp(--Ap(z))} 

is relatively compact. And 

(42ii) There  exists a constant B > 0 (independent of a) such that 

p(~) ~ B p ( z ) @ B  for any z, ~ f fS~ ,  any ~. 

PROPOSITION 3. I f  f is slowly decreasing, then f is invertible. 
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Proof. Suppose g ~ A(C) and g f~  A~. To show g ~ A~ : for some constants 
C, D > O we have 

I g(z)f(z)[ <~ C exp(Dp(z)), for all z e C. 

On the boundary of the set S~ we have, by (42i) 

I g(~)[ ~< C1 exp(Dlp(~)) <~ C1 exp(D1 max (p(w))), ~ E OS~, (43) 
se 

where C 1 = C/e, D 1 = D + A.  Since S~ is bounded we can apply the maximum 
principle. Hence (42ii) and (43) yield the estimate 

l g(z)l <~ c~ exp(D2p(z)) , z e  S~, any a, 

for some C2, D~ > 0. Outside S(f ;  e, A), the estimate is immediate. | 

PROPOSITION 4. / f  p(z) = p ( I  z [) and p(2z) = O(p(z)), then any f e A ~ ,  
f ~ O, is slowly decreasing. 

Proof. It  is enough to show that for some E > 0, A > 0 and any r > 0 
sufficiently large there are r I , r 2 such that r/2 ~ r I < r < r 2 ~ 2r and 

min{]f(z)]: ] z [ = r 1 or [ z  ] = r2} ~> e exp(--Ap(r)).  

This last inequality is an immediate consequence of our hypotheses and a 
standard minimum modulus theorem (see [29, p. 21] or [7]). ! 

Remark 3. As an application of the same minimum modulus theorem it can 
be shown that forp(z) = I Im  z [ + log(1 + I z 12), the converse of Proposition 3 
also holds. 

We will need below the following lemmas whose proofs are immediate. 

LEMMA 4. I f  f E  A~ is slowly decreasing, then there are rectifiable Jordan 
curves I'~ with the following properties 

(a) The curves F~ are disjoint and V = V ( f )  C U~ U~ , where U~ = int F~. 

(b) For some constant A > 0 we have for all ~, 

If(z)] >~ l e x p ( - - A p ( z ) ) ,  for z ~ I ' ~ .  

(c) For some constant B > 0 we have, for any ~ and any pair z, ~ c U~ 

p(z) <<, Bp(~) + B. 

(d) [ f  d~ = diameter of l~  , then for some constant C > 0 we have 

d~ <~ C exp(Cp(z)), for any z ~ U~. 
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(e) For some constant D > O, 

length(/'~) ~ D exp(Dp(z)), for any z ~ U~. 

And  finally, 

(f) I f  n~ denotes the number of points in F-~ : =  V c~ U~, counted with 

multiplicities, then 

n~ <~ N exp(Np(z)), 

for some constant N > 0 and any z c U~ . 

T h e  only th ing  needed  for the  p r o o f  is to not ice  tha t  (42ii) and (4i) imp ly  (c) 
for the  d iameters  of the  sets S~ ob ta ined  in (42i). 

LEMMa 5. I f p ( z )  = I I m  z ] + log(1 + [ z 1~) orp(z) = P ( I  z ]) andp(2z) = 
O(p(z)),  then (c) in Lemma 5 can be replaced by: 

: (c ')  Let W~ = {z E C: dist(z,  U~) ~ 2d~} then for some constant B > 0 

we have 

p(z) <~ Bp(~) + a 

for any c~, any z, ~ E W~ . 

L e m m a  4 allows us to in t roduce  a cer tain subspace  d~ ,g(V)  of A ( V ) i n  which  
groupings  are taken into account.  L e t  {a~.~} ~ A ( g ) ~  A(C) / I (V)  (see (17)), 
and  take any representa t ive  q~ ~ A(C).  T h e n  we can cons t ruc t  a sequence of 

funct ions  ~ ~ A(U~) by  the formula  

1 ~ 9 ( ~ ) f ( ~ ) - - f ( z ) d ~  ' 
G f(O 7 

z ~ U~. (44) 

Clearly,  for  z e U~ we have 

f ( z )  ~ ~(~) d~ 
~o.(~) = ~(~) - ~ j,. 7 ( 0  ~ - - -  ~(z)  + f ( z )  (;~(z), 

Z 

~b, E A(U-~). Hence ,  pv~(q%) = Pv~(cP) = / a ~ ,  ~ (~)~j = {a~.~; z~ a g~}. Moreover ,  the  
q%'s do not  depend  on the representa t ive  ~o. In  fact, if one replaces qv in (44) by  
q) + f~, 4; E A(C) ,  then  the qG do not  change.  Th i s  shows tha t  we have a l inear  
map  ~/: A ( V )  --+ I ~  A(U~), such that  Pv ° ~7 = id. I t  is also t rue  tha t  (44) defines 

a map  ~7~ : A(V~) --9- A(U~) such tha t  pGo % = id. I f  {a~,z} = Pv(@, cp ~ A ~ ,  

then,  for some constants  K 1 , K 2 > 0 we have 

[ q~=(z)[ <~ K 1 exp(K2p(z)), z ~ U~,. (45) 
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As matter of fact, we can define a norm in the finite dimensional vector space 
A(V~) by 

~(~) (~) 
= = {%~}}, (46) II-~,~ II= inf{I ] ~0 ]l~: ~o E A(U~), pv~(~o) 

where [1 cp II~ = sup{[ ~(z)l= z E g~}. Then, one can see without difficulty, using 
the properties (a)-(f) in Lemma 4, that given C~, C 2 > 0 we can find K~, K 2 > 0 
such that 

(~) 
II a,~.~ I1~ ~ c1 exp(Czp(z)) for any z c U~, (47) 

implies (45) holds. Conversely, if (45) holds, then for some C~, C~ > 0 (47) 
also holds. The relation between these sets of constants is independent of a. 
It  is also clear that if (47) holds we can replace, [l cp I1oo by  l] q0(z) exp(--C£'p(z))l[~ 
in (42) for some C£' > 0, and get an equivalent norm. 

DEFINITION. A~o,g(V ) consists of those functions {a~,z} ~ A ( V )  such that (47) 
holds for some constants C 1 , Cz > 0 and for every c~. 

Application of the semi-local interpolation theorem, as in Section 2, yields 
the following theorem. 

THEOm~M 7. I f  the junction f E A~ is slowly decreasing, the map Pv induces a 
linear topological isomorphism between the spaces A ~/ ( ( f ) ) and A ~,~( V), V = V ( f ). 

Theorem 7 shows also that, although A~,g(V) was defined in terms of a specific 
family of curves 2'~, it is actually a subspace of  A ( V )  independent of the family 
{r~). 

Using the calculus of residues the formula (44) can be written explicitly in 
terms of the {a~,~}, for instance, if all the multiplicities mT~ = 1 for zk c Vwe have, 
(a~ = a~,0) , the Lagrange interpolation formula, 

~ v  ak f ( z k ) - -  f ( z )  (48) 
c;~(z) = f ' ( z~)  z~ --  z 

Hence, Theorem 7, in conjunction with Proposition 4, yields the result obtained 
in [9] for the weight p(z) = ]z  [0. The disadvantage of (48), and the more 
complicated ones obtained for arbitrary multiplicities m~, is that they involve not 
only {a~,~} but also the function f. One would expect a characterization of 
A~.,(V) in terms of polynomial interpolation, and this is the case if the conclusion 
of Lemma 5 holds forf.  In  order to show this, we have to recall some well-known 
facts about the Newton interpolation formula and divided differences (see [18, 
31, 41]). 

Let ffl ,-.-, ~,~, n- - - -n , ,  stand for the points in V, repeated according to 
multiplicity. Then  the polynomials P0 ~ 1, Pl(z) --  (z --  ~1),..-, P~_~(z) = 

n--1 
1V[j=I (z - -  ~) form a basis of the space of polynomials of degree n - -  1. There is a 



134 B E R E N S T E I N A N D  T A Y L O R  

- = { a ~ , , ) ,  unique polynomial Q = Q~ of degree at most n 1 such that pv~(Q) (") 
and it can be written as 

n--1 

j=o  

The coefficients A(J) A(J)({a~[}) are t h e j t h  divided differences of the (~' : a,~,l s. 
They  can be computed recursively. For instance, if ~1 : zk then A(O~ _ ak,o. 
Similarly, if ~ - -  ~Z)l : z~ then A(~) : a~,z. I f  this polynomial O, the 
Newton interpolation polynomial, satisfies the estimate (45), the above discussion 
shows that (47) holds and hence there is a function ~ ~ ~/~ such that pr  (~o) : 
{a (~)~ (This can be done even if we know the estimate for a single ~ since /~,ZJ' 

{bz~,z} ~ A(V), defined by b~,z = a~,~ if z~ e V~ and b~.z = 0 if z~ ~ V~, is in 
A~,~(V).) We can now estimate the A(~) using the following lemma, whose proof 
we omit. 

LEMMA 6 [31, 41]. Let q~ be holomorphic in the open set W ~ C, I q~(z)] ~ M 
in W, and ~1 .... , ~ be given such that for some 3 > 0, LJj~I/l(~j; 3) C_ W, then 

[A (j)] ~ 2  j3- jM,  0 ~ j ~ n - - 1 .  (49) 

(Here A (Jl is computed with respect to P v((P), V the multiplicity variety associated 
to ~1 ,---, ~-, in the obvious way.) 

Hence, assuming (c') holds, if either Q - Q~ satisfies the estimate (45) or (47) 
holds, we have, for some constants C8, C 4 ~ 0, 

(~) ' ( J ) t ~ a ( ~ ) ~  d j II]{az.z}llP= = max I A ~ ~,,~. ~ [ <~ C3 exp(C4P(z)), 
O~j~n--1 

V z e U ~ ,  n = n ~ ,  (50) 

as follows from Lemma 6 applied to W = W, ,  ~ - - 2 d ~ .  In  particular, if 
(a~.z) ~ A~,g(V), then (50) holds for every ~ with Ca, C4 independent of ~. 
Conversely, if (50) holds for a given a then it is obvious from the definition of the 
polynomials Pj and Q, that, for every z ~ U~ and some new constants C5, C~ > 0, 

I Q.(z)] ~ C z exp(C4p(z)) Z d~-J I(z - ~1) " ' "  ( Z  - -  ~-)] 
j=o  

<~ n~C3 exp(Cap(z)) <~ C5 exp(C6P(z)). 

The last inequality follows from Lemma 4, (f) .  Hence, if (50) holds with con- 
stants independent of a, {a~,~} ~ A~,g(V). These remarks are collected in Theo-  
rem 8 for future reference. 

i ,  ¸ (~) TrlEOREM 8. Let f e A~ be slowly decreasing and the norms ~ll(ak,z Ilia of 
{a~,z} ~ A(V) be defined with respect to some grouping {F~} satisfying (a)-(c')-(f) of 
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Lemmas 4 and 5. Then A J ( ( f ) )  is isomorphic under the restriction map p to the 
subspace of A( V) of those {a~,z} such that (50) holds for some Ca, C4 independent of ~. 

Remark 4. I t  is an immediate consequence of Proposition 2 and Theorem 7 
that, i f ]  is slowly decreasing, then A~.o(V) C_ A ~ ( V ) .  I t  is also true for weights 
like p(z) = ] z [o or p(z) = ] I m  z I + log(1 @ [ z 12) that, if there is a grouping 
{/'~} for V = V( f )  such that every V~ contains a single point of V, then A~.~(V) C 
A~,g(V) and hence V is weak-interpolating (see Corollaries 2 and 3 of the previous 
section). 

We conclude this section with an example for which the groupings can be 
made more explicit. 

EXAMPLE 18. As already pointed out, for the weight p ( z ) =  l l m  z I +  
log(1 + [ z t2), the concept of invertible function and slowly decreasing function 
are synonymous, and the exponential polynomials with pure imaginary frequen- 
cies are invertible in A~.  A more precise statement about the groupings can be 
made by using the sharper lower bounds known for such functions [5, 19] 
ans also sharper bounds on the number  of zeroes they can have in disks of fixed 
radii [40, ch. 6]. Namely, let 

f ( z )  = ~ qk(z)exp(--i~z),  (51) 
k=l 

where the qk are non-zero polynomials of degree v~, and the o k e N. Let  K = 
smallest closed interval containing all the frequencies =~. Then  i f y  = I m  z, we 
have 

h(z) = max{Re(--icz~z): 1 ~ k ~ m) = hx(z) = max{(y: ~ ~ K}. (52) 

From [19] there is a constant C > 0  and r - - r ( z ) ,  0 ~ < r ~ < l  such that 

rain I f ( z  + rei°)l >~ C exp h(z), gz  e C. (53) 

Hence, the d~'s can be taken ~< 1. Therefore, (50) can be replaced by 

(~) ' (J) (~') (50')  rll{ak.t}ltl, ~ max [ A ({ak,~})l ~< Ca exp(C4(p(z)) Vz E Uo,, n = n~,. 
O~j<~n--1 

Furthermore, from [40] we can get an upper  bound for n , ,  

2(1 + v) 
n ~ < v +  ]-@~, ( 1 + £ 2 ) ,  (54) 

where v = ~2~(vk + 1), ~ = maxk I c~k 1. 
In  fact, the same situation still is valid if we replace f by F(z) = f ( z )  + g(z), 

where g(z) =/~(z)  and/~ is either an integrable function with sup/z _C K or/z is 
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an arbitrary distribution in oz'(R) with supp /x C C K. I f  we use the weight 
p(z) = [ z [, then we can allow complex frequencies ~ in (51). In  this case (53) 
and (54) still hold when (52) is replaced by 

h(z) = max{Re(--iakz): 1 ~ k <~ m) = hE(Z) = max{(~, z) :  ,~ c K} (52') 

where (~, z)  ~- ~x @ ~y, (~ ~ ~ + i~?, z = x + iy) and K = convex hull of 
the set {i&~: 1 ~< k ~ m}. We can replace f by F = f  + g, g = / 2  = Fourier-  
Borel transform of a Radon measure/z with sup ix C C K, 

g(z) = f e-i"av(¢). 

4. MEAN-PERIODIC FUNCTIONS 

L e t f e  o z = d(N), the space of all C ~ functions on the real line. We say t h a t f  
is mean-periodic if there is a nonzero distribution of compact support, /z E g ' ,  
such that the function /~ . f ( x )  ( =  f f ( t -  x)dlz(t)) vanishes identically. Here 
we are following the standard notation for f(x) = f ( - - x )  and convolution as 
presented in [35] or [36]. Similarly, if f e  A(C), we say t h a t f  is analytic mean- 
periodic if there is a nontrivial analytic functional tz, which can be represented 
by a Radon measure of compact support, such that/z . f  ~ 0. 

Probably the oldest problem in harmonic analysis has been the representation 
of mean-periodic functions in terms of the simplest mean-periodic functions, i.e. 
exponential-monomials x*e -~"~. S i n c e / x .  e i~* =/2(z)  e izz, where/2 is the Fourier 
transform of tz, it follows that the pairs (z, l) have to be taken from V = V(/2). 
When/x  represents an ordinary differential operator with constant coefficients, 
L. Euler [17] showed that the finite sums 

f (x )  = ~ c~.~x~e - ~ ,  V =  V(#), (55) 
(z,~)eV 

represent all the solutions to the equation /z . f =  0. Similarly, a periodic 
function in d ~ (or A(C)) has a Fourier series that converges in the topology of g 
(or A(C)) resrpectively). For solutions of difference-differential equations, 
partial solutions to the representation problem go at least as far back as [20, 34]. 
In  [26] Leont 'ev pointed out the need to group terms in order that a series of the 
type (55) converge at all--this corresponds to Example 15 above (see also [37]). 
Finally, following earlier work of Delsarte [12], L. Schwartz solved completely 
this problem in [35], proving that the representation (55) holds for any mean- 
periodic function with respect to an arbitrary tz. What happens is that one needs 
both grouping of terms and an Abel-summation procedure to make (55) conver- 
gent, even in the pointwise sense. After that, it will converge in g.  In  [13] it was 
observed that if one assumes that /z E g '  is slowly decreasing then the Abel- 
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summation procedure can be dispensed with. In  the case of several variables, i.e. 
~ d ( N ~ )  or ~0~A(C~), Ehrenpreis '  Fundamental  Principle [14, 15, 32] 
consisted in extending the Fourier-type representation (55) to solutions of 
partial differential equations with constant coefficients. There  was a further 
extension of this Fundamental  Principle to certain difference-differential 
operators in N ~ in [2, 4]. The  representation question is settled in [3, 6] for the 
case in which either ~o ~ N(L~ ~) is mean-periodic with respect to F, /2 slowly 
decreasing, or ~o ~ A(C ") is analytic mean-periodic (no restriction on if). T h e  
method of [6] is based on the relationship existing between the Fourier-represen- 
tation (55) and the interpolation theorems presented above. In  the case of one 
variable, this idea appears in [16] in the case the series (55) converges absolutely 
without any grouping and it is completely settled there under the assumption 
that all the multiplicities mk = 1. 

To  start with, we recall that ~ (resp. A(C)) is a reflexive Frechet space whose 
dual J '  (resp. A'(C)) is linearly isomorphic, via the Fourier transform, to the 
space A~(C), p(z) = J im  z ] ÷ log(1 + l z P) (resp. p(z) = I z 1), and this 
isomorphism is also topological ([15], Ch. 5). Given/2  E g '  we will say it is 
slowly decreasing if that is true for ff E A~.  From here on we will assume 
/~ E o ~' is slowly decreasing. (No restriction is needed if we consider/x ~ A'(C),  
beyond /x @ 0). We will only refer to mean-periodic functions in d ~, since 
everything carries over verbatim to analytic mean-periodic functions. Let  d/{ be 
the closed subspace of ~ defined by 

and j the ideal in @' given by 

J = { i f *  ~': ,, ~ ,~ ' } .  

Since/x is slowly decreasing, i.e. j = ((/2)) is closed in de, = A~ (see Proposi- 
tion 3), it follows that J is also closed. Hence ~ '  is the dual space to d°'/J 
d ' / j  ~ A~/((/2)). By Theorem 7, A~/((/2)) ~ A~,,g(V), V = V(/2). We use 
Theorem 8 to characterize (A~.~(V))'. An element ~o ~A~.~(V) is a sequence 
{5o~} of vectors in the finite dimensional vector spaces A(V~), which for some 
C > 0 satisfy 

sup I[] ~ l[l~ e-C~ < oo 

where P~ = min{p(z): z E U~}. Hence, Fc(A~.g(V))' is given by a sequence 
of vectors {F~}, F~ E A(V~)*, such that for every C > 0 we have 

I t l ~  IIl~* e c ~  < 0% 
c¢ 
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and 

F(~) = ~ F ~ ( ~ ) .  (56) 

(Here, A(V~)* denotes the dual of the finite dimensional space -d(V~) and 
[11 - 11[* the dual norm.) Hence, the series (56) converges absolutely and uniformly 
over any bounded set of q~'s for a fixed F. G i v e n f e  J [ ,  we have then a corre- 
sponding element F ~ (A~,g(V))' given by 

T ( f )  = F(pv(7")), VT ~ ¢', (57) 

since pv establishes the isomorphism in Theorem 8. By specializing (57) to 
T = 8~ = Dirac mass at x, we get 

f(x) - -  Z [ e , .  (55') 
(z~,) V~ " / 

T h e  outside series now converges absolutely and uniformly over compact 
subsets of ~. By taking T ~lJ) ~ we obtain the same statement for all formal 
derivatives. 

THEOREM 9 [35, 13, 48]. I f  f ~ ( E )  is mean-periodic with respect to a 
slowly decreasing distribution t*, then f has a Fourier representation (55') convergent 
in ~. I f  f 6 A(C) is mean-periodic with respect to l* ~ A'(C), /z  @ 0, the same state- 
ment holds (x E C). 

T h e  weak-interpolating case is the case where the series (55') becomes 

f (x) = Z ck(x) e - ~ ,  
lc 

c7~ a polynomial of degree < ms,  the summation extended over the distinct 
roots of the equation/~(z) = 0. This  series converges in the topology of g~ 
without any groupings, see Remark 4 (compare also with [16]). 

The  case of other distribution spaces, e.g. f e ~ ' ( E ) ,  can be handled similarly. 
In  the above proof of the Fourier expansion for mean-periodic functions, the 

dual norms Ill "HI* are u s e d b u t  there is no need to compute them explicitly. 
We proceed to do that computation here, since the explicit expression we obtain 
allows us to solve a problem posed by Ehrenpreis [13, problem 9]. For the sake of 
simplicity we will assume throughout that the multiplicities are always one, but 
the result extend to the general case without difficulty. 

LEMMA 7. Let z o ,..., z~ be n + 1 distinct points in C, J the linear isomorphism 
of C ~+1 into itself given by mapping an n + 1-tuple (a o ,..., a~) to the n q- 1 
divided differences AIJ) of the a i with respect to (z o ,..., z~): 

J :  a = (ao , . . . ,  a~) --* A = ( a % . . . ,  Ac~)),  
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where A (°) : ao, A (1) = (a 1 - -ao) / (z  I - -Zo) , etc. Then the matrix representing 
j - 1  is the following: 

f - -1  = 

For d >/1 fixed, let 

0 
(zl - %) 0 

(z~ - %) (z2 - Zo)(Z2 - ~1)0'" 

111 a III : =  I A(~)d k 12 

Then, its dual norm, with respect to the bilinear form (a, b) := aob o + "" + 
a~b~ , is 

[llblll* = [ckd 1 )  , 

where c : =  (J-a)~b. Furthermore, i f  Ill b Ill* ~ 1 and diameter (z o ,..., z ,}  ~ d, 
then 

] bk l ~ [  l z j - -  z~ [ <~ n4"d% k = O, . . . ,n .  
3~1c 

Proof. The computation of the matrix j - 1  is an immediate consequence of 
the fact that, for P(z)  = ~ = 0  A(~) ~I0<J<k_l(z - -  %) we have P(zj) = a~ when 
A = Ja. The determination of II] • Ill* is standard. I t  only remains to prove the 
last estimate, which is obvious for k = n since I c,  [ ~ Ill b ]][* d ~ and 

[ c . l = l b . I  1-[ I z j - z . I  
0<j<n 

as follows from our explicit computation of j-1. To obtain the general case 
we only have to observe that from Lemma 6 it follows that the maps 

zrk(ao"" a ~ ' "  a,) = (ao"" a , " ' a k )  

have norm ~ n4 n, when C n+l is endowed with the norm Ill "Ill. | 

The  problem we want to discuss is the following. Assume /z, v ~ @', /z is 
slowly decreasing and/2, ~ have no common zeroes. When is it possible to solve 
the system 

/ ~ * f  : g  
• f = h, (58) 

subject to the compatibility condition ~ ,  h = ~* g. We look for f ~  o~(~) and 
assume that g, h ~ g(R), but the same reasoning works in ~ ' (~ ) .  

6o7/3 3 [2-4 



140 BERENSTEIN AND TAYLOR 

A small amount of functional analysis shows that the necessary and sufficient 
condition for the existence of a so lu t ionf  for every pair g, h which satisfies the 
compatibility condition, is that the algebraic ideal generated by/L and v be closed 
in d ~', which, by the spectral synthesis theorem [35], and the assumption that 
/2 and ~ have no common zeroes, is itself equivalent to the existence of two 
distributions/~1, vl ~ d°' such that 

# * / * 1 - [ -  V ' * V l  = 8 0 , (59) 

(See [21] for an analytic condition equivalent to (59).) 
The  question then arises of characterizing all g, h for which (58) is solvable 

when (59) fails. Since/~ is slowly decreasing, the convolution operator/~, :  d ~ -+  d ~ 
is onto ([13]), and hence (58) can be reduced to the equivalent system 

/ ~ * F =  0 
(58') 

r , , F = H  

with compatibility condi t ion /2 ,H = 0. 
Hence, both H and the function F we are looking for are mean-periodic with 

respect to the slowly decreasing distribution/~. We can apply Theorem 9 so they 
have expansions 

F(x)  = y~ ~ok.~x~ e - ~  

and 

H(x)  = ~, yk, zx~e -*`k* 

convergent in the topology of J~ (after groupings), and the coefficients are unique- 
ly determined by F, H (see (55') or use the Spectral Synthesis Theorem.)  Let  
us assume the multiplicities of the zeroes of/2 are always one. Writing ~%: = 
q%,o, 7e : =  7~,0 , the system (58') is equivalent to the equations 

~ ( ~ )  ~ = r~ ~ ~ v = v ( a ) ,  (60) 

which can be solved uniquely, since ~(zk) v a 0. The  only problem is to decide 
whether the 9~ can be the Fourier coefficients of a C ~ function. The  answer 
lies in Theorem 8 (see also proof of Theorem 9), i.e. for any C > 0 

111 r~/o(z~)lll: = O(exp(-Cp~)) .  (61) 

These  inequalities are fairly explicit, due to Lemma  7 above. In  particular, a 
necessary condition on H is the existence of constants K --- K ( C )  ~ 0 such that 

] Yk [ l~  [ z j  - -  z~ I <~ Kd~  ~ ] ~(z~)[ exp( - -Cp(zk ) )  
J~k  
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where the product is taken over those zj lying in the same group ~ as z~. The  

other constants involved have been absorbed by the exponential term, using 

n~ = o ( p ~ ) .  

The  case in which the multiplicities are allowed to be arbitrary may be treated 
similarly. The  condition (60) is replaced by triangular systems of linear equations 
with P(zk) as the diagonal elements, and the modifications needed in the Lemma 7 

are direct. 
Let us illustrate this result with the same very simple example from the classi- 

cal theory of Fourier series which we have used repeatedly (which, of course, 

could be studied without using Theorem 9). If/1(z) = sin ~rz, thenF ,  H must be 
periodic functions of period 2zr, there are no groupings, d ~ 1, zk = k ~ 7/. 

Theorem 8 reduces to the well-known fact that, for all C > 0, 

~o,, rk = 0((1 + I k I)-c). 

If  ¢(z) = I / z  sin(~r/h)z, h ¢ Q, then (61) imposes conditions on 7~ depending on 
how fast can h be approximated by rational numbers,  namely 

Wk : O((1 + I k ])-c d~st (k, sA)). 

We have included at the end of our bibliography a few references not men- 

tioned in the text which touch upon deeper properties of mean-periodic func- 
tions, Dirichlet series and other related subjects. These references are not 

complete, since there is a vast amount of literature in these areas. 
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