The Evolution and Variability of Atmospheric Ozone over Geological Time

JOEL S. LEVINE

Atmospheric Environmental Sciences Division, NASA Langley Research Center, Hampton, Virginia 23665

PAUL B. HAYS

Department of Atmospheric and Oceanic Science, The University of Michigan, Ann Arbor, Michigan 48109

AND

JAMES C. G. WALKER

Arecibo Observatory, National Astronomy and Ionosphere Center, Arecibo, Puerto Rico 00612

Received November 27, 1978; revised April 11, 1979

The rise of atmospheric O_3 as a function of the evolution of O_2 has been investigated using a one-dimensional steady-state photochemical model based on the chemistry and photochemistry of $O_x(O_3, O, O(^1D))$, N_2O , $NO_x(NO, NO_2, HNO_3)$, H_2O , and $HO_x(H, OH, HO_2, H_2O_2)$ including the effect of vertical eddy transport on the species distribution. The total O_3 column density was found to maximize for an O_2 level of 10^{-1} present atmospheric level (PAL) and exceeded the present total O_3 column by about 40%. For that level of O_2 , surface and tropospheric O_3 densities exceeded those of the present atmosphere by about an order of magnitude. Surface and tropospheric OH densities of the paleoatmosphere exceeded those of the present atmosphere by orders of magnitude. We also found that in the O_2 -deficient paleoatmosphere, N_2O (even at present atmospheric levels) produces much less NO_x than it does in the present atmosphere.

INTRODUCTION

By virtue of its very efficient shielding of the Earth's surface from lethal solar ultraviolet radiation, the evolution and natural variability of atmospheric ozone (O_3) over geological time were important factors in biological evolution on our planet (Berkner and Marshall, 1965; Ratner and Walker, 1972; and Walker, 1977). The appearance and evolution of O₃ were strongly coupled to the appearance and evolution of molecular oxygen (O_2) . The first investigation of the evolution of O_3 in the O_2 deficient paleoatmosphere was the qualitative treatment of Berkner and Marshall (1965). Next, Ratner and Walker (1972) used a simple photochemical model-the four Chapman reactions for a pure O₂ atmosphere, without transport-to investigate the evolution of O_3 . Hesstvedt *et al.* (1974)

added the hydrogen species chemistry to the Chapman reactions in their study. More recently, Blake and Carver (1977) added the nitrogen species chemistry (with the exception of nitrous oxide) to the hydrogen and oxygen species chemistry in a study of the evolution of O_3 . Blake and Carver (1977) assumed photochemical equilibrium, i.e., they did not include the effect of vertical transport on species distribution in their calculations. In the present study, we have included the chemistry of the oxygen, hydrogen, and nitrogen species, plus the effect of vertical transport on the distribution of the calculated atmospheric species. The present study is the first to include nitrous oxide (N_2O) which is produced via dentrification by soil bacteria (Bates and Hays, 1967; Crutzen, 1970; McElroy and McConnell, 1971). The oxidation of N₂O is the

0019-1035/79/080295-15\$02.00/0 Copyright © 1979 by Academic Press, Inc. All rights of reproduction in any form reserved. major source of the nitrogen oxides which control O₃ levels in the present stratosphere (Crutzen, 1970). In addition, the present paper is the first to discuss the nitrogen and hydrogen species concentrations of the O₂deficient paleoatmosphere and the variation of these species as O_2 evolved to present atmospheric levels. The oxygen, nitrogen, and hydrogen reactions and rate constants used in the present study are based on those recommended in the recent NASA chlorofluoromethane-ozone assessment (Hudson, 1977). A description of the photochemical model used in this study is given in the appendix.

COMPOSITION AND STRUCTURE OF THE PALEOATMOSPHERE

One uncertainty in our study of the evolution of O_3 as a function of evolving O_2 level concerns the composition and structure of the paleoatmosphere during the period that O_2 rose from 10^{-4} of its present atmospheric level (10⁻⁴ PAL) to its present atmospheric level (1 PAL). This uncertainty results in part from our lack of knowledge concerning the exact chronology for the evolution of O₂. For example, Berkner and Marshall (1965) have speculated that O₂ rose from 10^{-3} PAL to its present level in the more recent past, over the last 600 million years, whereas Walker (1978) has suggested that O₂ rose rapidly from essentially zero to within a factor of 10 of its present atmospheric value as early as about 2 billion years ago. For our photochemical calculations we need to know the approximate concentrations of nitrogen (N_2) , water vapor (H_2O) , carbon dioxide (CO_2) , and reduced species such as methane (CH₄) and ammonia (NH₃) in the paleoatmosphere as O_2 evolved from 10^{-4} PAL to its present Our information concerning the level. chemical composition of the paleoatmosphere during the evolution of O₂ is based on two recent studies: a detailed review of the available geological and paleontological evidence by Walker (1977) and a computer simulation of the chemical evolution of the atmosphere by Hart (1978). Walker concluded that the atmosphere formed via volatile outgassing very early in the Earth's history and that the paleoatmosphere contained about as much N₂, H₂O, and CO₂ as the present atmosphere. Hart's computer simulation developed the following scenario: the O₂ released from the photodissociation of H₂O and from photosynthesis (after the first 800 million years) chemically destroyed the CH_4 and NH_3 in the paleoatmosphere. By roughly 2 billion years ago, all but the trace amounts of reduced gases had been removed from the atmosphere and at that point the atmosphere consisted primarily of N₂ (about 96%). Hart's calculations indicate that both CH₄ and NH₃ reached their present atmospheric levels about 2 billion years ago. The studies of Walker and Hart suggest that during the evolution of O₂ and O₃ the chemical composition of the paleoatmosphere was similar to the composition of the present atmosphere. Due to the assumed similarity (with the exception of O_2 and O_3) in the composition of the paleoatmosphere and the modern atmosphere, we have adopted the O_3 photochemical and chemical reactions used in the current investigations of possible inadvertent depletion of O₃ due to anthropogenic activities (Hudson, 1977). The chemistry of CH₄, NH₃, CO₂, CO, and the chlorine species is not included in our calculations. The photochemical and chemical reactions used in our model are listed in Tables I and II.

To calculate the photodissociation rates of the molecular species given in Table I, the solar spectrum between 110 and 735 nm was divided into 174 spectral intervals, with molecular cross sections for each species folded into these spectral intervals. The solar flux data are from Ackerman (1971). The species absorption cross-section references are also given in Table I. The calculations of the transmittance and rate of dissociation of molecular oxygen in the Schumann-Runge band (19 spectral intervals between 175 and 205 nm) are based on

EVOLUTION OF OZONE

PHOTOCHEMICAL REACTIONS				
No.	Photochemical reaction (sec ⁻¹)	References for cross sections		
J1	$O_2 + h\nu(110-175 \text{ nm}) \rightarrow O + O(^1D)$	Ackerman (1971); Watanabe (1958)		
J2	$O_2 + h\nu(175-205 \text{ nm}) \rightarrow O + O$	Hudson and Mahle (1972)		
J3	$O_2 + h\nu(205-242 \text{ nm}) \to O + O$	Ackerman (1971); Hasson and Nicholls (1971)		
J4	$O_3 + h\nu(110-310 \text{ nm}) \rightarrow O_2(^1\Delta g) + O(^1D)$	Ackerman (1971); Inn and Tanaka (1953)		
J5	$O_3 + h\nu(310-360 \text{ nm}) \to O_2(^1\Delta g) + O$	Ackerman (1971); Inn and Tanaka (1953); Griggs (1968)		
J6	$O_3 + h\nu(360-735 \text{ nm}) \rightarrow O_2 + O_3$	Ackerman (1971); Inn and Tanaka (1953)		
J7	$H_2O + h\nu(110-200 \text{ nm}) \rightarrow OH + H$	Watanabe and Zelikoff (1953)		
J8	$N_2O + h\nu(110-315 \text{ nm}) \rightarrow N_2 + O(^1D)$	Bates and Hays (1967); Johnston and Selwyn (1975)		
J9	$HNO_3 + h\nu(110-240 \text{ nm}) \rightarrow H + NO_3$	Johnston and Graham (1974); Schmidt, et al. (1974)		
J10	$HNO_3 + h\nu(240-325 \text{ nm}) \rightarrow OH + NO_2$	Johnston and Graham (1974); Schmidt <i>et al.</i> (1974)		
J11	$NO_2 + h\nu(110-245 \text{ nm}) \rightarrow NO + O(^{1}D)$	Dixon (1940); Hall and Blacet (1952); Nakayama <i>et al.</i> (1959)		
J12	$NO_2 + h\nu(245-398 \text{ nm}) \rightarrow NO + O$	Dixon (1940); Hall and Blacet (1952); Nakayama <i>et al.</i> (1959)		
J13	$H_2O_2 + h\nu(110-370 \text{ nm}) \rightarrow OH + OH$	Schürgers and Welge (1968); Paukert and Johnston (1972)		

TABLE I

the data of Hudson and Mahle (1972). The
Hudson and Mahle data include the values
of band oscillator strengths and rotational
linewidths for the Schumann-Runge band
system from which the transmittance and
rate of dissociation of molecular oxygen as
functions of temperature and oxygen col-
umn density have been calculated. For all
the photodissociation rates, the incident
solar flux is attenuated by O ₂ , O ₃ , H ₂ O,
CO ₂ , and CH ₄ absorption and is calculated
in 1-km altitude intervals between the sur-
face and 80 km. All of the photodissociation
calculations are diurnal averages for a
specified latitude and solar declination
based on the procedure of Rundel (1977).
Unless otherwise noted, all of the calcula-
tions in this paper are for a latitude of 30°
and for a solar declination of 0° (equinoctial
conditions).

In the model, the following species profiles are calculated using a timeindependent or steady-state species continuity equation, which combines the effects of both chemistry and vertical eddy transport: O_3 , nitrous oxide (N₂O), and the odd nitrogen species (NO_x) , which we define as the sum of nitric oxide (NO), nitrogen dioxide (NO₂), and nitric acid (HNO₃). The vertical distribution of the rapidly reacting atmospheric species (O, O(1D), H, OH, HO₂, and H₂O₂) is determined solely by chemistry, which for these species is considerably faster than transport. The production and loss terms for all of the species are summarized in the Appendix. The vertical distribution of the following species are specified as input parameters: H₂O (London and Park, 1974), CO₂ (Stewart and Hoffert, 1975), and CH₄ (Wofsy, 1976; Liu and Donahue, 1974).

In the present atmosphere the H_2O vapor mixing ratio above the tropopause is controlled by the tropopause temperature—the so-called "cold trap." A tenfold increase in the H_2O vapor mixing ratio above the

|--|

CHEMICAL REACTIONS

No.	Reaction	Rate constant $(cm^3 sec^{-1} or cm^6 sec^{-1})$	Reference
1	$O + O_2 + M \rightarrow O_3 + M$	$1.1 \times 10^{-34} \exp(510/T)$	Huie et al. (1972)
2	$O + O_3 \rightarrow 2O_2$	$1.9 \times 10^{-11} \exp(-2300/T)$	CIAP Monograph I (1974)
3	$O(^{1}D) + O_{3} \rightarrow 2O_{2}$	1.2×10^{-10}	Hudson (1977)
4	$O(^{1}D) + M \rightarrow O + M$	$2.0 \times 10^{-11} \exp(107/T)$	Hudson (1977)
5	$N_2O + O(^1D) \rightarrow 2NO$	5.5×10^{-11}	Hudson (1977)
6	$N_2O + O(^1D) \rightarrow N_2 + O_2$	5.5×10^{-11}	Hudson (1977)
7	$NO + O + M \rightarrow NO_2 + M$	$1.55 \times 10^{-32} \exp(584/T)$	Hudson (1977)
8	$NO + O_3 \rightarrow NO_2 + O_2$	$2.1 \times 10^{-12} \exp(-1450/T)$	Hudson (1977)
9	$NO_2 + O \rightarrow O_2 + NO$	9.1×10^{-12}	Hudson (1977)
10	$NO_2 + O_3 \rightarrow NO_3 + O_2$	$1.2 \times 10^{-13} \exp(-2450/T)$	Hudson (1977)
11	$NO + HO_2 \rightarrow NO_2 + OH$	8×10^{-12}	Hudson (1977)
12	$NO_2 + OH + M \rightarrow HNO_3 + M$	$2.76 \times 10^{-13} \exp{(880/T)}$	
		$(1.17 \times 10^{18} \exp \{222/T + [M]\})$	Hudson (1977)
13	$HNO_3 + OH \rightarrow NO_3 + H_2O$	8×10^{-14}	Hudson (1977)
14	$H_2O + O(^1D) \rightarrow 2OH$	2.3×10^{-10}	Hudson (1977)
15	$H + O_2 + M \rightarrow HO_2 + M$	$2.1 \times 10^{-32} \exp(290/T)$	Hudson (1977)
16	$H + O_3 \rightarrow OH + O_2$	$1.2 \times 10^{-10} \exp(-560/T)$	Hudson (1977)
17	$OH + O \rightarrow H + O_2$	4.2×10^{-11}	Hudson (1977)
18	$OH + O_3 \rightarrow HO_2 + O_2$	$1.5 \times 10^{-12} \exp(-1000/T)$	Hudson (1977)
19	$OH + OH \rightarrow H_2O + O$	$1 \times 10^{-11} \exp(-550/T)$	Hudson (1977)
20	$HO_2 + O \rightarrow OH + O_2$	3.5×10^{-11}	Hudson (1977)
21	$HO_2 + O_3 \rightarrow OH + 2O_2$	$7.3 \times 10^{-14} \exp(-1275/T)$	Hudson (1977)
22	$HO_2 + OH \rightarrow H_2O + O_2$	3×10^{-11}	Hudson (1977)
23	$HO_2 + HO_2 \rightarrow H_2O_2 + O_2$	2.5×10^{-12}	Hudson (1977)
24	$H_2O_2 + OH \rightarrow HO_2 + H_2O$	$1 \times 10^{-11} \exp(-750/T)$	Hudson (1977)
25	$H_2O_2 + O \rightarrow OH + HO_2$	$2.75 \times 10^{-12} \exp(-2125/T)$	Hudson (1977)

tropopause requires a tropopause temperature increase of 15°K (Visconti, 1977). It does not appear that the tropopause temperature is strongly affected by even large variations in O_3 (Manabe and Strickler, 1964). To determine the sensitivity of evolving O_3 to the choice of a H₂O vapor profile, we have performed calculations for the present atmospheric H₂O vapor mixing ratio and for H₂O vapor profiles equal to $\frac{1}{10}$ and 10 times the present H₂O vapor profile of London and Park (1974). Since it is beyond the scope of this study to evaluate the eddy diffusion coefficient profile of the paleoatmosphere (there is some debate in the literature concerning the eddy diffusion profile in the present atmosphere), we have used the profile of McElroy et al. (1974) in all of the calculations presented here.

Another specified input parameter is the temperature profile of the paleoatmosphere. Walker (1977) concluded that in the absence of O_3 , the paleoatmosphere had a troposphere much like the present one and a more or less isothermal stratosphere and mesosphere. Following the procedure of Ratner and Walker (1972), we did not attempt to evaluate temperature profiles in the stratosphere and mesosphere as O_2 and O_3 built up to present levels. Instead, we used two limiting cases. We used the temperature profile of the U.S. Standard Atmosphere (midlatitude spring/fall temperature profile) for oxygen levels equal to or greater than 10^{-1} of the present atmospheric level (PAL) of O₂ and a "primordial" temperature profile for O_2 levels less than 10^{-1} PAL. The "primordial" temperature linearly decreases from the tropopause (15 km) to the mesopause (90 km), resulting in an almost isothermal stratosphere. As noted by Ratner and Walker (1972), the effectiveness of O_3 absorption in producing a stratospheric temperature increase becomes smaller as the O_3 layer moves down to higher pressure levels and is negligibly small for O_3 density profiles corresponding to $O_2 \leq 10^{-1}$ PAL. These changes in stratopause temperature affect only the high-altitude O_3 profile. The effect of the two temperature profiles on the evolution of total O_3 will be discussed.

While we are fully aware of the limitations of one-dimensional photochemical models in trying to describe the threedimensional atmosphere, especially in light of the fact that the dominant atmospheric motions are horizontal, not vertical, we believe for the following reasons that a onedimensional model is an appropriate tool in our study: (1) the chemical evolution of the atmosphere can adequately be studied with a one-dimensional photochemical model, and (2) our lack of knowledge of motions and dynamics of the paleoatmosphere precludes a multidimensional study at the present time.

RESULTS

The Evolution of O_3

The vertical distribution of O_3 as O_2 evolved from 10^{-4} to 1 PAL and for an O₂ level of 2 PAL for 30° latitude and equinoctial conditions is shown in Fig. 1. Berkner and Marshall (1965) have suggested that atmospheric O_2 levels may have exceeded 1 PAL before the present atmospheric level was achieved. We see that as the O_2 level increased from 10^{-4} to 1 PAL, the height of the O_3 peak moved from about 5 to about 25 km. Our calculations indicate that maximum O_3 densities at the surface and through the troposphere were achieved for an O₂ level of 10^{-1} PAL. We calculate surface and tropospheric O₃ densities of about 5×10^{12} cm⁻³ for an O₂ level of 10⁻¹ PAL compared to densities of about 5×10^{11} cm⁻³ in the present atmosphere.

The large surface and tropospheric O_3 densities (about 5×10^{12} cm⁻³) in the paleoatmosphere found in this study were not found in the previous studies. Ratner and Walker (1972) reported maximum surface O_3 densities of about 1×10^{12} cm⁻³ based on their calculations using the Chapman reactions. Hesstvedt *et al.* (1974) found

FIG. 1. The vertical distribution of O_3 as a function of atmospheric O_2 level.

maximum surface O₃ densities of less than 3×10^{10} cm⁻³ for calculations assuming photochemical equilibrium (no transport) and found maximum surface O₃ of about 7×10^{11} cm⁻³ with the identical chemistry, but including vertical eddy transport. Blake and Carver (1977), assuming photochemical equilibrium in their study, reported maximum surface O_3 densities of 2×10^{12} cm⁻³ for the present atmosphere and smaller surface O_3 levels for reduced O_2 levels. The enhanced surface and tropospheric O₃ densities calculated in our study are due in part to the inclusion of vertical eddy diffusion. The importance of vertical eddy transport on the distribution of O₃, particularly below the O_3 peak, has been discussed by Nicolet (1975). The importance of vertical eddy transport is also clearly seen in the calculations of Hesstvedt et al. (1974). Using identical chemical schemes, they reported an increase in surface O₃ of more than 2 orders of magnitude for an O₂ level of 10⁻¹ PAL when vertical eddy transport was included in their calculations compared to their photochemical equilibrium calculations (no transport).

Of all tropospheric species, O_3 comes closest to being naturally present at toxic levels (Chameides and Walker, 1975). Many varieties of plant life are extensively damaged when exposed to O_3 concentrations only two or three times greater than the present average ambient concentrations. Chameides and Walker (1975) examined the possible variation of tropospheric O₃ over geological time. They considered how changes in the CH₄ production rate over geological time would affect the production of O_3 , and concluded that a tenfold increase in the CH₄ production rate would cause a fourfold increase in the tropospheric concentration of O_3 for the present level of O_2 . Our calculations indicate much larger tropospheric levels of O₃ than calculated by Chameides and Walker, corresponding to an O_2 level of 10^{-1} PAL. The toxic effects of these enhanced levels of tropospheric O_3 may have had significant adverse effects on both animal and plant life.

The evolution of the total O_3 column above the Earth's surface as a function of O_2 level is shown in Fig. 2. The calculation of Berkner and Marshall (1965) is shown as the broken line curve 1, and our calculation for 30° latitude and equinoctial conditions is shown as the solid line curve 2. The maximum in total O_3 column for an O_2 level of 10^{-1} PAL, which is contrary to the Berkner and Marshall results, was first pointed out by Ratner and Walker and later confirmed by Blake and Carver. The O₃ maximum for an O_2 level of 10^{-1} PAL resulted from the deeper penetration of solar ultraviolet radiation responsible for the production of O via the photodissociation of O₂. The enhanced number of third bodies (M) at the lower altitude favored the more efficient formation of O_3 via the three-body reaction: $O + O_2 + O_3$ $M \rightarrow O_3 + M$. Solar radiation ≤ 242 nm is responsible for the photolysis of O_2 and the production of O, and hence O_3 , via the three-body recombination, while solar radi-

FIG. 2. The total O_3 column above the Earth's surface as a function of atmospheric O_2 level: comparison of results of Berkner and Marshall (1965) with the present study. Curve 1 is from Berkner and Marshall; curve 2 is for 30° latitude, equinoctial conditions.

ation <1100 nm is responsible for the photolytic destruction of O₃. For an O₂ level of 10^{-1} PAL, the increased production of O₃ resulting from the enhanced penetration of solar ultraviolet radiation is not accompanied by a corresponding increase in the solar radiation responsible for the photolytic loss of O₃ and hence O₃ maximized. For O₂ levels less than 10^{-1} PAL, the photolytic destruction of O₃ exceeded the production of O₃ via the photolysis of O₂, and O₃ decreased with decreasing O₂ level.

The deeper penetration of solar ultraviolet radiation in the O₂-deficient paleoatmosphere resulted in the efficient photolysis of O₂ and O₃. The vertical profile of the photodissociation rate constant of J3 (O₂: 205–242 nm) for O₂ levels ranging from 10^{-4} to 2 PAL is shown in Fig. 3. We see that at 15 km, the photolysis rate constant of O₂ increased more than 6 orders of magnitude as O₂ was decreased from 1 to 10^{-4} PAL.

The photodissociation of O_3 was divided into three spectral intervals depending on the photolytic products, as shown in Table I: J4 (110–310 nm), J5 (310–360 nm), and J6 (360–735 nm). The value of J6 was found to be constant (about $1.8 \times 10^{-4} \text{ sec}^{-1}$) at all altitudes for all O_2 levels. The surface value of J5 was found to increase from about $2 \times 10^{-5} \text{ sec}^{-1}$ for an O₂ level of 10^{-1} PAL to a value of about $7 \times 10^{-5} \text{ sec}^{-1}$ for an O₂ level of 10^{-4} PAL. The largest increase in the O₃ photodissociation rate constant was found for J4, where the surface value increased from about $5 \times 10^{-7} \text{ sec}^{-1}$ for an O₂ level of 10^{-1} PAL to about $3 \times 10^{-3} \text{ sec}^{-1}$ for an O₂ level of 10^{-4} PAL. The effect of O₂ and O₃ for O₂ levels ranging from 10^{-4} to 2 PAL on the vertical distribution of J4 can be seen in Fig. 4.

For all of our O_3 calculations, we have assumed a zero flux of O_3 into the surface. Any nonzero flux condition requires knowledge of the composition and the surface chemistry at the Earth's surface, as well as knowledge of the land vs water distribution of the early Earth. An identical zero flux assumption was made by Liu and Donahue (1976) in their study of the O_3 budget of the Martian atmosphere (in which they calculated O₃ densities at the Martian surface not unlike those that we find for the O₂-deficient paleoatmosphere). Liu and Donahue showed that for the other extreme assumption, i.e., if every O_3 molecule striking the surface is lost to the surface, then the total O_3 column is only decreased by about 50%. Clearly, a surface flux value between the two extreme assumptions will result in less than a 50% decrease in the total O_3 column.

FIG. 3. The vertical distribution of photodissociation rate constant of J3 (O₂: 205-242 nm) as a function of atmospheric O₂ level.

FIG. 4. The vertical distribution of photodissociation rate constant of $J4(O_3: 110-310 \text{ nm})$ as a function of atmospheric O_2 level.

Due to the many uncertainties associated with the choice of a nonzero flux condition and the results of Liu and Donahue, we believe that the choice of the zero flux is a reasonable one in our calculations.

We have also examined the sensitivity of the total O_3 column to variations in the assumed model input parameters (NO_x, H_2O_y) and K_r). For reduced levels of NO_r (onetenth of the present atmospheric level), the total O₃ column was found to increase by 15, 30, and 100% for O_2 levels of 10^{-1} , 10^{-2} , and 10^{-3} PAL, respectively. For a reduced H_2O vapor profile (one-tenth of the present atmospheric H₂O vapor mixing ratio profile), the total O₃ column was found to increase by 3, 5, and 40% for O₂ levels of 10^{-1} , 10^{-2} , and 10^{-3} PAL, respectively. For an enhanced H_2O vapor profile (10× PAL), the total O₃ column was found to decrease by 5, 25, and 50% for O_2 levels of 10^{-1} , 10^{-2} , and 10⁻³ PAL, respectively. For an increased K_z profile [10 times the standard profile of McElroy *et al.* (1974)], the total O_3 column was found to increase by about 25% for an O_2 level of 10^{-1} PAL. No significant changes in the total O₃ column were found for the 10 K_z profile for O_2 levels less than 10⁻¹ PAL. Similarly, no significant changes in the total O_3 column were found for a $\frac{1}{10}$

 K_z profile for all reduced levels of O_2 . These calculations indicate that the total O_3 column in the O_2 -deficient paleoatmosphere was more sensitive to the NO_x level than to the H₂O vapor level. However, as discussed in the following section, N₂O (even at present atmospheric levels) was not an important source of NO_x in the O₂-deficient paleoatmosphere. In addition, it appears that cosmic rays and solar proton events were not important sources of NO_x in the O₂-deficient paleoatmosphere (Blake and Carver, 1977).

Our calculations suggest the following scenario for the factors that controlled the evolution of O_3 in the O_2 -deficient paleoatmosphere. For O_2 levels ranging from 10^{-4} to 10^{-2} PAL, the evolution of O_3 was primarily controlled by HO_x chemistry. Once the O_2 level reached 10^{-1} PAL, N_2O was no longer photolytically lost and became a significant source of NO_x . At this point, NO_x replaced HO_x as the major controller of the total O_3 column.

The Evolution of Nitrogen and Hydrogen Species

In the present atmosphere, N_2O is destroyed via photolysis yielding $N_2 + O(^1D)$ and via oxidation by $O(^1D)$ yielding 2 NO.

This production of NO is the dominant source of stratospheric NO_x . Our calculations indicate that for reduced levels of O₂ and corresponding O₃ levels, the photolytic destruction of N₂O becomes extremely efficient below 20 km, thereby reducing the main source of stratospheric NO_x . The combined effect of O_2 and O_3 levels on the photodissociation rate of N₂O (J8), which controls the photolytic destruction of N₂O, at the expense of NO formation, can be seen in Fig. 5. The fact that the surface and lower tropospheric values of $J(N_2O)$ for an O_2 level of 10^{-1} PAL are slightly less than the values for an O₂ level of 1 PAL results from the fact that total atmospheric O_3 maximizes for the 10⁻¹ PAL case. Inspection of Fig. 5 shows that in the present atmosphere, the photodissociation rate constant of N_2O is about 10^{-7} sec⁻¹ at about 35 km. For an O_2 level of 10^{-1} PAL this same photodissociation rate constant is achieved at about 25 km, at about 15 km for an O₂ level of 10^{-2} PAL, and at the surface for an O_2 level of 10^{-3} PAL. The profile of N_2O mixing ratio for various O₂ levels is shown in Fig. 6. Due to our lack of knowledge concerning the N₂O surface mixing ratio appropriate for the primordial atmosphere, we have used the present surface mixing ratio

FIG. 6. The vertical distribution of the N₂O mixing ratio as a function of atmospheric O₂ level. For all calculations the lower boundary mixing ratio was 3.2×10^{-7} .

 (3.2×10^{-7}) as the lower boundary for all of the calculations shown in Fig. 6. Inspection of Fig. 6 shows that comparable N₂O mixing ratios (10⁻⁸) are found above 55 km in the present atmosphere and below 20 km for an O₂ level of 10⁻² PAL.

This is the first study of the evolution of O_3 to include N_2O , the main source of stratospheric NO_x , which is the dominant O_3 destruction species in the present atmo-

FIG. 5. The vertical distribution of the photodissociation rate constant of N_2O (J8) as a function of atmospheric O_2 level.

sphere. In O₂-deficient atmospheres, we have found that N₂O (even at present atmospheric mixing ratios) produces much less NO_x than it does in the present atmosphere. In addition, we found that NO_x was not an important O₃ destruction species in O_2 -deficient atmospheres. We found that the rapid photolytic destruction of N₂O resulted in negligible production of NO_x via the oxidation of N₂O which, in turn, relegated NO_x catalytic destruction of O_3 , perhaps the major O₃ destruction process in the present atmosphere (Johnston, 1975), to a negligible role for reduced O₂ levels. In past studies N₂O was neglected due to biological considerations because it was assumed that nitrogen fixation and the subsequent dentrification of N₂O by soil bacteria was not important in the Earth's early history. Now, based on aeronomical considerations, we have found that N₂O was not important in controlling early O₃ levels, regardless of the level of bacterial dentrification of N_2O .

The effects of the O_2 and O_3 levels on the vertical distribution of the odd nitrogen species (NO + NO₂ + HNO₃) for the same surface mixing ratio (3.0×10^{-9}) are shown in Fig. 7. At a given altitude, the number density of the odd nitrogen species was

found to decrease with decreasing O_2 level. This is opposite from the effect we found for the hydrogen species (H, OH, and HO₂) where, at a given altitude, the number density was found to increase with decreasing O_2 and O_3 levels.

The efficient transmission of solar uv into the lower stratosphere and troposphere, which results in the rapid photolytic loss of O_3 and N_2O [and production of $O(^1D)$], at the same time results in the extremely efficient production of OH via the photolysis of H_2O and the oxidation of H_2O by $O(^1D)$. The combined effect of O_2 and O_3 on the photodissociation rate constant of H₂O (J7), which results in the photolytic production of OH, can be seen in Fig. 8. Inspection of Fig. 8 shows that in the present atmosphere, the photodissociation rate constant of H_2O is about 10^{-9} sec⁻¹ at about 45 km. For an O_2 level of 10^{-1} PAL, this photodissociation rate constant is achieved at about 30 km, at about 17 km for an O_2 level of about 10⁻² PAL, and at about 10 km for an O_2 level of 10^{-3} PAL. The profile of OH resulting from the photolysis of H₂O and from the reaction of O(1D) with H₂O for various O₂ levels is shown in Fig. 9. Inspection of Fig. 9 shows that OH concentrations in

FIG. 7. The vertical distribution of $NO_x(NO + NO_2 + HNO_3)$ as a function of atmospheric O_2 level. For all calculations the lower boundary mixing ratio was 3.0×10^{-9} .

FIG. 8. The vertical distribution of the photodissociation rate constant of H_2O (J7) as a function of atmospheric O_2 level.

the troposphere and lower stratosphere increased by about 4 orders of magnitude as the O_2 level was reduced from 1 to 10^{-4} PAL.

The increase (decrease) in total O_3 resulting from a decrease (increase) in the assumed H_2O vapor profile previously discussed is a direct consequence of decreased (increased) formation of OH via the photolysis and oxidation of H_2O . The percentage increase (decrease) in OH density results in an almost identical percentage decrease (increase) in O_3 density beginning about 10 km above the O_3 peak for all reduced O_2 levels.

CONCLUSIONS

Some of the new findings of our investigation are:

(1) Surface and tropospheric O_3 densities of the paleoatmosphere exceeded those of the present atmosphere by about a factor of

FIG. 9. The vertical distribution of OH as a function of atmospheric O_2 level.

10. Our calculations indicate maximum surface and tropospheric O_3 densities of about 5×10^{12} cm⁻³ for an O_2 level of 10^{-1} PAL, compared to surface O_3 densities of 5×10^{11} cm⁻³ in the present atmosphere.

(2) Surface and tropospheric OH densities of the paleoatmosphere exceeded those of the present atmosphere by several orders of magnitude. Maximum surface and tropospheric OH densities approached 10^9 cm⁻³ for an O₂ level of 10^{-4} PAL, compared to surface and lower tropospheric OH densities of about 10^6 cm⁻³ in the present atmosphere.

(3) In the O_2 -deficient paleoatmosphere, N_2O (even at present atmospheric levels) produces much less NO_x than it does in the present atmosphere.

(4) The evolution of O_3 in the paleoatmosphere was controlled by the efficient transmission of solar ultraviolet radiation through the lower stratosphere and troposphere. The enhanced level of ultraviolet radiation was responsible for the photolytic destruction of O_3 and N_2O and the enhanced production of the hydrogen species.

(5) The evolution of total O_3 as a function of O_2 level was fairly insensitive to the assumed model input parameters (N₂O level and temperature and H₂O vapor profiles).

We also verified the results of the earlier studies of Ratner and Walker, and Blake and Carver that O_3 evolved to a greater level for a given O_2 level than indicated by Berkner and Marshall; or alternatively, that O_3 evolved earlier in the Earth's history than suggested by Berkner and Marshall. The earlier rise of O_3 in the history of O_2 evolution undoubtedly had important implications for biological evolution on our planet. The precise implications must wait until we have a better understanding of the exact chronology for the evolution of O_2 .

APPENDIX: DESCRIPTION OF PHOTOCHEMICAL MODEL

The form of the time-independent or steady-state species continuity equation

which was used to calculate the vertical distribution of the transported species O_3 , N_2O , and NO_x is

$$\partial \phi_i / \partial z = Q_i(n_j) - L_i(n_j) M f_i,$$
 (1)

where f_i is the volume mixing ratio of the *i*th species, ϕ_i is the vertical flux (molecules cm⁻² sec⁻¹) of the *i*th species, $Q_i(n_j)$ are the chemical production terms and $L_i(n_j)Mf_i$ are the chemical loss terms of the *i*th species. The volume mixing ratio f_i is related to n_i , the number density of the *i*th species (molecules cm⁻³) by

$$f_i = n_i/M, \qquad (2)$$

where M is the total number density (molecules cm⁻³).

The vertical flux of the *i*th species ϕ_i can be expressed as

$$\phi_i = -K_z M[(\partial f_i / \partial z)], \qquad (3)$$

where K_z is the vertical eddy diffusion coefficient (cm² sec⁻¹). Substituting Eq. (3) into Eq. (1) we get

$$\frac{(\partial/\partial z)[K_z M(\partial f_i/\partial z)]}{= -Q_i(n_j) + L_i(n_j)Mf_i. \quad (4)$$

The vertical distribution of the rapidly reacting atmospheric species O, O(¹D), H, OH, HO₂, and H₂O₂ is determined solely by chemistry, which, for these species, is considerably faster than transport. For these species, we can neglect the transport terms of the continuity equation [the left side of Eq. (4)] and equate the chemical production to the chemical loss, and solve for the species mixing ratio f_i using the photochemical equilibrium assumption

$$f_i = Q_i(n_j)/L_i(n_j)M.$$
 (5)

 N_2O is produced by soil bacteria during dentrification. The main source of stratospheric NO is the oxidation of N_2O by O(¹D) (Bates and Hays, 1967; Crutzen, 1970; McElroy and McConnell, 1971). Assuming photochemical equilibrium, O(¹D) is calculated by

$$[O(^{1}D)] = J_{4}[O_{3}]/k_{4}[M].$$
(6)

Most of the N_2O is simply photolyzed to N_2 and $O(^1D)$.

For the N₂O continuity equation, the chemical loss term $L_i(n_j)$ in the general form of the continuity equation in Eq. (4) has the form

$$L_i(n_i) = \{J_8 + (k_5 + k_6)[O(^1D)]\}.$$
 (7)

The only stratospheric chemical source for NO_x is the oxidation of N₂O. Furthermore, there are no stratospheric chemical sinks for NO_x; all reactions simply involve interconversions of species in the NO_x family. Tropospheric rainout of HNO₃ is the major atmospheric sink for NO_x resulting in an NO_x surface mixing ratio of about 3×10^{-9} , an order of magnitude smaller than the stratospheric mixing ratio of NO_x. For the NO_x continuity equation, the chemical production term $Q_i(n_j)$ in the general form of the continuity equation in Eq. (4) has the form

$$Q_i(n_j) = \{2k_5[O(^1D)]\} [N_2O].$$
 (8)

These facts result in a simplified approach to the calculation of the vertical profiles of NO, NO₂, and HNO₃, by far the dominant species of NO_x within the stratosphere. The distribution of NO_x is determined using continuity Eq. (4). Next, NO_x is divided among NO, NO₂, and HNO₃ by the ratios (Shimazaki and Ogawa, 1974; and Hudson, 1977)

$$r_{1} = [\text{NO}]/[\text{NO}_{2}] \approx \{J_{12} + k_{9}[\text{O}]\}/\{k_{8}[\text{O}_{3}] + k_{11}[\text{HO}_{2}]\}, \quad (9)$$

$$r_{2} = \{[\text{NO}] + [\text{NO}_{2}]\} / [\text{HNO}_{3}] \approx \{(J_{9} + J_{10}) + k_{13} \cdot [\text{OH}]\} (1 + r_{1}) / k_{12} [\text{OH}] [\text{M}]. \quad (10)$$

The vertical distribution of O required in Eqs. (9) and (10) is calculated assuming photochemical equilibrium and given by

$$[O] = \{2(J_1 + J_2 + J_3)[O_2] + (J_4 + J_5 + J_6)[O_3] + J_{12}[NO2]\}/ \{k_1[O_2][M] + k_2[O_3] + k_{17}[OH] + k_{20}[HO_2] + k_{9}[NO_2]\}. (11)$$

Note that the ratios given in Eqs. (9) and an

(10) are determined by species other than nitrogen and nitrogen-oxygen compounds. Unfortunately, such a simplification does not exist in the hydrogen chemistry.

In the case of the hydrogen species there are many nonlinear terms of H, OH, HO₂, and H_2O_2 , and they are not necessarily smaller than the linear terms, although some of them are small at particular heights. Hence it is very difficult to specify concentration ratios which would be both simple and applicable to the entire stratosphere. Thus, the scheme used for the NO_x family is not applicable for the hydrogen species. However, in the stratosphere (and troposphere) H, OH, HO₂, and H₂O₂ are in photochemical equilibrium (London and Park, 1974). The vertical profiles of H, OH, HO_2 , and H_2O_2 can be calculated by the simultaneous solution of Eqs. (12)-(15) assuming photochemical equilibrium (London and Park, 1974)

$$[H] = \{k_{18}[O][OH] + J_7[H_2O]\} / \{k_{16}[O_3] + k_{15}[O_2][M]\}, (12)$$

$$[HO_{2}] = \{k_{18}[O_{3}][OH] + k_{24}[H_{2}O_{2}][OH] + k_{15}[H][O_{2}][M]\} / \{k_{20}[O] + k_{21}[O_{3}] + k_{22}[OH] + 2k_{23}[HO_{2}] + k_{11}[NO]\}, (13)$$

$$[OH] = (\{J_{7}[H_{2}O] + J_{15}[H_{2}O_{2}] + k_{14}[O(^{1}D)][H_{2}O]\} / \{k_{19} + k_{22}[HO_{2}]/[OH] + k_{23}[HO_{2}]^{2} / [OH]^{2} + k_{13}[HNO_{3}]/[OH]\})^{1/2}, (14)$$

$$[H_2O_2] = k_{23}[HO_2][HO_2]/k_{24}[OH] + J_{13}.$$
 (15)

A continuity equation for stratospheric and mesospheric O_3 , including the effect of NO_x and HO_x species, can be written with the following O_3 chemical production $[Q_i(n_j)]$ and loss $[L_i(n_j)]$ terms expressed as (Nicolet, 1975)

$$Q_i(n_j) = k_1[M][O_2][O]$$
 (16)

and

$$L_{i}(n_{j}) = \{J_{4} + J_{5} + J_{6} + k_{2}[O] + k_{8}[NO] + k_{10}[NO_{2}] + k_{16}[H] + k_{18}[OH] + k_{21}[HO_{2}]\}.$$
(17)

For a given level of O_2 , a "first guess" profile of O₃ was calculated using the Chapman scheme, identical to the procedure of Ratner and Walker (1972). The first guess O_3 profile was then used to calculate the 13 photodissociation rates shown in Table I. Next, the profiles of N_2O and NO_x $(NO + NO_2 + HNO_3)$ were calculated via the continuity equation, using a standard tridiagonal solver, based on the Gaussian without elimination method pivoting (Smith, 1965). The profiles of H, OH, HO₂, and H₂O₂ were next calculated simultaneously using the standard Newton-Raphson method (Smith, 1965). Next, the O_3 profile was recalculated via the continuity equation, including the effect of nitrogen and hydrogen species. The new O₃ profile was then used to recalculate the photodissociation rates and all of the species profiles. The iterative process continued until the convergence condition (a change in O_3 of less than 0.1% at all altitudes on successive iterations) was achieved.

ACKNOWLEDGMENTS

It is a pleasure to acknowledge Ms. Kathryn A. Smith of the Langley Research Center for her important contributions and expert support in the numerical and computational aspects of this study. John E. Hogge and John N. Shoosmith of Langley also assisted on various numerical aspects of this investigation. Marvin R. Libson of Integrated Services, Inc. (ISI), Hampton, Virginia, was a continual source of many enlightening discussions, and Fred M. Smith of Langley made most constructive comments in the preparation of this manuscript. We would also like to acknowledge the contributions of William R. Kuhn and Herschel Weil (both of the University of Michigan), Richard S. Stolarski (Goddard Space Flight Center), and the continued support provided by Robert H. Tolson and James D. Lawrence, Jr., of Langley during the course of this study.

REFERENCES

ACKERMANN, M. (1971). Ultraviolet solar radiation related to mesospheric processes. In Mesospheric Models and Related Experiments (G. Fiocco, Ed.), pp. 149-159. Reidel, Dordrecht.

- BATES, D. R., AND HAYS, P. B. (1967). Atmospheric nitrous oxide. *Planet. Space Sci.* 15, 189-196.
- BERKNER, L. V., AND MARSHALL, L. C. (1965). On the origin and rise of oxygen concentration in the Earth's atmosphere. J. Atmos. Sci. 22, 225-261.
- BLAKE, A. J., AND CARVER, J. H. (1977). The evolutionary role of atmospheric ozone. J. Atmos. Sci. 34, 720-728.
- CHAMEIDES, W., AND WALKER, J. C. G. (1975). Possible variation of ozone in the troposphere during the course of geologic time. *Amer. J. Sci.* 275, 737–752.
- CRUTZEN, P. J. (1970). The influence of nitrogen oxides on the atmospheric ozone content. Quart. J. Roy. Meteorol. Soc. 96, 320-325.
- DIXON, J. K. (1940). The absorption coefficient of nitrogen dioxide in the visible spectrum. J. Chem. Phys. 8, 157-160.
- GRIGGS, M. (1968). Absorption coefficients of ozone in the ultraviolet and visible regions. J. Chem. Phys. 49, 857-859.
- HALL, T. C., AND BLACET, F. E. (1952). Separation of the absorption spectra of NO₂ and N₂O₄ in the range of 2400-5000 Å. J. Chem. Phys. 20, 1745-1749.
- HART, M. H. (1978). The evolution of the atmosphere of the Earth. *Icarus* 33, 23-39.
- HASSON, V., AND NICHOLLS, R. W. (1971). Absolute spectral absorption measurements on molecular oxygen from 2640-1920 Å. 2. Continuum Measurements 2430-1920 Å. Proc. Phys. Soc. London At. Molec. Phys. 4, 1789-1997.
- HESSTVEDT, E., HENRIKSEN, S. E., AND HJARTAR-SON, H. (1974). On the development of an aerobic atmosphere. A model experiment. *Geophysica Norvegica* 31, 1–8.
- HUDSON, R. D. (1977). Chlorofluoromethanes and the Stratosphere. NASA Reference Publication 1010.
- HUDSON, R. D., AND MAHLE, S. H. (1972). Photodissociation rates of molecular oxygen in the mesosphere and lower thermosphere. J. Geophys. Res. 77, 2902-2914.
- HUIE, R. E., HERRON, J. T., AND DAVIS, D. D. (1972). Absolute rate constants for the reaction $O + O_2 + M \rightarrow O_3 + M$ over the temperature range 200–346°K. J. Phys. Chem. 76, 2653–2658.
- INN, E. C. Y., AND TANAKA, Y. (1953). Absorption coefficients of ozone in the ultraviolet and visible regions. J. Opt. Soc. Amer. 43, 870–873.
- JOHNSTON, H. S. (1975). Global ozone balance in the natural stratosphere. Rev. Geophys. Space Phys. 13, 637-649.
- JOHNSTON, H. S., AND GRAHAM, R. (1974). Photochemistry of NO_x and HNO_x compounds. *Canad. J. Chem.* 52, 1415–1423.
- JOHNSTON, H. S., AND SELWYN, G. S. (1975). Cross sections for the absorption of near ultraviolet radiation by nitrous oxide (N₂O). *Geophys. Res. Lett.* 2, 549-551.

- LIU, S. C., AND DONAHUE, T. M. (1974). The aeronomy of hydrogen in the atmosphere of the Earth. J. Atmos. Sci. 31, 1118-1136.
- LIU, S. C., AND DONAHUE, T. M. (1976). The regulation of hydrogen and oxygen escape from Mars. *Icarus* 28, 231–246.
- LONDON, J., AND PARK, J. H. (1974). The interaction of ozone photochemistry and dynamics in the stratosphere. A three-dimensional atmospheric model. *Canad. J. Chem.* 52, 1599–1609.
- MANABE, S., AND STRICKLER, R. F. (1964). Thermal equilibrium of the atmosphere with a convective adjustment. J. Atmos. Sci. 21, 361–385.
- MCELROY, M. B., AND MCCONNELL, J. C. (1971). Nitrous oxide: A natural source of stratospheric NO. J. Atmos. Sci. 28, 1095–1098.
- MCELROY, M. B., WOFSY, S. C., PENNER, J. E., AND MCCONNELL, J. C. (1974). atmospheric ozone: Possible impact of stratospheric aviation. J. Atmos. Sci. 31, 287-303.
- NAKAYAMA, T., KITAMURA, M. Y., AND WATANABE, K. (1959). Ionization potential and absorption coefficients of nitrogen dioxide. J. Chem. Phys. 30, 1180-1186.
- NICOLET, M. (1975). Stratospheric ozone: An introduction to its study. Rev. Geophys. Space Phys. 13, 593-636.
- PAUKERT, T. T., AND JOHNSTON, H. S. (1972). Spectra and kinetics of the hydroperoxyl free radical in the gas phase. J. Chem. Phys. 56, 2824–2838.
- RATNER, N. I., AND WALKER, J. C. G. (1972). Atmospheric ozone and the history of life. J. Atmos. Sci. 29, 803-808.
- RUNDEL, D. R. (1977). Determination of diurnal average photodissociation rates. J. Atmos. Sci. 34, 639-641.
- SCHMIDT, S. G., AMME, R. C., MURCRAY, D. G., GOLDMAN, A., AND BONOMO, F. S. (1974). Ul-

traviolet absorption by nitric acid vapor. *Nature* 238, 109.

- SCHÜRGERS, M., AND WELGE, K. H. (1968). Absorption Koeffizient von H_2O_2 Zwischen 1200 and 2000 Å, Z. Naturforseh. A. 23, 1508–1510.
- SHIMAZAKI, T., AND OGAWA, T. (1974). A theoretical model of minor constituent distributions in the stratosphere including diurnal variations. J. Geophys. Res. 79, 3411-3423.
- SMITH, G. D. (1965). Numerical Solution of Partial Differential Equations. Oxford Univ. Press, London.
- STEWART, R. W., AND HOFFERT, M. I. (1975). A chemical model of the troposphere and stratosphere. J. Atmos. Sci. 32, 195-210.
- The Natural Stratosphere of 1974. CIAP Monograph I. Final report prepared for the Climatic Impact Assessment Program, Dept. of Transportation, Washington, D.C.
- U.S. Standard Atmosphere (1962). U.S. Government Printing Office, Washington, D.C.
- VISCONTI, G. (1977). Hydrogen escape in the terrestrial atmosphere at low oxygen levels: A photochemical model. J. Atmos. Sci. 34, 193-204.
- WALKER, J. C. G. (1977). Evolution of the Atmosphere. Macmillan Co., New York.
- WALKER, J. C. G. (1978). The early history of oxygen and ozone in the atmosphere. *Pure Appl. Geophys.* 117, 498-512.
- WATANABE, K. (1958). Ultraviolet absorption processes in the upper atmosphere. Advan. Geophys. 5, 153-221.
- WATANABE, K., AND ZELIKOFF, M. (1953). Absorption coefficients of water vapor in the vacuum ultraviolet. J. Opt. Soc. Amer. 43, 753-755.
- WOFSY, S. C. (1976). Interactions of CH_4 and CO in the Earth's atmosphere. Ann. Rev. Earth Planet. Sci. 4, 441-469.