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The quantum-mechanical problem of a particle moving in a “*‘Dirac bubble potential” U(r) = (Afrg)8(r — r) is soived
exactly for both bound and continuum states by making use of partial wave Green’s functions Gy(r, ro k). Phase shifts
are expressed in a compact form related to those for an impenetrable sphere.

Recently I worked out a closed-form solution to
the Schrodinger equation for a hydrogen atom per-
turbed by a modification of the Fermi contact inter-
action [1]. Specifically, the perturbation added to the
Coulomb potential is

9C'=a8(r—r0)/47rr2, a=%m;-p,, )

in which u ¢ and @, are, respectively, electron spin and
nuclear spin magnetic moment operators. The nuclear
moment in this model is idealized as a magnetic shell
(or bubble) of radius rq. As ry is decreased to zero,
the nucleus approaches a point magnetic dipole and
eq. (1) reduces to the conventional Fermi contact
interaction operator K’ = a53(r).

We shall consider in this paper a simpler version
of the problem witfiout the Coulomb potential. The
results will add another to the small number of exactly
soluble quantum-mechanical problems. The Schrédinger
equation for a pariicle in a Dirac bubble potential is
written:

2
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Spherical symmetry allows the factorization ¢(r) =
R (1Y, (0,0). The radial equation can be arranged
to

e} 2
[kz +;—125;_ rzs— l(l’; 1 ]Rkl(")
= \frg)Ry(rg)d(r — rg), 3)

having defined
E=n2212m, A= mal277f12r0 . @)

We observe that eq. (3) is isomorphous with the de-
fining relation for the /th partial wave Green’s func-
tion

2,1

B 222 ’(’r“ D]Gl(r ro. K) =8 — ro)irg.
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In standard Sturm—Liouville form:

28 .,
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The solution to (6) regular at z = 0 with outgoing
wave behavior as z = oo is a product of spherical Bessel
functions:

G(r, rg, k) = —ikjkr RO (&rS,), Q)

—I(I+1)]GI k8(z — zg), z=kr.

in which r., and r_ are, respectively, the larger and
smalier of r, rg.

Outgoing wave solutions to the Schrodinger equa-
tion (3) with E > 0 can accordingly be represented in
the form

Ryy(r) = Afy(kr) —Nkrg R (ro)iykr )P Ers).  (8)

The first term (complementary function) is a solutivn
of the free-particle equation regular at r = 0. For con-
sistency at r = rg, the constant 4 must fulfil the con-
dition
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Afy(krg) = Rp(rg) 1 +iMergfykrg ) a§D(krg)]. ©)

The magnitude of R;,(ry) determines the normaliza-

tion of the wavefunction.
For r > ry, the eigenfunctions (8) can be expressed

in terms of phase shifts 5, as follows:
Ry (r) = const[j(kr)cos &; — m(kr)sin 5;]. (10)
With use of (9) it is shown that

ngkrg) 1
i[(k"o) MI‘O Ul(kro)lz )
As A —+ oo, the bubble becomes opaque and (11) re-

duces to the well-known result for scattering by an
impenetrable sphere [2.p. 38}:

ctn .El = Ill(kro)/il(kro). (12)

In the limit A > 0, on the other hand, one obtains
the Born approximation phase shifts [2, p. 89]

an

ctn 6[ =

=2 [ VOGP dr = ~Nerg litkrg)12-

#o a3)
Putting (12) and (13) into (11), one can express the
phase shifts 8, in the compact form

ctnd;=ctng +n; . 14)

For consideration of the £ < 0 bound statesof a
bubble potential, it is convenient to introduce the
variable

k =—ik, E=-8%3[2m. (15)
The Green’s function (7) can be written
G(r,rg. k) = —~x G(ar YN (xrs,) (16)

in terms of modified spherical Bessel functions de-
fined as follows:

I2) = @/22) P Ly 1y () = i Hiz),
U= faz) 2Ky (@) = ~LR{DE). an

Specifically, the first three functions of each type
are [3]

Ioz)= z~Ysinhz,
9y()=z"' coshz — z"%sinh z,
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I5@) ="t +3z73) sinh z — 3272 cosh z 18)
and
Koy)=z"le=

K 2= (z‘1 P

Aa(z) =L +3272 +3273)e~2. (19)
3

For bound states the Schrodinger equation (3) has the
solutions

R (r)=—hkrgR, (rg) 9/ (kr YK (xrs.), 20)

there being no complementary function for £ <0.
For r = ry, the consistency condition on eq. (20),

—Aerg O(erg) Kkrg) =1 @y

provides a transcendental equation determining the
eigenvalues of the problem.

For z 20, both 9 (z) and °X ,(z) are positive
definite. Thus (21) has real solutions corresponding
to bound states only when A < 0. This is physically
reasonable since the latter condition implies an az-
tractive potential. Eq. (21) can be cast in the form

zI 2) K ()= N z= Krg. 22)

From formulas given in ref. [3], the left-hand side is
verified to be a monotonically-decreasing function of
z (for z = 0) with a2 maximum value (27 + 1)~ L at
z=0.Asz >0 z9,)K,(z)~ 1[2=.

It follows that there exists one bound state for
each angular momentum, so long as

IA[>20+1. (23)

For A <21 + 1, eq. (22) has no solution withz >0,
hence no bound states will exist above some critical
value of

For =0, eq. (21) reduces to the simple form

(1 — e~ 202y = [A|~L. (24)
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