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The quantum-mechaniuJ problem of a particle moving in a “Dirac bubble potential” U(r) = (A/re) 6 (r - re) is solved 
exact& for both bound and continuum states by making use of partial wave Green’s functions Gl(r. ra k). Phase shifts 
are expressed in a compact form related to those for an impenetrable sphere_ 

Recently I worked out a closed-form solution to 
the Schrodinger equation for a hydrogen atom per- 
turbed by a modification of the Fermi contact inter- 
action [I] _ Specifically, the perturbation added to the 
Coulomb potential is 

BL’=&(r-r&/47& cY=$rJls’Br, (I) 

in whichpS and Br are, respectively, electron spin and 
nuclear spin magnetic moment operators. The nuclear 
moment in this model is idealized as a magnetic shell 
(or bubble) of radius ru_ As r,, is decreased to zero, 
the nucleus approaches a point magnetic dipole and 
eq. (1) reduces to the conventional Fermi contact 
interaction operator %’ = ag3(r). 

We shall consider in this paper a simpler version 
of the problem w&our the CouIomb potential- The 
results will add another to the small number of exactly 
soluble quantum-mechanical problems. The Schriidinger 
equation for a particle in a Dirac bubble potential is 
written: 

[ 
_3&u 3 6(r - ‘0) 1 Q(r) = E*(r). (3 

4n$ 

Spherical symmetry allows the factorization G(r) = 
Rkl(r) YIm (0, @)_ The radial equation can be arranged 
to 

= Wr0)Rkl(ro)s(r - ro), (3) 

having defmed 

We observe that eq. (3) is isomorphous with the de- 
fming relation for the Zth partial wave Green’s func- 
tion 

w+l) 
r2 1 Gl(r, ro, k) = 6(r - ro)/r& 

(5) 

In standard Strum--Lioutihe form: 

The sohrtion to (6) regular at z = 0 with outgoing 
wave behavior as z + m is a product of spherical Bessel 
functions: 

G,(r, ro, k) = -ikj&~)h~‘)(kr,), (7) 

in which r, and r, are, respectiveiy, the larger and 
smalier of r. ro_ 

Outgoing wave sohrtions to the Schrodinger equa- 
tion (3) wi*‘rh E > 0 can accordingly be represented in 
the form 

RW(r) = Aj#r) -ihkroR~~(ro)jl(Icr..)hl(l)(kr,). (8) 

The first term (complementary function) is a solution 
of the free-particle equation regular at r = 0. For con- 
sistency at r = ro, the constant A must fulfil the con- _ 
dition 
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Al-‘I&o) = R&$)[I + iAkr&tr,)p(kr())l- (9) 

The magnitude of R&0) determines the normalize- 
tion of the wavefunction- 

For r > ro, the eigenfuncrions (8) can be expressed 
in terms of phase shifts 6, as follows: 

RN(r) = const fjl(kr)cos Sr - q(kr)sin S,] _ (10) 

With use of (9) it is shown that 

As X --+ ==, the bubble becomes opaque and (I 1) re- 
duces to the well-known resuIt for scattering by an 
impenetrabIe sphere 12. p_ 38J: 

ctn ig[ = rz[(kro)/f-&-J). (12) 

h the Limit h + 0, on the other hand, one ob:ains 
the Born approximation phase shiits [2, p- 893 

2nzk - 
q1=-- 1 V(r)[l;(kf)J’r% = -Akro Ci&tro)12- 

ft2 () 

(13) 
Putting (12) and (13) into (1 I), one can express the 
phase shifts 6, in the compact form 

ctn 6, = ctn & + +” . 04) 

For consideration of the E < 0 bourrd states of a 
bubble potential, it is convenient to introduce the 
VariabIe 

f( G _x-, E = -rr*fcQin. (15) 

The Green’s function (7) can be written 

G&. ro. K) = --IL G&r< )X&r, ) (I6) 

in terms of modified spherical Bessel functions de- 
fined as follows: 

!C$(zj z (ir/2~)~~1,&2) = i-ljl(iz), 

7$(z) = (2/iiz)%[+&) = -ilhjf’(ti)_ (17) 

Specif’icaiIy, the first three functions of each type 
are 131 

slo(z) = z-l sinh z, 

31(z-) = 2-I cash z - z-’ sinh z, 
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g2(z) = (z-l + 3~~~) sinh z - 3~-~ cash z 

and 

9Co(z) = z-t e-’ 

(18) 

3c, (z) = (z-l + z-2)e-’ 

5X3(.) = (zzL1 f 3ze2 -t 3z-3)e-z_ (1% 

For bound states the Schriidinger equation (3) has the 
SoIutions 

&@I = --~~&l(~O) 4lKr&Xr(~r,), (20) 

there being no complementary function for E < 0. 
For r = ro, the consistency condition on eq. (ZO), 

--xKro 9+ro) 9C@-0) = I (21) 

provides a transcendental equation determining the 
eigenvalues of the problem- 

For -7 > 0, both g&z) and 9C &) are positive 
defmite. Thus (21) has real solutions corresponding 
to bound states onIy when X < 0. This is physically 
reasonable since the latter condition implies an at- 
tractive potenti& Eq, (21) can be cast in the form 

z~l(z)LX,(z)=IXl-l, ~t~fwo_ (=I 

From formulas given in ref. [3 j, the left-hand side is 
verified to be a monotonicaIIy-decreasing function of 
I (for z > 0) with a maximum value (Z + 1)-l at 
2 = o_ As z --t a_ zLQz)W i(Z) - I /?z. 

It folIows that there exists one bound state for 
each angular momentum, so long as 

(h[>ZZr- 1. (23) 

For IXj< Y f I, eq. (22) has no solution with z > 0, 
hence no bound-states will exist above some criticaI 
value of I_ 

For I = 0, eq. (21) reduces to the simpIe form 

(I - e-2”vo)/2Kr0 = Ikj-I_ (24) 
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