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ABSTRACT 

Much complex decision-making is performed routinely by the software of a computer 
system. It is appropriate to study more thoroughly the performance of this built-in decision- 
making, because it can strongly influence the efficiency of the entire system. One objective of 
compilers is to produce a reasonably efficient machine-language version of a user’s program. 
Traditionally, one of the best opportunities for improving the compiler-produced machine- 
language program has been in devising efficient policies for assigning quantities to the 
computer’s registers. The programs of interest here involve flow of control which can be 
represented by a tree structure. The problem of assigning index registers in such programs is 
formulated as a (nonserial) disc-Prolog problem. Following the resulting recursion 
equations leads to a pohcy which the compiler could follow to minimize costs. The policy 
decisions specify those steps in the program where particular quantities should be loaded or 
stored into registers. An example involving a brancbing program is solved by this method. 

A host of resource allocation problems are found in the operation of 
computer systems. Much of the decision-making in such environments is 

automated as part of the system software. Operating systems, for example, 
regularly manage the resources of the computer-conse~g memory, exploit- 

ing parallelism wherever possible, and scheduling the processors for high 
utilization. Compilers, as well, contain a wealth of decision-making apparatus 
which is routinely exercised as part of the process of translating user programs 
into machine language. Because of the high usage of such software, the quality 
of this built-in decision-making can strongly influence the efficiency of the 

entire system. 
Underlying the present study is the belief that some of the complex 

decision-making that is automated in computer software can benefit from 
more thorough analysis. This observation is certainly not new. Perhaps the 
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most outstanding example is the application of queueing theory in computer 
operating systems. The software of interest here is the compiler or language 
processor. An important objective in compiling is to consider the efficiency of 
the machine-language program that is generated. As a user’s program in, say, 
FORTRAN is being translated, decisions are made regarding the sequence of 
machine-language instructions which should be produced to correspond to 
each FORTRAN statement. During this compiling process, transformations are 
applied which change parts of the program into equivalent versions which will 
execute faster or consume less memory. It is suggested that this process of 
successive transformation of the program is a staged decision process whose 
behavior might be clarified by a dynamic-programming formulation. 

The availability of these so-called “program optimizations” is extremely 
important-especially to the construction of large application and systems 
programs which will be run on a regular basis. Their presence in compilers 
makes it feasible for programmers to use high-level languages and still get a 
relatively efficient program without having to resort to assembly language. 
Structured programming, which puts a premium on clarity and organization, 
can sometimes lead to inefficient programs. With the program optimizations 
automated, structured programmin g can be safely pursued and its benefits 
realized. 

From the earliest compilers until the present, register assignment has 
offered one of the best opportunities for program optimization. The general 
problem is to describe rules by which a compiler can make the beat possible 
use of a computer’s available registers. When several program statements are 
scanned, the compiier can note what values are required in each of the 
calculations. This pattern of usage suggests a plan for keeping certain values in 
high-speed registers over a span of several statements. In this way, the program 
will run faster because the required quantities will not have to be fetched from 
memory. Of course, the number of registers is limited; so the problem becomes 
one of devising a schedule for loading these values into registers-ideally, a 
schedule which permits the fastest possible execution of the program. The 
problem has been widely studied in several versions, depending on such factors 
as the range of the allocation (over a few statements or an entire program), the 
existence of common subexpressions, and practical considerations of im- 
plementation on a particular machine. 

Registers which are used for indexing are the special concern here. Indexing 
is a valuable programming technique for operating on data which are arranged 
in storage in some systematic way, It can help reduce the running time of the 
machine-language programs produced by compilers. The problem of assigning 
index registers has been studied by Worwitz et al. [ 1] and Kennedy [2]. In [l], a 
procedure was given for specifying which quantities should occupy index 
registers at each point in a program so that the number of memory references 



REGISTER ASSIGNMENT IN TREE-STRUCTURED PROGRAMS 85 

Fig. 1. Examples of tree structures. 

(from U)AD and STORE operations) is minimized. The programs in [l] involved 

only a straight-line sequence of statements, i.e., no branches or loops. More 
recent work in [2] improved the procedure and suggested extensions to pro- 

grams containing simple loops. 
The major departure here is to consider programs which possess nonlinear 

flow of control-the branches which are found in real computer programs. In 
FORTRAN terms, we can now include some programs which contain conditional 
and branching statements like IF and GO TO. The programs we study are those 

whose flow of control can be represented as a tree structure. Figure 1 gives 
some examples. To solve the index register allocation problem in such pro- 

grams, a new methodology, dynamic programming, is introduced. 

1. THE INDEX-REGISTER ASSIGNMENT PROBLEM 

We are interested in those computers which provide some number of 
registers which can be used for indexing. Two types of instructions are of 

interest. One type simply refers to the contents of an index register. For 
example, 

ADD 1 ,K(2) 

would mean that two quantities are to be added together. One operand is in 

register 1. The second operand is in memory at the address given by K plus the 
contents of index register 2. The second type of instruction modifies the 
contents of the index register. For example, if we added one to the contents of 
index register 2, then the instruction would be of the second type. Where there 
are more indices than registers, the problem is to specify what indices should 

occupy index registers at each step in the program. 

Because our only concern is with the references to indices in a program, we 
use “program” to mean a sequence of such references. Where the index has 
been modified, an asterisk is placed next to it. A program, assuming one 
reference per step, might look like the following: 
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This program tells us that index x1 is referenced at step 1, index x3 is 
referenced and modified at step 2, and so on. If we denote by P(i) the index 
referenced at the ith step, then P(1) = xi, P(2) 3 x3*, . . . , P(8)= x2. 

We assume that the machine has NR index registers, and we define a 
register configuration Qi to be an unordered set of NR indices which occupy the 
index registers at step i in the program. An allocation A for a n-step program P 
is a sequence of configurations, 

A =(QpQzv..-rQ& 

Every legal abdon for f requires that the index called for at step i in the 
program must be in a register at that step. In our notation, 

P(I‘) E Qj, lGi<n. 

The problem then is this: when there are more indices than index registers, 
what procedure will provide an allocation which satisfies the condition above 
and minimizes costs? Costs will be determined in the same way as earlier 
works [ 1,2]; and we begin by assigning a memory location to each index. 
Because some indices may be modified at steps in the program, we can identify 
an index in a register as being in one of two states. An index is JXZYS&XJ if the 
value of the index in the index register is the same as the value in memory. If 
the value of the index in a register has been modified since the index was last 
loaded from memory, the index is acfiue. For an active index, the value in the 
index register is different from the value in memory. If we decide to remove an 
active index from a register, we must store its current value in its memory 
location” To remove a passive index, no ‘%tore” operation is necessary because 
the two values agree. 

If we assign a cost of one unit to a load or a store operation, we can easily 
list all of the possible elementary costs: 

(a) Replace an active index. Cost -2 (store the value of the active index 
and load the new index). 

(b) Replace a passive index. Cost= 1 (load the new index). 
(c) Change an index from active to passive. Cost= 1 {store the value of the 

active index). 
(d) Change an index from passive to active. Cost =0 (no memory references 

required). 

If a + is appended to an active index, then xj* is an active index and xj is a 
passive index. 

The cost c(Q,,&) of changing from configuration Q, to configuration Qa 
involves simply identifying occurrences of each of the four cases above, For 



example, to change from Ql=(x~,x+$,xJ to Q~=(xl,xZ+,x~,x& we 
change xt to x1 (cost = 1)1 change x2 to x2 (cost =0), replace xc (cost -2), 
and replace X, (cost = 1). In this example, c( Q,, Q2), the total cost of changing 
from Q1 to Q2, is 4. 

The cost of an allocation A is simply the sum of the costs of the successive 
changes of configurations: 

cost@)= $, c(Qi-~,Qi), 

where Q0 is some initial cogitation, 
While the number of legal configztrations at each step is finite, it may be 

impracticaily large. A result of Rorwitz et al. [I] allows us to restrict the 
number of configurations we must evaluate and still be certain that we will 
find the optimal allocation from this reduced collection. The restriction in- 
volves considering only those configurations at step i which can be reached 
from a cogitation at step i - 1 by a ~~~~~ c.knge. If Qj_ f is a confiwa- 
tion at step i- 1, the configurations which can be reached from Qj_ g by 
minimal change are the following: 

(1) A configuration Qi which is identical to Qi_ ,. 
(2) A configuration Qi which differs from Qi_ 1 only in that Pfi) is passive 

in QS_ I and active in Qz. 

(3) All configurations Qi which differ from Qi-1 only in that P(i), which is 
not in Q __ ,, appears in Q, replacing one of the indices in Qi_ ,. To find the 
optimal allocation we will use the minimal-change definition above, beginning 
with some initial register configuration QW To Q0 we assign a weight of zero. 
Using the minimal-change rule, we generate configurations at step i, associat- 
ing a weight and a parent pointer to each configuration. The parent pointer for 
configuration Qi, p(a), points to the configuration at step i - 1 from which Qj 
was reached by minimal change. The weight of a configuration Qi is 

The weight of a configuration is defined in the context of a straight-line 
program. When the flow of control involves branches, this definition will 
require modification. 

The index-register allocation problem will now be recast as a dynamic- 
programming problem. The interest at this point is on the motivation for such 
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a model and the adequacy of dynamic programming as a methodology. The 
characteristics of an archetype dynamic program will be presented briefly, 
followed by the corresponding element in the index-register allocation prob- 
lem. 

Gur first observation is that the problem is divisible into stages, which are 
the steps in the program. There is a policy decision at each stage: replacing an 
index or changing the state of an index. Further, there are a number of states 
associated with each stage-the states being the legal register configurations at 
each step. Because there are two problem statements, we will be using two 
names to describe the same thing: step in the program and stage in the process; 
and likewise, con&urution and state. A feature of dynamic-programming 
models is that the policy decision at each stage transforms the current state 
into a state associated with the next stage. The decision in the register 
allocation problem accomplishes this transformation, with the “association 
with a stage” provided by the requirement that P(i) E Qi, I< i < n. The Markov 
property that an optimal policy for the remaining stages must depend only on 
the current state is satisfied because only the current configuration can affect 
remaining allocations. Finally, a recursive relationship w(Q) is available to 
identify the optimal policy. 

In the definition of w(Qi), the weight of a configuration, the minim&&on 
over p(Qi) represents decision inversion [3] and arises from the following 
situation. Even with the minimal-change principle, there are often several ways 
of generating the same configuration. For example, on a machine with two 
index registers, suppose that three legal configurations were x,x2, x1x3, and 
x1x4, each with a weight of 5. At the next step, P(i) = xb, so that xc must be 
present now in every configuration. By minimal changes, the configuration 
x,x: can be reached by each of the three configurations above. But the weight 
associated with x,x: is 5, because 

w(x,x:)=min{ w(x,x2) + c(x,x2,x&+), 

=min{5+ 1,5+0,5+ I} 

=5. 

A condition for the use of dynamic programming is the decomposition of 
the cost function. In index-register allocation, the cost is simply the number of 
memory references needed to change configurations. Such an additive cost 
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Fig. 2. Flow graph of diverging branch. 

function is separable and monotonic, which are sufficient conditions for 

decomposition [3]. 
The reason for using dynamic progr amming is that it provides a unified 

methodology for handling the index-register allocation problem in programs 
with nonserial flow of control. To represent such programs, we use control 

flow graphs. A flow graph is a triple G=(N, E,n,J where 

(i) N is a finite set of nodes, 
(ii) E C N X N is a finite set of edges, 

(iii) n,~ N is the initial node. 

The nodes in G represent basic blocks, that is, sequences of instructions which 

are executed in order. The edges represent possible transfers of control from 
one block to another. 

In tree-structured programs the flow pattern which dominates is the diverg- 

ing branch. The flow graph for the diverging branch in Fig. 2 might corre- 

spond to a MGICAL IF statement in FORTRAN. A tree-structured program would 

be composed of straight-line sequences and, in general, several occurrences of 
this diverging branch structure, with possibly more branches than just two. 

The diverging branch structure of Fig. 3 suggests the dynamic-programming 
formulation of the problem. In Fig. 3, the squares represent the stages (or 

Fig. 3. Diverging branch as a dynamic program. 
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program steps). The state variables Qi capture the essential information and 
describe the input and output at each stage. At stagej, the process branches. 

The recursion equations from the last section require some alteration in 
view of this nonserial structure. In keeping with earlier studies of diverging 

branch systems [3], the solution will proceed backward. The diverging branch 
stages of Fig. 3 will be analyzed first, beginning with stage km and continuing 
until values for w(Qkl) are found. Next, stages, n, n - 1,. . . j+ 1 will be 
processed, resulting in values for w(Q,+ i). The returns from these two branches 

will be combined at stagej, where another straight-line segment fromj to 1 will 
complete the solution. 

The procedure will use the minimal change states at each stage. However, 

because of the backward direction, the minimization at each stage will take 
place over all &rug&err d(Q) of a given configuration Qi, i.e., those configura- 

tions (at the next stage) which can be reached by minimal change from the 

given configuration. 
The recursion equations at each step are as follows: 

(1) Stages km,km-I ,..., kl, 

(2) Stages n,n- l,..., j+ 1, 

w(Qn)= $2) c(Q,4Q,))> I 

W(Qi)= dej {C(Qi,d(Qi))+W(d(Qi))}, 

(3) Stage j, 

i=m- l,..., 2,l. 

i=n-I ,...j+l. 

w(Qi)= dFj {c(ei,d(ei))+w(4+1(ei))+w(dk,(ei))}. 
I 

(4) Stagesj- l,..., 2,1, 

W(Q)= de) {~(Qi~4Q~))+w(~(Qi))}~ i=j-l,..., 2,l. 
I 

When the two branches diverge at stepj, the set of daughters d(QJ contains 
configurations associated with step j+ 1 or kl. To identify these two groups, 

we denote them by 4+,(Q,) and d,,(Qi) in the recursion equation at stage j 

above. 
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g& kl 12 k3 k4 k5 

SfEPl 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ,6 

Fig. 4. Diverging branch example program with required index at each step. 

3. A DIYERGING BRANCH EXAMPLE 

The diverging branch in Fig. 4 involves five indices on a two-register 
machine. We begin by generating the minimal-change states, shown in Table 1, 
at each stage in the process. We follow the solution procedure above, begin- 
ning with stage k5 of the diverging branch. The results for the first three stages 
are displayed in Table 2 and explained below. 

TABLE 1 
Minimal-Change States for Diverging Bran& Example 

SY, 

Required 
index 

1 x: 
2 X3 
3 x2 

4 X5 
5 xf 
6 X2 
7 X4 

8 X4* 
9 X3 

10 x2 

11 x: 

12 x, 
13 x; 
14 x4 

15 x3 

16 X5 

&I X: 

k2 4 
k3 xt’ 
k-4 x: 
k5 x3 

Xz’ 
4x3 
4x3 
4x5 
x:x2+ 
x:x2+ 

X,+X4 
x:x2 

X:X3 

X,+X2 
x:x4’ 

x:x: 

x;x; 

XTX4 

X,+X3 

X:X5 

x,+x: 

x:x; 

x:x: 

x2+x3+ 

X3X; 

X3X5 

X*+X5 

X2X5 

X;X4 
X&T,: 

X:X3 

X:X3 
X:X: 

XIX.? 
X:X: 

X$X: 

X3X4” 

&+X5 

x,+x3 
x2X3 

X2X4 

x2x: 

X3X4+ 

x2xq+ 

X3X$ 

X,X2+ 

X,X: 

X2+X4 

X$X3 

X:X5 

x?“x: X:X; 

XFXZ x:x: 

x,+x: X:X; 

x2+x5 X:X5 

X2+X3 X,+X3 

X,+X2 

X4X3 

X:X5 

x2x3 

x2x3 

x2x.i+ 

XIX3 

x2+x3 

X3X4 

X3X4 

X4X5 

X2X: 

X,+X2 

x2+x3 

X2X5 

X3X.: 

X3X4 

X3Xq+ 

X3X5 

X2X5 

X:X3 

X1X2 XIX5 

X2+X3 

XIX4 X4% 

X1X3 X3% 

X1X5 X3Xs 

X3X5+ 

X:X3 

X3Xs 

X3X5 
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TABLE 2 
Recursion Analysis for Stages k5, k4, k3 

Required Daughter 
Stepi index States Q, Weight WQ,) s~t=W,Y 

k5 x3 QA = x:x; 2 

Q,25= x2+x5 1 

Q,',= x,+x5 1 

Qh 4+x5 1 

Qk5=xsxs 0 

k4 

k3 

xs Q.& - ~2’6 0+2=2 Q& - x2+x: 

Qkd - x:x2+ 2+1=3 Q& = X:Xs 

Qkd - X2+X4+ 2+1=3 Qh - X2+X5 

Qk4 - X:X3 1+1=2 Qis - X2+X5 

Xz’ Qk’3 - X :Xs+ 2+2=4 Q& - x2+xs+ 

Q,‘, = X:X2+ 0+3-3 Q,$ - x,+x2+ 

Q,‘, - X:X4+ 2+3=5 Q; - x,+x2+ 

Q.t3-X:X2 0+3-3 Q&-x,+x2+ 

Q,’ - X:X3 1+3-4 Q& - x,+x2+ 

Q& = x3x; 

&- XzX3 

&-x,+x3 

Q,& - x3xq+ 

&YX3Xs 

Wust contain the required index. 

If we expand on one of the entries in Table 2, it should clarify the use of the 

recursion equations. Under step k3, consider the first state Q& At step k3, the 
index xf is required, so it must be included in all of the configurations Qk.+ We 

have already, in the previous step, obtained the minimal cost weights w(Q&, 

for configurations we are proceeding one step backward, seeking the 

minimal costs in te of configurations Qks. For state Qis=x,+xc the weight 

of 4 arises from th 

w(x:x:)=min{c(x:x:,x:x:)+w(x:,x:), 

c(x:x:,x:x:)+ w(x:,x:)) 

=min{2+3,2+2} 

=4. 

The daughter state which corresponds to this minimum value is a\= 
x:x:. The analysis continues in like manner through the diverging branch 
until values for w(Q,,) are obtained. 
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The key stage is 9, at which point the two branches are combined. The 
analysis at stage 9 is summarized in Table 3. 

After stage 9, we are left with a straightforward serial analysis which follows 
the recursion equations given earlier. We conclude with a weight w(Q,) = 20. 

The interpretation is that there exists a sequence of decisions which will allow 
execution of the example program and require only 20 references to memory 
for the loading and storing of indices. 

The solution-that is, the sequence of decisions which would achieve this 
minimal cost-is available by tracing through the chain of daughter pointers 
at every stage. The results of the recursion analysis were not presented here for 
most of’the stages. However, when these results are included, we arrive at the 
solution in Fig. 5. The solution is expressed as the state (configuration) which 
must be present at each step in the program. The decisions which lead to that 
optimal solution are listed in Fig. 5 next to the program step at which each 

$TEJ 

0 e 

1 x2+ 
2 x2+x3 
3 x2+xJ 
0 x2+x5 
5 x,+x*+ 

6 x,+x2+ 

7 ?*% 

G x,+x4+ 

9 Y+% 

OECISIM( 

LOAD x2 

LOAD x3 

LOAD '5 

LOAOY., 

STORE "2;LMD x4 

STORE xe;LOAO x3 

EEp CONFIGURATION w SrEp CWFIGURATKW DECISION ~- 

I" xl+x2 STORE x* kl X,+X5+ LOM x5 

11 x,+x4+ LOAD x4 k2 X,+xS+ 

12 x,+x4+ k3 x2+x5+ 
STORE x, 
LOAO x2 

13 

14 

+ + 
X2 % 

STORE x, 
LOAD x2 

k4 x2*x5+ 

x2+x4* k5 +x X2 3 
STORE x3 
LOAD x5 

15 x3 x4+ 
STORE x2 
LOAO x3 

16 %+X5 LOM "5 

CLMJLATIVE 
MEUJRY 

REFEREWCES 

0 

1 

2 

2 

3 

4 

4 

6 

6 

8 

10 

11 

13 

15 

17 

19 

20 

Fig. 5. Optimal solution to diverging branch example. 
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TABLE 3 
Recursion Analysis at Stage 9 

Q; -x1+x: 2+7+5-14 XC% 
Q; - x2+x$ 2+6+6=14 xc% 

Q;=v,+ 1+6+7-14 %-c 

Qs*-x,+x, 1+6+7-14 x3x; 

Qs'-x,x,' 0+6+7-13 x+2 

~Required index: x,. 

bc(Q~,(t(Qs))+~~l~Q~)+~~,tQ,>,-wtQg>- 
=Must contain required index. 

decision should be made. Alongside is the cumulative number of memory 
references required, totaling 20 in agreement with w( Q,). 

4. SEVERGL DIVERGING BRANCHES 

Tree-structured programs may divide into more than just two branches at a 
point in the program. Many languages have m~tiway switch statements, 
breaking a single program flow path into many possible paths. Examples 
include the computed GO TO or -c IF statements of FORTRAN, or the 
CASE statement in ALGOL. 

With several diverging branches, the recursion analysis is no more difficult 
than that shown above. At the diverging stage, the weight simply includes each 
of the individual stage costs plus the weights from each of the separate 
branches. 
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