
Z~F~R~ATZ~~ SCIENCES 18, 83-94 (1979) 83

Register Assignment in Tree-Sm Prog~~

WILLIAM W. AGRESTI

Sck01 of Engirmring, Unioersiry of ~~c~isa~~ar~~
49OI Ewrgreen R@ Dearborn, Michigan 48128

Communicated by John M. Richardson

ABSTRACT

Much complex decision-making is performed routinely by the software of a computer
system. It is appropriate to study more thoroughly the performance of this built-in decision-
making, because it can strongly influence the efficiency of the entire system. One objective of
compilers is to produce a reasonably efficient machine-language version of a user’s program.
Traditionally, one of the best opportunities for improving the compiler-produced machine-
language program has been in devising efficient policies for assigning quantities to the
computer’s registers. The programs of interest here involve flow of control which can be
represented by a tree structure. The problem of assigning index registers in such programs is
formulated as a (nonserial) disc-Prolog problem. Following the resulting recursion
equations leads to a pohcy which the compiler could follow to minimize costs. The policy
decisions specify those steps in the program where particular quantities should be loaded or
stored into registers. An example involving a brancbing program is solved by this method.

A host of resource allocation problems are found in the operation of
computer systems. Much of the decision-making in such environments is

automated as part of the system software. Operating systems, for example,
regularly manage the resources of the computer-conse~g memory, exploit-

ing parallelism wherever possible, and scheduling the processors for high
utilization. Compilers, as well, contain a wealth of decision-making apparatus
which is routinely exercised as part of the process of translating user programs
into machine language. Because of the high usage of such software, the quality
of this built-in decision-making can strongly influence the efficiency of the

entire system.
Underlying the present study is the belief that some of the complex

decision-making that is automated in computer software can benefit from
more thorough analysis. This observation is certainly not new. Perhaps the

OElsevia North Holland, Inc., 1979 0020-0255/79/040g3-12gOl.75

84 WILLIAM W. AGRESTI

most outstanding example is the application of queueing theory in computer
operating systems. The software of interest here is the compiler or language
processor. An important objective in compiling is to consider the efficiency of
the machine-language program that is generated. As a user’s program in, say,
FORTRAN is being translated, decisions are made regarding the sequence of
machine-language instructions which should be produced to correspond to
each FORTRAN statement. During this compiling process, transformations are
applied which change parts of the program into equivalent versions which will
execute faster or consume less memory. It is suggested that this process of
successive transformation of the program is a staged decision process whose
behavior might be clarified by a dynamic-programming formulation.

The availability of these so-called “program optimizations” is extremely
important-especially to the construction of large application and systems
programs which will be run on a regular basis. Their presence in compilers
makes it feasible for programmers to use high-level languages and still get a
relatively efficient program without having to resort to assembly language.
Structured programming, which puts a premium on clarity and organization,
can sometimes lead to inefficient programs. With the program optimizations
automated, structured programmin g can be safely pursued and its benefits
realized.

From the earliest compilers until the present, register assignment has
offered one of the best opportunities for program optimization. The general
problem is to describe rules by which a compiler can make the beat possible
use of a computer’s available registers. When several program statements are
scanned, the compiier can note what values are required in each of the
calculations. This pattern of usage suggests a plan for keeping certain values in
high-speed registers over a span of several statements. In this way, the program
will run faster because the required quantities will not have to be fetched from
memory. Of course, the number of registers is limited; so the problem becomes
one of devising a schedule for loading these values into registers-ideally, a
schedule which permits the fastest possible execution of the program. The
problem has been widely studied in several versions, depending on such factors
as the range of the allocation (over a few statements or an entire program), the
existence of common subexpressions, and practical considerations of im-
plementation on a particular machine.

Registers which are used for indexing are the special concern here. Indexing
is a valuable programming technique for operating on data which are arranged
in storage in some systematic way, It can help reduce the running time of the
machine-language programs produced by compilers. The problem of assigning
index registers has been studied by Worwitz et al. [1] and Kennedy [2]. In [l], a
procedure was given for specifying which quantities should occupy index
registers at each point in a program so that the number of memory references

REGISTER ASSIGNMENT IN TREE-STRUCTURED PROGRAMS 85

Fig. 1. Examples of tree structures.

(from U)AD and STORE operations) is minimized. The programs in [l] involved

only a straight-line sequence of statements, i.e., no branches or loops. More
recent work in [2] improved the procedure and suggested extensions to pro-

grams containing simple loops.
The major departure here is to consider programs which possess nonlinear

flow of control-the branches which are found in real computer programs. In
FORTRAN terms, we can now include some programs which contain conditional
and branching statements like IF and GO TO. The programs we study are those

whose flow of control can be represented as a tree structure. Figure 1 gives
some examples. To solve the index register allocation problem in such pro-

grams, a new methodology, dynamic programming, is introduced.

1. THE INDEX-REGISTER ASSIGNMENT PROBLEM

We are interested in those computers which provide some number of
registers which can be used for indexing. Two types of instructions are of

interest. One type simply refers to the contents of an index register. For
example,

ADD 1 ,K(2)

would mean that two quantities are to be added together. One operand is in

register 1. The second operand is in memory at the address given by K plus the
contents of index register 2. The second type of instruction modifies the
contents of the index register. For example, if we added one to the contents of
index register 2, then the instruction would be of the second type. Where there
are more indices than registers, the problem is to specify what indices should

occupy index registers at each step in the program.

Because our only concern is with the references to indices in a program, we
use “program” to mean a sequence of such references. Where the index has
been modified, an asterisk is placed next to it. A program, assuming one
reference per step, might look like the following:

86 WILLIAM W, AGRESTI

This program tells us that index x1 is referenced at step 1, index x3 is
referenced and modified at step 2, and so on. If we denote by P(i) the index
referenced at the ith step, then P(1) = xi, P(2) 3 x3*, . . . , P(8)= x2.

We assume that the machine has NR index registers, and we define a
register configuration Qi to be an unordered set of NR indices which occupy the
index registers at step i in the program. An allocation A for a n-step program P
is a sequence of configurations,

A =(QpQzv..-rQ&

Every legal abdon for f requires that the index called for at step i in the
program must be in a register at that step. In our notation,

P(I‘) E Qj, lGi<n.

The problem then is this: when there are more indices than index registers,
what procedure will provide an allocation which satisfies the condition above
and minimizes costs? Costs will be determined in the same way as earlier
works [1,2]; and we begin by assigning a memory location to each index.
Because some indices may be modified at steps in the program, we can identify
an index in a register as being in one of two states. An index is JXZYS&XJ if the
value of the index in the index register is the same as the value in memory. If
the value of the index in a register has been modified since the index was last
loaded from memory, the index is acfiue. For an active index, the value in the
index register is different from the value in memory. If we decide to remove an
active index from a register, we must store its current value in its memory
location” To remove a passive index, no ‘%tore” operation is necessary because
the two values agree.

If we assign a cost of one unit to a load or a store operation, we can easily
list all of the possible elementary costs:

(a) Replace an active index. Cost -2 (store the value of the active index
and load the new index).

(b) Replace a passive index. Cost= 1 (load the new index).
(c) Change an index from active to passive. Cost= 1 {store the value of the

active index).
(d) Change an index from passive to active. Cost =0 (no memory references

required).

If a + is appended to an active index, then xj* is an active index and xj is a
passive index.

The cost c(Q,,&) of changing from configuration Q, to configuration Qa
involves simply identifying occurrences of each of the four cases above, For

example, to change from Ql=(x~,x+$,xJ to Q~=(xl,xZ+,x~,x& we
change xt to x1 (cost = 1)1 change x2 to x2 (cost =0), replace xc (cost -2),
and replace X, (cost = 1). In this example, c(Q,, Q2), the total cost of changing
from Q1 to Q2, is 4.

The cost of an allocation A is simply the sum of the costs of the successive
changes of configurations:

cost@)= $, c(Qi-~,Qi),

where Q0 is some initial cogitation,
While the number of legal configztrations at each step is finite, it may be

impracticaily large. A result of Rorwitz et al. [I] allows us to restrict the
number of configurations we must evaluate and still be certain that we will
find the optimal allocation from this reduced collection. The restriction in-
volves considering only those configurations at step i which can be reached
from a cogitation at step i - 1 by a ~~~~~ c.knge. If Qj_ f is a confiwa-
tion at step i- 1, the configurations which can be reached from Qj_ g by
minimal change are the following:

(1) A configuration Qi which is identical to Qi_ ,.
(2) A configuration Qi which differs from Qi_ 1 only in that Pfi) is passive

in QS_ I and active in Qz.

(3) All configurations Qi which differ from Qi-1 only in that P(i), which is
not in Q __ ,, appears in Q, replacing one of the indices in Qi_ ,. To find the
optimal allocation we will use the minimal-change definition above, beginning
with some initial register configuration QW To Q0 we assign a weight of zero.
Using the minimal-change rule, we generate configurations at step i, associat-
ing a weight and a parent pointer to each configuration. The parent pointer for
configuration Qi, p(a), points to the configuration at step i - 1 from which Qj
was reached by minimal change. The weight of a configuration Qi is

The weight of a configuration is defined in the context of a straight-line
program. When the flow of control involves branches, this definition will
require modification.

The index-register allocation problem will now be recast as a dynamic-
programming problem. The interest at this point is on the motivation for such

88 WILLIAM W. AGBESTI

a model and the adequacy of dynamic programming as a methodology. The
characteristics of an archetype dynamic program will be presented briefly,
followed by the corresponding element in the index-register allocation prob-
lem.

Gur first observation is that the problem is divisible into stages, which are
the steps in the program. There is a policy decision at each stage: replacing an
index or changing the state of an index. Further, there are a number of states
associated with each stage-the states being the legal register configurations at
each step. Because there are two problem statements, we will be using two
names to describe the same thing: step in the program and stage in the process;
and likewise, con&urution and state. A feature of dynamic-programming
models is that the policy decision at each stage transforms the current state
into a state associated with the next stage. The decision in the register
allocation problem accomplishes this transformation, with the “association
with a stage” provided by the requirement that P(i) E Qi, I< i < n. The Markov
property that an optimal policy for the remaining stages must depend only on
the current state is satisfied because only the current configuration can affect
remaining allocations. Finally, a recursive relationship w(Q) is available to
identify the optimal policy.

In the definition of w(Qi), the weight of a configuration, the minim&&on
over p(Qi) represents decision inversion [3] and arises from the following
situation. Even with the minimal-change principle, there are often several ways
of generating the same configuration. For example, on a machine with two
index registers, suppose that three legal configurations were x,x2, x1x3, and
x1x4, each with a weight of 5. At the next step, P(i) = xb, so that xc must be
present now in every configuration. By minimal changes, the configuration
x,x: can be reached by each of the three configurations above. But the weight
associated with x,x: is 5, because

w(x,x:)=min{ w(x,x2) + c(x,x2,x&+),

=min{5+ 1,5+0,5+ I}

=5.

A condition for the use of dynamic programming is the decomposition of
the cost function. In index-register allocation, the cost is simply the number of
memory references needed to change configurations. Such an additive cost

REGISTER ASSIGNMENT IN TREE-STRUCTURED PROGRAMS g9

Fig. 2. Flow graph of diverging branch.

function is separable and monotonic, which are sufficient conditions for

decomposition [3].
The reason for using dynamic progr amming is that it provides a unified

methodology for handling the index-register allocation problem in programs
with nonserial flow of control. To represent such programs, we use control

flow graphs. A flow graph is a triple G=(N, E,n,J where

(i) N is a finite set of nodes,
(ii) E C N X N is a finite set of edges,

(iii) n,~ N is the initial node.

The nodes in G represent basic blocks, that is, sequences of instructions which

are executed in order. The edges represent possible transfers of control from
one block to another.

In tree-structured programs the flow pattern which dominates is the diverg-

ing branch. The flow graph for the diverging branch in Fig. 2 might corre-

spond to a MGICAL IF statement in FORTRAN. A tree-structured program would

be composed of straight-line sequences and, in general, several occurrences of
this diverging branch structure, with possibly more branches than just two.

The diverging branch structure of Fig. 3 suggests the dynamic-programming
formulation of the problem. In Fig. 3, the squares represent the stages (or

Fig. 3. Diverging branch as a dynamic program.

90 WILLIAM W. AGRESTI

program steps). The state variables Qi capture the essential information and
describe the input and output at each stage. At stagej, the process branches.

The recursion equations from the last section require some alteration in
view of this nonserial structure. In keeping with earlier studies of diverging

branch systems [3], the solution will proceed backward. The diverging branch
stages of Fig. 3 will be analyzed first, beginning with stage km and continuing
until values for w(Qkl) are found. Next, stages, n, n - 1,. . . j+ 1 will be
processed, resulting in values for w(Q,+ i). The returns from these two branches

will be combined at stagej, where another straight-line segment fromj to 1 will
complete the solution.

The procedure will use the minimal change states at each stage. However,

because of the backward direction, the minimization at each stage will take
place over all &rug&err d(Q) of a given configuration Qi, i.e., those configura-

tions (at the next stage) which can be reached by minimal change from the

given configuration.
The recursion equations at each step are as follows:

(1) Stages km,km-I ,..., kl,

(2) Stages n,n- l,..., j+ 1,

w(Qn)= $2) c(Q,4Q,))> I

W(Qi)= dej {C(Qi,d(Qi))+W(d(Qi))},

(3) Stage j,

i=m- l,..., 2,l.

i=n-I ,...j+l.

w(Qi)= dFj {c(ei,d(ei))+w(4+1(ei))+w(dk,(ei))}.
I

(4) Stagesj- l,..., 2,1,

W(Q)= de) {~(Qi~4Q~))+w(~(Qi))}~ i=j-l,..., 2,l.
I

When the two branches diverge at stepj, the set of daughters d(QJ contains
configurations associated with step j+ 1 or kl. To identify these two groups,

we denote them by 4+,(Q,) and d,,(Qi) in the recursion equation at stage j

above.

REGISTER ASSIGNMENT IN mE-STRUCTURED PROGRAMS 91

g& kl 12 k3 k4 k5

SfEPl 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ,6

Fig. 4. Diverging branch example program with required index at each step.

3. A DIYERGING BRANCH EXAMPLE

The diverging branch in Fig. 4 involves five indices on a two-register
machine. We begin by generating the minimal-change states, shown in Table 1,
at each stage in the process. We follow the solution procedure above, begin-
ning with stage k5 of the diverging branch. The results for the first three stages
are displayed in Table 2 and explained below.

TABLE 1
Minimal-Change States for Diverging Bran& Example

SY,

Required
index

1 x:
2 X3
3 x2

4 X5
5 xf
6 X2
7 X4

8 X4*
9 X3

10 x2

11 x:

12 x,
13 x;
14 x4

15 x3

16 X5

&I X:

k2 4
k3 xt’
k-4 x:
k5 x3

Xz’
4x3
4x3
4x5
x:x2+
x:x2+

X,+X4
x:x2

X:X3

X,+X2
x:x4’

x:x:

x;x;

XTX4

X,+X3

X:X5

x,+x:

x:x;

x:x:

x2+x3+

X3X;

X3X5

X*+X5

X2X5

X;X4
X&T,:

X:X3

X:X3
X:X:

XIX.?
X:X:

X$X:

X3X4”

&+X5

x,+x3
x2X3

X2X4

x2x:

X3X4+

x2xq+

X3X$

X,X2+

X,X:

X2+X4

X$X3

X:X5

x?“x: X:X;

XFXZ x:x:

x,+x: X:X;

x2+x5 X:X5

X2+X3 X,+X3

X,+X2

X4X3

X:X5

x2x3

x2x3

x2x.i+

XIX3

x2+x3

X3X4

X3X4

X4X5

X2X:

X,+X2

x2+x3

X2X5

X3X.:

X3X4

X3Xq+

X3X5

X2X5

X:X3

X1X2 XIX5

X2+X3

XIX4 X4%

X1X3 X3%

X1X5 X3Xs

X3X5+

X:X3

X3Xs

X3X5

92 WILLIAM W. AGRESTI

TABLE 2
Recursion Analysis for Stages k5, k4, k3

Required Daughter
Stepi index States Q, Weight WQ,) s~t=W,Y

k5 x3 QA = x:x; 2

Q,25= x2+x5 1

Q,',= x,+x5 1

Qh 4+x5 1

Qk5=xsxs 0

k4

k3

xs Q.& - ~2’6 0+2=2 Q& - x2+x:

Qkd - x:x2+ 2+1=3 Q& = X:Xs

Qkd - X2+X4+ 2+1=3 Qh - X2+X5

Qk4 - X:X3 1+1=2 Qis - X2+X5

Xz’ Qk’3 - X :Xs+ 2+2=4 Q& - x2+xs+

Q,‘, = X:X2+ 0+3-3 Q,$ - x,+x2+

Q,‘, - X:X4+ 2+3=5 Q; - x,+x2+

Q.t3-X:X2 0+3-3 Q&-x,+x2+

Q,’ - X:X3 1+3-4 Q& - x,+x2+

Q& = x3x;

&- XzX3

&-x,+x3

Q,& - x3xq+

&YX3Xs

Wust contain the required index.

If we expand on one of the entries in Table 2, it should clarify the use of the

recursion equations. Under step k3, consider the first state Q& At step k3, the
index xf is required, so it must be included in all of the configurations Qk.+ We

have already, in the previous step, obtained the minimal cost weights w(Q&,

for configurations we are proceeding one step backward, seeking the

minimal costs in te of configurations Qks. For state Qis=x,+xc the weight

of 4 arises from th

w(x:x:)=min{c(x:x:,x:x:)+w(x:,x:),

c(x:x:,x:x:)+ w(x:,x:))

=min{2+3,2+2}

=4.

The daughter state which corresponds to this minimum value is a\=
x:x:. The analysis continues in like manner through the diverging branch
until values for w(Q,,) are obtained.

REGISTER ASSIGNMENT IN TREE-STRUCTURED PROGRAMS 93

The key stage is 9, at which point the two branches are combined. The
analysis at stage 9 is summarized in Table 3.

After stage 9, we are left with a straightforward serial analysis which follows
the recursion equations given earlier. We conclude with a weight w(Q,) = 20.

The interpretation is that there exists a sequence of decisions which will allow
execution of the example program and require only 20 references to memory
for the loading and storing of indices.

The solution-that is, the sequence of decisions which would achieve this
minimal cost-is available by tracing through the chain of daughter pointers
at every stage. The results of the recursion analysis were not presented here for
most of’the stages. However, when these results are included, we arrive at the
solution in Fig. 5. The solution is expressed as the state (configuration) which
must be present at each step in the program. The decisions which lead to that
optimal solution are listed in Fig. 5 next to the program step at which each

$TEJ

0 e

1 x2+
2 x2+x3
3 x2+xJ
0 x2+x5
5 x,+x*+

6 x,+x2+

7 ?*%

G x,+x4+

9 Y+%

OECISIM(

LOAD x2

LOAD x3

LOAD '5

LOAOY.,

STORE "2;LMD x4

STORE xe;LOAO x3

EEp CONFIGURATION w SrEp CWFIGURATKW DECISION ~-

I" xl+x2 STORE x* kl X,+X5+ LOM x5

11 x,+x4+ LOAD x4 k2 X,+xS+

12 x,+x4+ k3 x2+x5+
STORE x,
LOAO x2

13

14

+ +
X2 %

STORE x,
LOAD x2

k4 x2*x5+

x2+x4* k5 +x X2 3
STORE x3
LOAD x5

15 x3 x4+
STORE x2
LOAO x3

16 %+X5 LOM "5

CLMJLATIVE
MEUJRY

REFEREWCES

0

1

2

2

3

4

4

6

6

8

10

11

13

15

17

19

20

Fig. 5. Optimal solution to diverging branch example.

94

TABLE 3
Recursion Analysis at Stage 9

Q; -x1+x: 2+7+5-14 XC%
Q; - x2+x$ 2+6+6=14 xc%

Q;=v,+ 1+6+7-14 %-c

Qs*-x,+x, 1+6+7-14 x3x;

Qs'-x,x,' 0+6+7-13 x+2

~Required index: x,.

bc(Q~,(t(Qs))+~~l~Q~)+~~,tQ,>,-wtQg>-
=Must contain required index.

decision should be made. Alongside is the cumulative number of memory
references required, totaling 20 in agreement with w(Q,).

4. SEVERGL DIVERGING BRANCHES

Tree-structured programs may divide into more than just two branches at a
point in the program. Many languages have m~tiway switch statements,
breaking a single program flow path into many possible paths. Examples
include the computed GO TO or -c IF statements of FORTRAN, or the
CASE statement in ALGOL.

With several diverging branches, the recursion analysis is no more difficult
than that shown above. At the diverging stage, the weight simply includes each
of the individual stage costs plus the weights from each of the separate
branches.

REFERENCES

1. L. P. Horwitz, R M. Karp, R E. Miller, and S. Winograd, Index qister allocation, J.
Assor. Cornput. M&z. 13:43-61 (1966).

2. K. Kennedy, Index register allocations in straight line code and simple loops, in Design and
Opiimizution of CoqiZers, (R. Rustin, Ed.), Prentice-Hall, En&wood Cliffs, N.J., 1972, pp.
51-63.

3. G. L. Nemhauser, Zntroduction to ~namic Programming, Wiley, New York, 1966.

Received October 1978

