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The sand hill analogy should have closed the chapter of the limit plastic torsion problem except that there exists 
no convenient method to evaluate the volume of a general sand hill which gives the limiting torque. Consequently, 
only a few soIutions of practical importance appear in the literature. A finite element method is developed to facilitate 
accurate and efficient integration of the voIume. The method applies to prismatic torsion bars of a general cross-set 
tion. Four new solutions are presented for elliptical and grooved circular shafts as well as cracked rectangular and cir- 
cular shafts. An inconsistency resulting from nonuniform convergence in a limiting case of the elastic solution of the 
grooved shaft is removed from the corresponding plastic solution. The stresses in the cracked shafts are bounded in 
the plastic solutions, providing a different way of estimating the failure torque from the fracture mechanics predic 
tions. 

1. Introduction 

The limit analysis of plastic structures [ I] as well as continuum [21 has the value of providing 
quick and adequate estimates of the bounds on the more elaborate elastic and elastoplastic solu- 
tions. The theorems of the limit analysis are well established. But the methods of solution are not 
and are in need of improvement. The issue here is not the capability and feasibility of a solution. 
It is the efficiency and convenience of a method in terms of the human effort of setting up a 
problem and the computer time and memory requirement for its solution that can enhance the 
usefulness of the limit analysis. Without a general and fast method the value of the limit analysis 
is greatly diminished. 

It has long been recognized that mathematics pro~amm~g methods are applicable to the 
limit analysis 131. Many research papers [4]-161 have been devoted to the marriage of the two 
fields. The trend seems to be in the direction from the theoretical study of the limit analysis to 
the theoretical study of the related mathematical programming problems. There are only a few 
papers devoted to computational implementation of these well-studied theoretical analyses. In 
the opinion of this author the limit analysis will be useful to engineers only if ~go~t~s and 
computer programs are made available that handle easily the complicated boundary value prob- 
lems. 

In this paper, only the limit analysis of the plastic torsion problem is discussed. A mathematical 
formulation of the problem is stated below. Let @(CC, y) be the stress function for the stresses 
CI ZXf oZ,, in the cross-section of the prismatic bar shown in fig. 1 such that 

UZX JO* = w/aY, u,,,Ju~ = -a#Jax, (1) 

where the stresses are made dimensionless by normalizing with respect to the yield stress (I,,. Ob- 
viously, 4(x, y) satisfies the eq~lib~um equation. It is a lower bound solution if the yield crite- 
rion I Vtg(x, y)l < 1 is not violated [ 21. 
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Element 

Fig. 1. A general cross-section of a prismatic bar. 

The limit torque is given by the solution of the optimization problem (see [ 71): 

maximize 
subject to 

c$ = 0 on Fe, (2) 

4 = Ci on Fi, i = 1, 2, . . . . 

$(x, y) is continuous in D. 

where T is the torque, I’e is the outer boundary of the cross-section, ri are the boundaries of 
holes in the domain D bounded by Fe, and Ci are constants. It can be shown that the optimal 
solution of (2) will drive the yield criterion to its upper bound I V$(x, y)I = 1. Geometrically, the 
solution is a surface of constant absolute slope analogous to a sand hill [ 21. It should be noted 
that the surface may have discontinuous derivatives along a finite number of curves or lines in the 
domain known as the ridge lines of the sand hill. Although the solution can be constructed geo- 
metrically, there exist no convenient method to integrate the stress function which gives the 
limiting torque. 

A special finite element scheme is developed to facilitate the integration. Since the stress func- 
tion is linear along one direction, narrow and long elements are chosen along these steepest 
descent directions between the ridge lines and the boundaries. The order of approximation de- 
pends only on the mesh size along the contours of the stress function. 

Two families of cross-sections which have exact elastic solutions are chosen for the limit plastic 
analysis. They are ellipses and grooved circles. In the limiting case when the groove dimension 
approaches zero the elastic solution does not approach the solution for the circular shaft without 
the groove. The plastic solution of the grooved shaft however converges uniformly to that without 
the groove. The solutions of cracked rectangular and circular shafts are also presented for the 
entire range of crack extensions. 
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2. Finite element method 

The finite element method is a very powerful tool for numerical integration [8]. When the 
smoothness properties of the integrand are known, special finite element schemes can be devel- 
oped to optimize the order of approximation. In the case of the limit plastic torsion problem the 
linearity of the stress function along steepest descent directions suggests the use of long and 
narrow elements along these directions, as shown in fig. 1. A complete analysis of this type of 
elements is given by Laskin and Yang [ 91. To present the idea simply, triangular elements with 
linear interpolation functions are used in this paper. The integration error using these elements 
is O(h). A sufficiently small mesh size h is chosen so that the integration error is the same order 
of magnitude as that of the round-off errors. Since the small mesh is taken only in one direction, 
computing time increases only linearly with the inverse fo the mesh size l/h. 

A triangular element spans the space between two boundaries or between a boundary and a 
ridge line. One of the long edges of the triangle coincides with a steepest descent direction. It is 
this type of mesh configuration that makes calculations of the limit torque simple and efficient. 
The stress function is approximated by a linear function within the element. The torque has the 
form 

T = 2 J-.4(% Y)U = 2 c jJ$(x, yh-l-4 = c $ (f#+ + #j + Gk)Aijk + O(h), (3) 
D A 

where Aijk is the area of the triangle with its vertices at mesh points i, j and k, and the summation 
is taken over the domain consisting of all triangles. The area can be expressed in terms of the 
coordinates of the vertices: 

A ijk = one-half the absolute value of the determinant 1 xi vi . (4) 

1 xk Yk. 

A point on the ridge line, where the normal derivative of the stress function is discontinuous, 
is the intersection of at least two lines along the steepest descent directions. It has equal distance 
to the boundary points following each steepest descent direction. This distance is also the value 
of the stress function at the point. These points (and thus the ridge lines) can be located by 
solving a few nonlinear algebraic equations of the boundaries. The ridge line calculations are 
problem-dependent, as shall be described in the next two sections. 

An isoparametric element that has 0(h3) error and treats the curved boundary with the same 
order of approximation is given in [ 91. The higher accuracy is gained at the expense of added 
effort in programming and data preparation when setting up a problem for computation. For a 
large problem the advantage of this higher order element may well be worth the effort. The ques- 
tion of the optimal order of approximation will not be addressed in this paper. 
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3. Elliptical shaft 

A family of elliptic shafts with various ratios of minor and major axes are chosen for the plastic 
torsion analysis. There exist exact elastic solutions [ 101 as well as plastic solutions [ 111 for these 
cross-sections. 

The major and minor semiaxes of the ellipse are denoted by a and b, respectively. The ridge 
line is a segment along the major axes. The steepest descent direction from a point (,$, 0) on the 
ridge line to a point (x, u) on the elliptic boundary must be normal to the boundary at (x, v). 
This condition can be stated as 

[y/(x - &g] [-bx/uJu2 - x2] = -1. (5) 

Solving (5) with the use of the equation of the ellipse (~/a)~ + b/b)2 = 1, we obtain the 
parametric form 

x = a2#y(a2 - b2), y = b~i-qq(u2 - P) (6) 

of the point (x, y) associated with ([, 0) on the ridge line. The equations in (6) are used to gener- 
ate a mesh system shown in the left halves of the figures in fig. 2. A family of curves which are 
orthogonal to the mesh lines is shown in the right halves. Each quadrilateral mesh unit is divided 
into two triangles by a diagonal. From the first equation of (6) the terminating points of the ridge 
line are determined. They are at k( 1 - b2/a2)a. Near the two ends of the ellipse the stress function 
behaves in a form similar to a conical surface with the vertex at the end points of the ridge line. 
The integration over the curved end element is approximated by the volume of a cone. 

4/a = 0.8 

b/a =0.6 

QCY = 0.2 0 .2 A .6 B 

Fig. 3. Elastic and plastic torque curves for the elliptical shafts. Fig. 2. Elliptical cross-sections 
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The dimensionless torque 7’/(ooa3) is calculated by the finite element integration. For various 
b/a ratios the plastic solutions are compared with the elastic solutions indicating the safety mar- 
gins of the maximum elastic torque for ductile materials. The results are shown in fig. 3. The 
computed plastic solutions agree with the analytic solutions given by formula (4.8) in [ 111. 

4. Grooved circular shaft 

An interesting elastic solution of a grooved circular shaft is given in [ 101. When the radius of 
the groove b is small compared to the radius of the shaft a, the elastic solution has an inconsistency. 
As b approaches zero, the maximum elastic torque is only half that of an identical shaft without 
the groove. This phenomenon occurs often in the theory of elasticity known as nonuniform con- 
vergence in the limit. 

In the coordinate system shown in fig. 4 let the point (t, q) on the ridge line be associated by 
two steepest descent directions with the point (x, u) on the circle and the point (u, u) on the 
groove. The three points satisfy the relations 

7)/b - 8 = v/b - x), 

u2 + u2 = b2, 

(a - x)2 + y2 = a2, 

(x - t)2 + 0, - TJ)2 = (u - t)2 + (u - qq2. 

Eliminating x, y, u and u from the system of equations above, the ridge equation 

a[dm - 5:] - bdm= a2 - b2/2 (8) 

is obtained. 

Fig. 4. Coordinate definitions of the grooved circular shaft. 

b/a = 0.5 b/a = 1.0 b/a= 1.5 

Fig. 5. Grooved circular cross-sections. 
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c .4 .a :.i 1.6 2.0 

b,‘a 

Fig. 6. Elastic and plastic torque curves for the grooved circular shafts. 

The grooved cross-sections for three b/a ratios are shown in fig. 5. The top halves of the figures 
show the finite element mesh lines, while the bottom halves show the contour curves of the stress 
function. 

The finite element integration gives the limit plastic torque Tp. The solutions for various b/a 
ratios are shown in comparison with the maximum elastic torque T, in fig. 6. The limit plastic 
torque and the maximum elastic torque for a circular shaft without the groove are denoted by G 
and c, respectively. The ratio Te/Tp as b/a approaches zero converges to half of the value given 
by c/70, shown by the dot in the figure. The limit plastic torque Tp however converges uniformly 
to q as b/a approaches zero. 

5. Cracked shafts 

Elastic solutions of cracked shafts [ 121 have been used extensively for predictions of fracture 
load. The limit plastic solutions of cracked shafts, which could serve as upper bounds for the 
fracture load, have been somehow overlooked. 

Using the finite element method presented, the limit torques of cracked rectangular and cir- 
cular shafts can be easily obtained. The cross-sections of the cracked shafts with different crack 
extensions are shown in fig. 7. Again, the top halves of the figures show the finite element mesh 
lines, while the bottom halves show the contour curvee of the stress functions. 

The ridge line calculations are similar to the cases presented, and their discussions are omitted 
here. The limit torques of the rectangular and circular shafts for the entire range of crack exten- 
sion ratios are presented in fig. 8. 

The shear stresses at the tips of the cracks are of course bounded from the inequality condition 
in (2). This requires superductility of the materials. It should be noted here that superplastic 
materials do exist and are under active research and development. For moderately ductile mate- 
rials the solutions presented here may serve as close upper bounds. 
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Fig. 7a. Cracked rectangular cross-sections. 
Fig. 7b. Cracked circular cross-sections. 

Fig. 8. Plastic torque curves for cracked shafts. 
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6. Final remarks 

Limit plastic solutions are upper bounds of elastic and elastoplastic solutions. For ductile mate- 
rials the limit analysis solutions are quite realistic. The method presented here should handle at 
ease the limit torsion problem of a general cross-section, A two-dimensional integration problem 
is reduced to essentially a scalar integration similar to the trapezoidal rule. This one-dimensional 
nature makes the optimal order of approximation a secondary consideration. Even with the 
simple linear O(h) approximation used in this paper the computing time for the exhaustive 
parameter variation on the four problems presented amounts to less than two minute CPU 
(Amdahl470) time with single precision arithmetic. The 0(h3) method mentioned earlier will 
further reduce the already quite acceptable computing cost. 

The sensitivity of some linear elastic solutions to small geometric perturbations is well known. 
The infinitesimal groove simulates a hair-line scratch on the surface of the shaft. For a highly 
brittle material this scratch may greatly affect the torsional capacity of the shaft. This is a subject 
of great interest in fracture mechanics. For ductile materials like metals such sensitivity can be 
dubious. Singular elastic stress fields around the crack tips have been used widely in fracture 
mechanics analysis. For ductile materials, predictions of fracture strength from such analysis are 
inaccurate. It is suggested here that the limit analysis may offer bounds for fracture mechanics 
analysis of ductile materials. 
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