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The classical Nullstellensatz asserts that a reduced affine variety is known by 
its closed points; algebraically, a prime ideal in an affine ring is the intersection 
of the maximal ideals containing it. A leading special case of our theorem says 
that any affine scheme can be distinguished from its subschemes by its closed 
points with a bounded index of nilpotency; algebraically, an ideal I in an affine 
ring A may be written as 

I = (I (me + I), (*I 
n*ev- 

where JV is the set of maximal ideals containing I, and e is an integer depending 
on the degree of nilpotency of A/I. 

Our theorem might also be thought of as a sharpening of Zariski’s Main Lemma 
on holomorphic functions [4]. Roughly speaking, this lemma asserts that if a 
regular function f on an irreducible affine variety V vanishes to order e at each 
of a dense set JV of closed points of V, then it vanishes to order e at the generic 
point; that is, if P is the prime ideal in k[x, ,..., x,J defining V, then 

the eth symbolic power of P, where the intersection is taken over a dense set 
of maximal ideals #Z of K[x, ,... , x,J containing P. Of course this implies that, 
if I is a P-primary ideal containing Pte), then 

(*), above, is a sharpening that includes (**). 
Our proof is related to Zariski’s but is simpler than his. 

* Both authors are grateful for the support of the NSF during the preparation of this 
work, and to the organizers of the CBMS conference at Dekalb, 1977, for providing a 
congenial environment, in which the work was done. 
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Throughout this paper, all rings will be commutative and Noetherian, with 
identity. If R is a ring and P is a prime ideal of R, a finitely generated module M 
is said to be P-coprimary if P is the only associated prime of M [2]. The eth 
symbolic power Pte) of P is by definition the inverse image of Pr” in R (Pr” n R 
if R is a domain), which is the P-primary component of Pe. 

Results 

THEOREM. Let R be a ring, and let P be a prime ideal of R. Let Jlr be a set of 
maximal ideals m containing P such that R,XIP,z is a regular local ring, and such that 

If M is a finitely generated P-coprimary module annihilated by Pe, then 

n &M = 0. 
9nsdv 

(Note: Since M is P-coprimary, Pe annihilates M if and only if Pee) does.) 

COROLLARY 1 (Zariski’s Main Lemma on Holomorphic Functions [4]). With 
R, P, and Jlr as above we have 

If A is regular, the inclusions may be replaced by equalities. 

Proof. The first statement, which is the original “Lemma,” follows from 
our theorem with M = RIP(“). For the second statement, it suffices to prove 
& r> Pee) for any m 1 P; this is the content of a theorem of Nagata [3, p. 1431 
and Zariski (see [l, Theorem 11). The next corollary answers a question of 
B. Wehrfritz which originally motivated this study. 

COROLLARY 2. Let A be a ring finitely generated over a field or over the 
integers, and let M be a finitely generated A-module. For su@zently large e, we 
have 

n G&M = 0. 
msmitx spec.4 

(In fact, if 0 = n Mi is a primary decomposition of 0 C M, with M/Mi Pi- 
coprimary, and Pii(M/MJ = 0, then we may take e to be the maximum of the ei). 

Proof. By [2, Ch. 12 and 131, the regular locus of any domain A/P, finitely 
generated over the integers or a field, is open and therefore dense. Thus we 
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may apply our Theorem to the coprimary modules M/Mi , with the desired 
result. 1 

Remarks. (1) Clearly, it suffices in Corollary 2 that A be an excellent Hilbert 
ring. 

(2) The hypothesis of the Theorem that the smooth points are dense in 
max-spec R cannot simply be dropped: there is a 2-dimensional Noetherian 
regular factorial ring R whose maximal ideals form a countable set, say 
b-+5 , @% v-h such that ni mi is a nonzero, principal ideal (f), whose generatorf 
is in the ith power of mni for all i. Setting i? = R/(f2), we see that there is no 
integer k such that the intersection of the kth powers of the maximal ideals of i? 
is 0. 

The example may be constructed as follows: Let (X,>, {Y,} be countable 
families of indeterminates over an algebraically closed field K. Set: 

L = (f2 -h ,***, fn -fJ GG 9 Yl ,.*a, & , Y,]; 

s?z = WXl , Yl ,..‘, xn , YJI,; 

Then U, is a multiplicatively closed set in S,, , and we set R,, = U;‘S, . There 
is an obvious injection R,, + R,, which is faithfully flat. We set 

R =bR,,, 

and let f be the image of ft in R. 
One can verify that the maximal ideals of R are precisely the ideals (Xi , Yi), 

and that R and f have the properties above (To prove that R is Noetherian, use 
Cohen’s Theorem [3], noting that primes of R are either maximal, and of the 
form (Xi , Yi), or of height 1, and thus principal). The ideal (f) is a prime. 
Note that R is not pseudogeometric; the integral closure of R/(f) is not a finite 
R/(f )-module. 

(3) A different approach to the proof of the Theorem could be obtained 
by proving some kind of “Uniform Artin-Rees Theorem,” which we pose as a 
problem: 

Problem. Let R be an affine ring, and suppose that MC N are finitely 
generated R-modules. Is there an integer k, such that for all k > k, and all 
maximal ideals m of R 

Mnm’“N = wtk-kO(M n e&N) ? 

481/58/1-11 
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Of course remark 2) shows that this could not be true for all rings over an 
algebraically closed field. 

Proof of the Theorem. Let Mi = PiM for 0 < i < e. Since (Mi/Mi+& is 
an R,/P,-vectorspace, we can choose an element f E R - P such that each 
(MJM,,,), is (R/P)I-free. 

We now claim that for any f E R - P, it suffices to prove the corresponding 
Theorem for the ring R, , the set Jv; = {mRf 1 m E N, f $ HZ> of maximal ideals 
of R, and the finitely generated R,-module Mj . For, 

and Mf is Pf coprimary, so the hypothesis of the Theorem is satisfied, and, on 
the other hand MC Mf and 

n m”M C m?, me&, IrseJv 
so if the latter module is 0, the former is as well. 

Thus we may assume that each MJM,,, is R/P-free from the outset. Under 
this hypothesis we will show 

meM n Mi C mMi c***j 

for each Mi and each m E JV. 
Once this is established, the Theorem will follow at once, since if x E Mi n 

n me.N mBM, then by (** *), x E Lx mMi 3 so x + &+I C fLv 4M,/Mi,,) 
= 0, so x E M,,, n n,,,=x &M, and, continuing in this way, x = 0. 

It remains to prove ( ***). Because of the behavior of sets of associated primes 
with respect to exact sequences, 

Ass(M/mzM,) C Ass(M/M,) u Ass(M+Mi) = {P, 4, 

So it suffices to prove (***) after localizing at nz. 
We will now change notation, and write R, M ,... for Ii,, Mm ,... . Since RIP 

is a regular local ring, m/P is generated by a regular sequence %r ,..., Z~ . Lifting 
these elements to x1 ,..., xd E R, we see that x1 ,..., xd is an Mi/Mi+,-regular 
sequence for each i. It follows at once that x1 , . . ., xd is an M/M,-regular sequence 
for each i > 0, and thus that 

(Xl ,-**, x&M n Mi = (x1 ,..., x,)M, . 

On the other hand, m = P + (x1 ,..., x,), so 
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meMnMi = 
0 

P(x, )..., x~)~M 
j+k=e 1 

n Mi 

C (PM + (x1 ,..., xd)M) n Mi 

= (x1 ,..., x,)Mn Mi 

= (x1,...> xcz) Mi 

C ,,n/r, , 

as required for ( ***). This completes the proof. 
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